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ABSTRACT: A typical mass spectrometry imaging experiment
yields a very high number of detected peaks, many of which are
noise and thus unwanted. To select only peaks of interest, data
preprocessing tasks are applied to raw data. A statistical study to
characterize three types of noise in MSI QToF data (random,
chemical, and background noise) is presented through NECTAR, a
new NoisE CorrecTion AlgoRithm. Random noise is confirmed to
be dominant at lower m/z values (∼50−400 Da) while systematic
chemical noise dominates at higher m/z values (>400 Da). A
statistical approach is presented to demonstrate that chemical
noise can be corrected to reduce its presence by a factor of ∼3.
Reducing this effect helps to determine a more reliable baseline in
the spectrum and therefore a more reliable noise level. Peaks are classified according to their spatial S/N on the single ion images,
and background noise is thus removed from the list of peaks of interest. This new algorithm was applied to MALDI and DESI QToF
data generated from the analysis of a mouse pancreatic tissue section to demonstrate its applicability and ability to filter out these
types of noise in a relevant data set. PCA and t-SNE multivariate analysis reviews of the top 4000 peaks and the final 744 and 299
denoised peak list for MALDI and DESI, respectively, suggests an effective removal of uninformative peaks and proper selection of
relevant peaks.

1. INTRODUCTION
One of the main challenges in the preprocessing of mass
spectrometry (MS) data is robust separation of noise from
signal. Noise can decrease the mass accuracy of MS peaks due
to centroid shifting and lead to incorrect identification of
detected ions. The term “noise” is not clearly defined in the
MS field, and different authors refer to several types of noise
with slightly varied approaches. The definition of noise given
by the IUPAC1 is t̀he random fluctuations occurring in a signal
that are inherent in the combination of instrument and
method’.

A number of mass spectrometry articles refer to “nonrandom
noise” (i.e., sinusoidal noise,2 low-frequency noise,3 chemical
noise4,5 or background noise6,7). This type of “nonrandom
noise” appears to contradict the definition provided by IUPAC
but is a widely accepted concept in the MS community.
However, the definition and origin of these noise contributions
are not always consistent or well-known in the literature.

Several methods have been introduced for filtering noise in
MS, which can be grouped into two main types: noise
threshold-based algorithms8−10 and wavelet techniques.11−13

Some examples of noise threshold algorithms are (1)
Autopiquer,8 which assumes that real peaks should display
regular spacing while noise will not. This method uses the
isotopic structure to optimize the noise threshold along the m/
z regime. (2) LIMPIC (linear MALDI-TOF-MS peak

indication and classification)9 was developed for the detection
of consistent protein peaks from a set of calibrated mass
spectra. For each, mass-spectral smoothing and baseline
correction are applied, followed by noise estimation and
peak picking. From the combination of the multiple spectra
analysis, LIMPIC provides a list of “true” molecular signal
peaks. The noise threshold in this case is determined using a
smoothing procedure based on a Kaiser filter.

Other approaches use wavelet based algorithms, for
example: (1) MassSpecWavelet14 is based on the continuous
wavelet transform (CWT) algorithm. The shape and
distribution of the peaks are considered when fitting the
model. In this case, the local noise around one peak is defined
as the 95-percentage quantile of the absolute CWT coefficient
values within a local window surrounding the peak. (2) The
undecimated discrete wavelet transform (UDWT) method
consists of three steps: (i) compute the wavelet coefficients
from the data, (ii) set small wavelet coefficients to zero, and
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(iii) compute the inverse wavelet transform to recover the
denoised spectrum. When using wavelet methods, the user
needs to select a basic wavelet function on which to base the
transform, the kind of transform, and the thresholding method.

Some of these techniques are summarized in Table 1, where
the main principle of the method alongside information about
coding language and availability are shown.

Mass spectrometry imaging enables the mapping of
thousands of molecules in tissue. Uninformative peaks in
MSI are often those that represent ions relating to background.
Two types of background noise can be distinguished: (i)
Sample background, which may be defined as peaks only
detected in nonsample regions and/or those clearly showing a
lack of spatial organization or structure. (ii) Spectral
interference, referring to those peaks that are not resolved
with the instrument used. These unresolved peaks, if only
present off-tissue, are noise, while if in-tissue they are
potentially peaks of interest. The distribution on tissue and
background of the detected ions can be used to make a
judgment on signal vs noise.

