< back to main site

Publications

A Sensor for Characterisation of Liquid Materials with High Permittivity and High Dielectric Loss

Wang, C; Liu, X M; Huang, Z X; Yu, S; Yang, X B; Shang, X B (2022) A Sensor for Characterisation of Liquid Materials with High Permittivity and High Dielectric Loss. Sensors, 22 (5). 1764

[thumbnail of eid9570.pdf]
Preview
Text
eid9570.pdf - Published Version
Available under License Creative Commons Attribution.

Download (7MB) | Preview

Abstract

This paper reports on a sensor based on multi-element complementary split-ring resonator for the measurement of liquid materials. The resonator consists of three split rings for improved measurement sensitivity. A hole is fabricated at the centre of the rings to accommodate a hollow glass tube, through which the liquid sample can be injected. Electromagnetic simulations demonstrate that both the resonant frequency and quality factor of the sensor vary considerably with the dielectric constant and loss tangent of the liquid sample. The volume ratio between the liquid sample and glass tube is 0.36, yielding great sensitivity in the measured results for high loss liquids. Compared to the design based on rectangular split rings, the proposed ring structure offers 37% larger frequency shifts and 9.1% greater resonant dips. The relationship between dielectric constant, loss tangent, measured quality factor and resonant frequency is derived. Experimental verification is conducted using ethanol solution with different concentrations. The measurement accuracy is calculated to be within 2.8%, and this validates the proposed approach.

Item Type: Article
Keywords: dielectric sensor; high permittivity; high loss; liquid; complementary split ring resonator
Subjects: Electromagnetics > RF and Microwave
Divisions: Electromagnetic & Electrochemical Technologies
Identification number/DOI: 10.3390/s22051764
Last Modified: 16 Feb 2024 13:58
URI: https://eprintspublications.npl.co.uk/id/eprint/9570
View Item