Martínez-Pañeda, E; Díaz, A; Wright, L; Turnbull, A (2020) Generalised boundary conditions for hydrogen transport at crack tips. Corrosion Science, 173. p. 108698. ISSN 0010938X
Full text not available from this repository.Abstract
We present a generalised framework for resolving the electrochemistry-diffusion interface and modelling hydrogen transport near a crack tip. The adsorption and absorption kinetics are captured by means of Neumann-type generalised boundary conditions. The diffusion model includes the role of trapping, with a constant or evolving trap density, and the influence of the hydrostatic stress. Both conventional plasticity and strain gradient plasticity are used to model the mechanical behaviour of the solid. Notable differences are found in the estimated crack tip hydrogen concentrations when comparing with the common procedure of prescribing a constant hydrogen concentration at the crack surfaces.
Item Type: | Article |
---|---|
Keywords: | Hydrogen, Diffusion, Finite element analysis, Environmentally assisted cracking, Trapping |
Subjects: | Advanced Materials > Corrosion |
Divisions: | Electromagnetic & Electrochemical Technologies |
Identification number/DOI: | 10.1016/j.corsci.2020.108698 |
Last Modified: | 27 Oct 2020 15:42 |
URI: | http://eprintspublications.npl.co.uk/id/eprint/8938 |
Actions (login required)
View Item |