Identification of uninformative peaks in MSI is normally
performed by visual examination of each of the individual
single ion images. This manual analysis is highly time-
consuming (typical MALDI experiments consist of thousands
of peaks) and dependent on the experience of the user. Some
methods to automatically remove these peaks can be found in
the literature. Alexandrov and Bartels18 developed a method
based on spatial structure analysis on single-ion-images. The
level of spatial structure is ranked based on the original
measure of spatial chaos (lack of spatial pattern in the pixels
intensities). Inglese et al.19 created a reference image and
studied the similarity between peak intensity images and the
reference image. The similarity is determined using Pearson’s
correlation, Spearman’s correlation, structural similarity index
measure,20 and normalized mutual information. Inverse
maximum signal factors (MSF) denoising is presented in
Tyler et al.21 to remove correlated noise as well as to improve
contrast in MSI images with low signal-to-noise detections.

Removal of peaks relating to the use of a MALDI matrix and
associated solvent, or sampling solvents used in DESI, can be

eliminated when cross-matching with databases of known
compounds (i.e., HMDB,22 lipid maps,23 etc.) such as is
performed in METASPACE24.

Noise is a particular problem in MSI workflows because
further data analysis will typically consist of multivariate
analysis,25−27 where the number and the lists of peaks have an
important effect in the sample classification. The implication of
peak selection for subsequent multivariate analysis cannot be
neglected.28

In this paper we present NECTAR (NoiseE CorrecTion
AlgoRithm), a new method to characterize and remove noise
in MSI-QToF instruments (a python package is available at
https://github.com/NiCE-MSI/nectar_msi for transparency
purposesa). Although several algorithms are available in the
literature to remove noise, none of these methods analyze
spectral and spatial noise together. This novel algorithm
statistically determines and characterizes noise considering
three factors: (i) a random noise level threshold, (ii) a
chemical noise wavelet correction, and (iii) a spatial signal-to-
noise ratio (S/N) analysis of tissue and background. The
definitions given to the different types of noise in this work are
instrumental, random, chemical and background noise (Figure
1). Instrumental noise does not seem to affect mass spectra
significantly, affecting mostly the true shape of peaks.3

Smoothing algorithms are normally used to correct this effect
(e.g., Savitzky−Golay, Gaussian smoothing, moving average29).
We do not investigate instrumental noise as it does not affect
the detection limit of the spectrum in MS. We refer to
“random noise” as the intrinsic random noise which follows the
Poisson distribution due to the “ion counting” detectors of MS
instruments, to “chemical noise” as the systematic noise
present at higher m/z range values that is sinusoidal and
mostly constant in amplitude, and “background noise” to those
uninformative peaks associated with matrix, sampling solvents,
or other contaminants which are not found to provide sample
related spatial structure.

2. METHODS
2.1. Mass Spectrometry Imaging. Two 10 μm thick

mouse pancreatic tissue sections were analyzed in two different

Table 1. Collection of Some of the Methods for Noise Determination and Peak Picking Present in the Literature

Software Technique Availability Ref Summary

Autopiquer MALDI-
ToF

No 8 Threshold estimation by selecting as much (isotopic) structure as possible

LC-Q-ToF
FT-ICR

LIMPIC MALDI-
ToF

Matlab 9 Noise threshold by smoothing technique

MassSpecWavelet SELDI-
ToF

R - Open source 14 Continuous wavelets transform

UDWT MALDI-
ToF

Matlab 15 Undecimated discrete wavelet transform

N-sigma data dependent
thresholding for FTMS

Orbitrap-
FTMS

No 10 Noise threshold that involves analysis of the distribution of logarithmic intensity of all peaks,
including noise and analyte

FT-ICR
MS

Subspectral analysis SELDI R - Available
under request

16 Continuous wavelets transform to detect peaks in individual subspectra, retaining
information to construct noise distribution

Bioconductor PROcess MALDI-
ToF

R - Open source 15 Undecimated discrete wavelet transform-based peak detection on the mean spectrum

Hilbert−Huang
Transformation

MALDI-
ToF

No 17 Decomposition of the spectrum in very high and very low frequencies signal. The protein
frequency domain should be in the middle part of frequency domain

SELDI-
ToF
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modalities. First, tissue was acquired in positive polarity using a
uMALDI Synapt G2-Si (Waters, UK) with a mass range of
50−1000 m/z in sensitivity mode. A scan time of 0.05 s/pixel
and a pixel size of 50 μm × 50 μm were used, and 2,5-
dihydroxybenzoic acid was used as a matrix. Second, tissue was
acquired in negative polarity using a DESI XEVO G2-XS
(Waters, UK) with a mass range of 80−1000 m/z in sensitivity
mode. A scan time of 0.5 s/pixel and a pixel size of 100 μm ×
100 μm were used, and 95:5 methanol/water was used as
solvent.

