Malcher, F; Ford, B; Barham, R; Robinson, S; Ward, J; Wang, L; Bridges, A; Yacoot, A; Cheong, S H; Rodrigues, D; Barrera-Figueroa, S (2024) A calculable pistonphone for the absolute calibration of hydrophones in the frequency range from 0.5 Hz to 250 Hz. Metrologia, 61 (2). 025011
Preview |
Text
eid10011.pdf - Published Version Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
The demand for traceable hydrophone calibrations at low frequencies in support of ocean monitoring applications requires primary standard methods that are able to realise the acoustic pascal. In this paper, a new method for primary calibration of hydrophones is described based on the use of a calculable pistonphone to cover frequencies from 0.5 Hz to 250 Hz. The design consists of a pre-stressed piezoelectric stack driving a piston to create a varying pressure in an air-filled enclosed cavity, the displacement (and so the volume velocity) of the piston being measured by a laser interferometer. The dimensions of the front cavity were designed to allow the calibration of reference hydrophones, but it may also be used to calibrate microphones. Examples of calibration results for several sensors are presented with an uncertainty budget. The metrological performance is demonstrated by comparisons with results for other calibration methods and an independent implementation of primary calibration methods at other institutes.
| Item Type: | Article |
|---|---|
| Keywords: | infrasound, calibration, calculable pistonphone, hydrophone, underwater acoustics |
| Subjects: | Acoustics > Underwater Acoustics |
| Divisions: | Medical, Marine & Nuclear |
| Identification number/DOI: | 10.1088/1681-7575/ad2d5a |
| Last Modified: | 10 Sep 2024 14:48 |
| URI: | https://eprintspublications.npl.co.uk/id/eprint/10011 |
![]() |
Tools
Tools