2.2. Data Conversion and Handling. Proprietary raw
data files were converted to mzML using msconvert from
ProteoWizard30 and converted to the imzML format using
imzMLConverter.31 The imzML was read in Python with
pyimzML package (https://github.com/alexandrovteam/
pyimzML). To calculate the mean spectrum, first we created
a common x-axis for all pixels. This axis was created from the
m/z values of the individual pixels, assuming the m/z sampling
is proportional to (m/z)0.5. Using this scale, every pixel-
spectrum was binned to this common x-axis. SpectralAnalysis
software32 was used to apply K-means clustering algorithm to
separate tissue from background, so the resulting spectrum
analyzed included peaks detected from tissue regions only.
Multivariate analysis was performed with Matlab2018b (The
Mathworks Inc., Natick, MA, USA).

2.3. Determination of Noise. Three types of noise are
studied in this work, i.e., random, chemical, and background
noise. Examination of random and chemical noise is performed
on discrete mass spectra. Our review of background noise

involved examination of a spatially resolved MS imaging data
set and the distribution of selected ions of interest.
2.3.1. Random Noise Determination: Sigma-Clipping

Function. The “sigma-clipping function” has been widely
developed and used in astronomy to define the continuum of a
spectrum, to remove bad pixels from astronomical images (i.e.,
cosmic rays, hot pixels), as well as to separate signal from
noise.33−35 In astronomy, a CCD detector is commonly used
to count photons arriving at the telescope. The random noise
produced in this “photon counting” has a Poisson distribution,
similar to the noise found in the ion-counting detectors of the
MS-ToF instruments.36,37

The main concept behind the sigma-clipping is the removal
of outliers from a distribution. Outliers present in the data can
bias the noise level. Signal peaks count as outliers for the noise
determination; therefore, these outliers are removed, which
reduce the noise and allow new outliers to be identified. This
process was repeated until a certain tolerance is reached. The
main steps of this function are as follow: (1) The standard
deviation (σ) and the median m of the distribution are
calculated. The median is used instead of the mean because the
mean is much more affected by outliers than the median. (2)
Every point that is smaller or larger than m ± ασ is removed,
where σ is the “sigma threshold” and α a scaling parameter.
Values beyond this threshold are considered outliers and
therefore rejected. Higher α implies less data being removed
and vice versa. (3) We go back to step 1 and iterate the same
steps until a certain tolerance value (θ) is achieved,

Figure 1. Diagram of the different noise contributions found in the literature affecting the MSI data. Instrumental noise mostly affects the shape of
the peaks, while random and chemical noise are direct noise contributions affecting the detection limit of the spectrum. Background noise refers to
uninformative peaks, most likely related to the presence of matrix or solvent.
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old new

new
=

(1)

where σold is the standard deviation before removing the new
outliers and σnew the standard deviation after.

In this work, we use this function to define the noise level
from the mean spectrum of the MS data. Noise in MS is not
constant along the m/z range; hence, the sigma-clipping
function is applied within a sliding window which determines
the noise level locally. Two different window sizes are
evaluated (4 and 20 Da) to ensure that enough values are
used to robustly identify outliers while still revealing local
variation in the noise level on these mass-charge scales. This
process is applied in every single mass-charge bin; therefore, no
gaps between windows are present.

The tolerance value was set at 0.001. This figure was chosen
after testing several threshold values on different data sets and
finding this value the most appropriate when inspecting the
random noise level in each data set.

As well as estimating the noise level using the sigma-clipping
function, it is possible to correct the baseline drift sometimes
present in MS data. The baseline of a spectrum should be flat
at zero; however, MS spectra normally present an uneven
baseline often observed as a monotonically decreasing bias.
This baseline affects the peak intensity values of a mass
spectrum, so it is essential to correct for this effect to obtain
accurate information (Figure 1, baseline drift). To apply the
baseline correction with sigma-clipping, the median intensity of
peaks determined to be noise is calculated and subtracted from
the original signal. The baseline is calculated within the same
sliding window that moves along the m/z range. To apply the
baseline correction, the threshold is set at 2σ. A lower
threshold was chosen here to avoid the bias due to the
presence of chemical noise in the sample (more bins were
identified as signals and thus not included in the noise). This
high intensity systematic noise can bias the baseline level,
resulting in a higher number of negative values when
performing a standard 3σ baseline subtraction. After correcting
the baseline and separating the signal from the noise, the
random noise is evenly distributed around zero (Figure 1,
random noise).
2.3.2. Chemical Noise Correction. Chemical noise is

characterized by a sinusoidal signal of almost constant
amplitude and local maxima with a periodicity of ∼1 Da.38,39

The amplitude of this signal is smaller than that of the true
peaks in a local region. This type of sinusoidal noise is
characteristic of MALDI and DESI QTOF instruments (Figure
1, periodic low intensity peaks). Its origin and nature are not
clearly understood, but it is generally accepted that this type of
noise is due to cluster ions arising from the matrix or solvent.40

This nonrandom noise contributes to the systematic noise of
the mean spectrum, and therefore, the identification of a
baseline noise cannot be obtained easily, which makes it
difficult to separate noise from signal.

To characterize and correct chemical noise we use a
combination of the sigma-clipping function and the “Adaptive
Background Subtraction” (ABS) algorithm.39 The local noise
level is determined and masked via sigma-clipping, and a new
“noise spectrum” is used to estimate the chemical noise pattern
with ABS. This intensity distribution pattern is then subtracted
from the original signal, and thus, the chemical noise corrected.

The main steps of ABS are as follows: (1) A sliding window
of 21 Da mass units is selected. (2) This window is divided in

units of 1 Da each and subdivided into 10 bins. (3) The 21
bins of 1 Da each are overlaid, so that for each 0.1 Da sub-bin,
there are now 21 values available. (4) The local intensity
distribution for each nominal mass region is calculated, where
the chemical noise is defined as the 45th percentile of the 21
values in each sub-bin. (5) An interpolation is applied between
the different types of sub-bins to obtain the correction at each
mass-charge. (6) This intensity distribution pattern is then
subtracted from the original signal (for more details see ref
39).
2.3.3. Peak Picking. To identify individual peaks, we make

use of the first derivative properties. All of the identified peaks
with a distance less than 30 ppm between them are considered
one single peak. This value was selected due to the intrinsic
resolution of the QToF instruments that have been used.
When multiple peaks fall within the 30 ppm window, the
highest intensity peak is selected as a potential peak while the
second one is considered an artifact or an unresolved peak due
to insufficient resolution.

Once the chemical noise has been removed and the noise
level has been determined, all peaks above 3σ of their local
noise are considered potential peaks. However, it often
happens that poorly resolved peaks are present in the
spectrum.

From this first list of peaks, a subset with the 200 most
intense peaks is created to determine the resolution of the
peaks in the data set under study. A Gaussian model is fitted to
each of these 200 peaks by minimizing the χ2, which is defined
as

(obs model)
noise

2
2

2=
(2)

Three free parameters are considered in the fitting, i.e., the
centroid, width, and intensity of the peak. The χ2 minimization
provides an optimized result, σres, for the fit. To obtain a better
correlation, outliers are removed with the use of the sigma-
clipping function, eliminating those peaks that are further than
±3σ from the correlation (θ ∼ 0.001). The intercept of the
correlation is forced to be located at zero. This resolving power
is used as a reference to estimate the expected width of the
peaks along the m/z range of the spectrum (Supporting
Information Figure S1).

The process is then repeated, and the second Gaussian
fitting is applied to the full list of peaks by minimizing χ2, but
this time constraints are put on the fits. These constraints are
applied to the centroid, intensity, and width of the peak. The
centroid of the peak is constrained to be within ±1 σres of the
mass charge where the maximum intensity was found. The
intensity is constrained to the intensity of the peak ±0.5 ×
intensity_peak, and the width is constrained to be within 3σres.
If peaks are closer to each other than 15 sample bins, the two
or three peaks are fitted together, as the contribution of close
peaks could affect the shape and intensity of each other peaks
(Supporting Information Figure S1.2).
2.3.4. Background Noise Removal. It is expected that some

of the selected peaks are related to the presence of a matrix or
solvent. These peaks are valid signals from noninformative
features, i.e., background noise. NECTAR performs a S/N
analysis on tissue and background and classifies these
potentially noninteresting peaks and flags them as noise.

To identify peaks that are present only in the background
but not in the tissue or signal that has no spatial structure, a
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comparison of the signal-to-noise on tissue (S/NT) and signal-
to-noise on background (S/NB) is evaluated in each single ion
image. First, masks for the tissue and background were created
by using a k-means approach (k = 2). To obtain a statistically
meaningful S/N ratio between tissue and background, the
number of pixels in both masks needs to be the same. This is
because the mean signal will remain mostly constant with
increasing number of pixels, yet the noise in the mean
spectrum will decrease with the root of the number of pixels. In
our sample under study, the number of pixels for the
background is smaller than for the tissue, so we estimate
what the background noise would be for the same number of
pixels that are present in the tissue. To do so, an estimation of
the background noise to the number of pixels in tissue is
performed by extrapolation. First, the sum intensity of 1, 5, 10,
50, 100, and 250 random pixels are measured on the
background mask. Because single ion images of low intensity
peaks might have many pixels whose intensities are zero, we
take the standard deviation of the sum intensity of those
random pixels by iterating these measurements 5000, 1000,
500, 100, 50, and 20 times respectively. Second, we obtain the
linear relationship in logarithmic scale of the background signal

versus the number of pixels and extrapolate the background
signal to the desired number of pixels, i.e., number of pixels in
the tissue. An example of this is shown in Figure 2, where the
red dots are the measured background signal for the different
number of pixels and the blue dot represents the estimated
background signal for the number of pixels in the tissue. The
definitions of the S/N for tissue and background are defined in
the Supporting Information, Section S2.

3. RESULTS AND DISCUSSION
Random and chemical noise are known to be dominant in
different parts of the spectrum (random noise is dominant in
lower m/z values, while chemical noise is dominant in high m/
z values41), as well as presenting different patterns (Figure 3).

The characteristics of these two types of noise were studied
in more detail by creating different mean spectra of randomly
selected pixels with an increasing number of pixels. When
averaging pixels, the random uncertainties will cancel out to
some extent (which is why the random noise is inversely
proportional to the root of the number of pixels, i.e.,

Nrandom noise std , where std is the standard deviation

Figure 2. (A) H&E staining was performed post MALDI MSI analysis on same tissue section. The stained section was imaged at 40× magnification
(0.226 μm/pixel) with the Aperio CS2 digital pathology scanner (Leica Biosystems) and visualized ImageScope software (Leica Biosystems version
12.3.2.8013). (B) Example of a compound that is related to the matrix and thus not relevant for the study of the biological tissue sample. (C) If no
background is considered when selecting the peak, it could be wrongly selected at first. (D) An estimation of the S/N on background for the same
number of pixels in tissue is performed to obtain the S/N ratio between tissue and background.

Figure 3. Characterization of the different types of noise in QToF-MSI instruments. Noise level is determined (red), and baseline correction is
applied to the spectrum. Random noise is identified, and chemical noise is modeled (red) and subtracted from the original spectrum.
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or local noise around the peak of interest and N is the number
of pixels used to create the mean spectrum), and the random
noise will thus get relatively smaller with increasing number of
pixels.

The chemical noise is always positive and does not cancel
out, thus remaining constant with an increasing number of
pixels. Therefore, it is possible to identify where and how the
systematic chemical noise dominates the random noise. Six
peaks along the m/z range were selected (m/z 77.04, m/z
212.05, m/z 461.05, m/z 650.44, m/z 713.45, m/z 909.54) and
the local noise measured around these peaks of interest. To
estimate the random noise in the spectrum, mean spectra with
different numbers of pixels were created (1, 5, 10, 50,100, 250,
500, 750, (+250)..., “total number of pixels”), and the local
noise for the six peaks of interest was obtained for each of the
spectra. Due to variabilities among pixels, to obtain a better
statistical result for those mean spectra created from a number
of pixels lower than 100, 50 different mean spectra were
created, and the local noise averaged. For instance, for the five-
pixel mean spectrum, 50 subsets of 5 random pixels on the
sample were selected, their mean spectrum was created, and
their local noise averaged, obtaining the final standard
deviation value.

3.1. Random Noise. The local noise around the selected
peaks under study is plotted on a logarithmic scale in Figure 4.
For comparison purposes, the local noise of the different peaks
is normalized in the plot by dividing the local noise by the
corresponding averaged local noise of the mean spectrum for
one pixel. The theoretical relationship, represented as a black
dashed line, is linear (the square root becomes a linear slope of
0.5). The local noise around the peak detected at m/z 77.04
correlates almost perfectly to the estimated theoretical random
noise, indicating that at this m/z value the random noise is
dominating the spectrum. In addition, this indicates that the
estimation of the local noise done via sigma-clipping performs
well. For m/z 212.05 and m/z 461.05, although the correlation
between theoretical and measured noise is not as precise as for
the previous peak, random noise is still dominant for these two
peaks. Thus, low m/z peaks within a local window can be
selected with the certainty that the noise level is properly
determined.

3.2. Chemical Noise. At higher m/z values, systematic
noise is dominant as shown in Figure 4, (m/z 650.44, m/z
713.45, m/z 909.54). The standard deviation around the peaks
of interest becomes constant after a certain number of pixels;
this indicates a systematic noise present in the spectrum, most
likely due to chemical noise. For very small numbers of pixels,
there will be a contribution from both random and chemical
noise, yet when averaging a higher number of pixels, the
random uncertainties will minimize, and the uncertainties will
be dominated by the chemical noise. Therefore, it is difficult to
separate the noise from the signal with only the use of the
sigma-clipping function.

If all of the chemical noise were successfully subtracted, the
random noise should dominate the spectrum. For those peaks
that were more affected by chemical noise (m/z 650.44, m/z
713.45, m/z 909.54), applying NECTAR on the MALDI data
set decreased the chemical noise ∼63%, and the noise of the
mean spectra (solid - lines) by a factor of ∼3. Therefore, the
local noise was closer to the theoretical random noise
estimation when higher numbers of pixels were averaged.

The benefit of using NECTAR over ABS is shown in Figure
S3 in the Supporting Information. In Figure S3, left, the
sinusoidal signal (dashed-red in the plot) has been removed
from the original spectrum (blue line) and a baseline noise
level is better identified (green line). However, the ABS
sometimes does not perform ideally when multiple high
intensity peaks are next to low intensity peaks (as shown in this
same figure). When there are multiple peaks that are separated
by 1 Da within the 21 Da window, this can affect the 45th
percentile of the bin corresponding to these peaks. As a result,
the modeled chemical noise might end up higher than the
signal itself. When subtracting the chemical noise, these low
intensity peaks become negative and therefore are removed
from the signal, potentially missing peaks of interest (shown in
the same figure). To overcome this effect, we created a novel
algorithm that is a combination of sigma-clipping and ABS.
Because all potential peaks above 3σ noise level have been
already removed at this stage, they will not be considered when
determining the 45th percentile, and the chemical noise model
will not be affected by the intense peaks in the spectrum. Thus,

Figure 4. Noise contribution for 6 selected peaks in the MALDI spectrum. Random noise is dominant for peaks at lower m/z values, while
systematic chemical noise is dominant for peaks at higher m/z values. Dashed lines correspond to data before correction, and solid lines correspond
to data after correction (baseline and chemical correction).
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no peaks will be accidentally removed (Supporting Information
Figure S3, right).

The relative contribution of the noise across the full m/z
range is shown in Figure 5 for MALDI data set, where a clear

division of the noise level is found (around 400 Da), which is a
direct consequence of the noise being dominated by random
or chemical noise. The local noise for each detected peak along
the mean spectrum was measured with the sigma-clipping
function before (black) and after (blue) the correction. There
is a significant decrease in the local noise for m/z values for
which the chemical noise is dominant, indicating an improve-
ment on the detection limit of the ions in that range. Two
different windows (4 and 20 Da) were used to study the
potential effects of different window sizes when determining
the local noise. While the trend of the noise is similar for both
windows, a smaller window results in a more scattered
distribution of the noise along the spectrum.

We next examined noise distribution histograms. After
baseline correction and noise determination, the noise was
rescaled to be randomly distributed around zero; thus, a
Gaussian distribution around zero was expected. Several
histogram plots are shown in Figure 6, where the noise for
the MALDI data set is represented before baseline correction
(green), after baseline correction (blue), and after chemical
noise correction (red). Different areas of the spectrum are
represented. Figure 6A shows the noise along the whole mean
spectrum. In this case, most of the noise is located around zero

after the correction, while before the correction the
distribution is skewed to positive values. Figure 6B shows
the noise up to 350 Da. Due to the random noise being
dominant in this part of the spectrum, a mostly Gaussian
distribution is already obtained only after baseline correction,
which is improved after the chemical noise correction. Figure
6C shows the noise distribution from 400 to 1000 Da, where
the chemical noise is more dominant. In this case, the noise
correction greatly improves the noise distribution in this area
of the spectrum, although the histogram is a bit skewed to
negative values, which might indicate that part of the signal
could have been removed during subtraction of the chemical
noise (Figure S3). Similar plots for the DESI data set are
presented in Figure S4.

3.3. Background Noise. To evaluate the variability of S/N
between tissue and background, the logarithmic mean intensity
of the single ion image versus the fold change (FC) of the
mean intensity of tissue and background was reviewed (Figure
7, center). In addition, the difference and ratio between tissue/
background are calculated for each single ion image, which
indicates the presence of background peaks when this
difference is negative and the ratio is greater than 5. The
threshold value for the ratio was selected after visual inspection
of some of the single ion images in this work. Four categories
of different peaks were identified (Table 2) according to their
S/N values as well as fold change information (classification of
peaks for the DESI data is shown in Table S1). Here we
provide an example for each of the four categories.

Characteristics of the categories (Table 2 and Figure 7): (i)
Robust detection: Peaks with very high S/N on tissue and
lower S/N on background, whose ratios are on the order of
tens (Figure 7D). (ii) Low intensity detections: Peaks with
ratios between S/NT and S/NB > 5 and positive S/NT − S/NB.
These peaks are the most difficult to classify as it is not easy to
determine if the detection on tissue is statistically significant or
not versus the background (Figure 7A). (iii) Artifact: Peaks
with negative value for the difference between tissue and
background but with positive Log2(FC). Figure 7E is an
example of a clear detection outside tissue that is most likely an
artifact originated during the sample preparation. (iv)
Background noise: Peaks with S/N higher on background
than on tissue. These ion images present a negative difference
and are easily identified as noninformative peaks (Figure 7B).
Another example of background noise is shown in Figure 7C.

Figure 5. Relative noise level in the MALDI data spectrum obtained
with two different window sizes (4 and 20 Da) before and after
applying the noise correction.

Figure 6. Histogram of the MALDI noise distribution before and after baseline and chemical noise correction at different areas of the spectrum:
(A) full spectrum, (B) m/z 50−350, (C) m/z 400−1000. After final correction, a Gaussian distribution of noise is obtained (in red).
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In this scenario, the difference between the S/N for tissue and
background is still negative, but the single ion image presents a
uniform intensity across the image.
Comparison with Top 4000 Most Intense Peaks. Several

methods select the list of peaks by defining a threshold value8,9

or, for instance, by selecting the top-N number of most intense
peaks.28,42 This criterion might cause the loss of some
potentially interesting peaks, while uninformative peaks
might be selected as well (i.e., background noise or chemical
noise peaks). A comparison of the selected peaks using
NECTAR and the top 4000 most intense peaks in the mean
spectrum was performed.

The central plot in Figure 7 represents the mean intensity of
single ion images versus the fold change of the mean intensity
of tissue/background for both lists of peaks used in the
comparison. The main difference between both examples is the
lower limit on the ordinate axis of the plot. NECTAR detects
lower values (red and blue symbols) than the top 4000 (yellow
and green symbols). Some peaks are detected in both lists,
overlapped in this plot, which correspond to the very intense
peaks in the spectrum. NECTAR also identifies more peaks
relating to the artifact present in the sample (Figure 7E),
although these peaks are removed by the S/N criteria. The

number of peaks found in the m/z low regime is much higher
using NECTAR, while for the higher m/z regime more are
identified from the top 4000 list. This is a consequence of the
presence of chemical noise, which has periodic peaks and
increases the average intensity of the spectrum, thus selecting
chemical noise peaks among the top 4000 most intense peaks
in the spectrum. Applying NECTAR to the original mean
spectrum resulted in a list of 4215 peaks after noise
determination and chemical noise correction. A final list of
740 peaks is obtained after eliminating uninformative peaks
according to the spatial S/N criteria for the MALDI data set.
NECTAR selects a final list of 299 peaks of interest when
performed on the DESI data set (Figure S5).
Multivariate Analysis. To study the effects of this much

shorter list in subsequent post processing tasks, we performed
principal component analysis (PCA) using both peak lists.
Two normalization methods (root-mean-square and total-ion-
count) as well as no-normalization were tested, obtaining
similar results in all cases. The explained variance as well as
cumulative variance with PCs is shown for the total-ion-count
normalization in Figure 8 (Figure S6 for DESI). For MALDI,
an explained variance of 34.53% in PC1 for the top 4000 is
obtained, while for NECTAR we obtain a 49.39% explained

Figure 7. Classification of peaks according to their signal spatial distribution. The central figure represents the logarithmic mean intensity versus the
fold change of the mean intensity of the tissue background on the single ion images. Triangles correspond to the NECTAR selected peaks, while
crosses correspond to the top 4000 most intense peaks. Blue and orange symbols represent noise peaks (S/NT − S/NB < 0 and S/NT/S/NB < 5),
while blue and green are peaks of interest (S/NT − S/NB > 0 and S/NT/S/NB > 5). Information related to the single ion images is given in Table 2.
(A) Example of a detected very low intense peak. (B,C) Examples of background noise originated in the matrix. (D) Clear detection. (E) Artifact
produced most likely during the sample preparation.

Table 2. Information and Classification of the Final List of Peaks Made by NECTAR

Measured m/z Peak Intensity Width S/NT S/NB S/NT − S/NB S/NT/SNB Log2(FC) Classification

121.838 [A] 440 0.015 36 7 29 5.3 0.25 Low intensity peak
358.370 [B] 81,004 0.012 27 192 −165 0.1 −0.45 Background noise
674.038 [C] 41,829 0.019 60 100 −40 0.6 −0.13 Background noise
790.542 [D] 1,806,152 0.033 723 32 691 22.9 0.39 Highly abundant ion
366.326 [E] 73,178 0.013 4 13 −9 0.3 1.94 Artifact
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variance. When calculating the cumulative variance, NECTAR
results in a greater explained variability with the first 10 PCs
than the top 4000, indicating a good performance in the
removal of noise peaks. The first 4 PCs scores from both lists
under study are compiled in Figure S7 (4 PCs for the DESI
data set are shown in Figure S8). T-SNE was performed for
both lists of peaks, resulting in similar segmentation results in
both scenarios (note that the color scheme is different between
figures, but the clustering results enable similar segmentation),
which shows an effective removal of uninformative peaks and
proper selection of relevant peaks, making the interpretation of
biological features simpler for further analysis. The computa-
tional time required to process the multivariate analysis was
shortened by ∼70%.

4. Conclusions. The removal of noise in MSI can simplify
the interpretation of complex biological samples as well as
significantly reduce the computational time needed to process
the data. A proper noise characterization results in a reliable

noise level determination and thus a more reliable peak picking
selection. Obtaining a local noise threshold along the spectrum
avoids the removal of peaks of interest due to the presence of
different types of noise, and it is the first step toward
quantitative analysis of the abundancies of the compounds of
interest. Selecting only informative peaks simplifies the
interpretation of further multivariate analysis, i.e., PCA, t-SNE.

In the present study, the determination of the S/N threshold
of tissue/background to classify background noise was
determined after visual inspection of many single ion images.
This value might not always be the same for different data sets,
as well as is dependent on the experience of the user. The
threshold for both MALDI and DESI data set was set at the
same value for consistency (S/NT/S/NB < 5). Although after
visual examination, this value could have been set to a lower
figure for the DESI data set, obtaining a more complete list of
low intensity peaks of interest. Subsequent studies will focus
into an in-depth study of different modalities obtaining a

Figure 8. Multivariate analysis comparison of the top 4000 peaks and the NECTAR denoised list for the MALDI data set. A greater cumulative
variance is obtained with the first 10 PCs for the denoised list than with the top 4000. T-SNE clustering demonstrates a proper removal of
uninformative peaks and selection of relevant peaks.
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statistically robust method to classify these peaks without the
intervention of the user.

The resolving power obtained for the specific data set during
the peak picking step could be used to estimate an appropriate
threshold to classify resolve/unresolved peaks, instead of using
a generic ppm as it is currently developed.

This method has been developed for QToF MSI data and
preliminary tested in Ion-trap-MS (Orbitrap) data. In order to
extend the applicability of the proposed method, future work
will focus on refining NECTAR for different instruments and
spectrometers to facilitate comparison among multimodal MSI
studies.
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