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1 BACKGROUND 
 
The data recorded by a sensor operating in the field, possibly as part of a deployed sensor 
network, are used by different end-user communities for different purposes. For example, in 
the case of underwater acoustic measurement, the data might be used for event detection 
and attribution to derive temporal, spatial and amplitude information about the event, which 
can be anthropogenic or natural. Another use might be for ocean noise monitoring in which 
the data are used to derive metrics for ambient noise maps for a given spatial region and 
time period, for example, the percentage of time that an exposure threshold for sound 
pressure level is exceeded. Yet another use might be for environmental monitoring in which 
the data are used to derive long-term (e.g., decadal) trends in sound pressure level and to 
correlate characteristics of the recorded sound with natural and anthropogenic sound 
sources.  
 
The Joint Research Project 19ENV03 “Infra-AUV” of the European Metrology Programme for 
Innovation and Research (EMPIR) [1] has delivered traceable calibration of acoustic, 
underwater, and seismic sensors for measurements at low frequencies, as well as improved 
knowledge of their performance in-situ. Various case studies have been used to demonstrate 
the impact for different end-user communities of that traceability and improved knowledge. 
Specifically, the project has investigated methods for the propagation of uncertainty, 
including that associated with the calibration of a sensor, through models for high-level 
derived parameters related to various end-user applications. Quantifying reliably the 
uncertainty for estimates of these high-level parameters is essential when those estimates 
are used for decision-making or to inform policy, as well as to understand the comparability 
and consistency of estimates relating to different locations and times. 
 
The objective of the study described in this report is to investigate the propagation of 
uncertainty through models related to a particular end user application, viz., a study of the 
data provided by acoustic sensors at the hydroacoustic stations that form part of the 
International Monitoring System operated by the Commission for the Comprehensive 
Nuclear-Test-Ban Treaty (CTBT) [2]. Each hydroacoustic station consists of three acoustic 
sensors placed in the deep ocean sound channel where the vertical sound speed profile 
exhibits a minimum. The locations of the stations allow good spatial coverage of the world’s 
oceans by taking advantage of the physical principles governing the propagation of sound in 
water. The sampling frequency for the sound pressure recordings is 250 Hz to provide 
information at acoustic frequencies up to 100 Hz, and a bit depth of 24 bits yields a maximum 
possible dynamic range of approximately 144 dB. Data is available over periods of years, 
and at some stations for periods in excess of ten years. Although the primary aim of the data 
is to support the monitoring of the Comprehensive Nuclear Test Ban Treaty, it is also made 
available by to support environmental research and, consequently, is used by users in many 
other and diverse applications. 
 
The report is organised as follows. In Section 2 we describe the data processing chain from 
the raw measured data recorded by a hydroacoustic sensor to advanced derived parameters 
of interest to a user. In Sections 3 and 4 we describe, respectively, the sources of uncertainty 
considered to influence the data processing chain and the numerical method used to 
propagate those uncertainties through the chain. In Sections 5 to 8 we illustrate the results of 
that uncertainty propagation for a snapshot of data recorded by a single hydroacoustic 
sensor over a period of four days. A summary is given in Section 9. Finally, Section 12 
contains the results in graphical and numerical forms. 
 
2 DATA PROCESSING CHAIN 
 
The data processing chain is composed of the following stages [3]. 
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2.1 STAGE 1 
 
The input to this stage is a time series of raw measured data in counts that are provided by 
the measuring system (an analogue to digital converter attached to a hydroacoustic sensor) 
with a sampling frequency of 250 Hz. The output is a time series of values of sound power 
spectral density level (SPSDL) in the unit of dB re 1 μPa2/Hz. The output depends on the 
choice of an averaging time interval for extracting frequency information and the choice of a 
frequency band. Examples of averaging time intervals are 1 minute and 10 minutes, and the 
choice of averaging time interval determines the sampling frequency of the output time 
series, i.e., the sampling frequency is 1 per minute for the choice of a 1-minute averaging 
time interval. Examples of frequency bands are 10─100 Hz (broadband), 1─10 Hz (very low), 
10─40 Hz (low), 40─70 Hz (medium), and 70─100 Hz (high). The output is derived from the 
input using information about the measuring system in terms of a scaling factor (for 
converting counts to values of sound pressure in pascals) and its calibration in terms of a 
frequency response (for describing the frequency-dependent behaviour of the measuring 
system).  
 
This stage of the data processing chain is described as follows. Let �𝑡𝑡0,𝑖𝑖 , 𝑆𝑆0,𝑖𝑖�, 𝑖𝑖 = 1, … ,𝑛𝑛0, 
denote the input to stage 1 comprising a time series of raw measured data in counts. Let 𝐺𝐺 
denote the scaling factor, and �𝑓𝑓𝑐𝑐,𝑗𝑗 ,𝐴𝐴𝑐𝑐,𝑗𝑗 ,𝜙𝜙𝑐𝑐,𝑗𝑗�, 𝑗𝑗 = 0, …𝑛𝑛𝑐𝑐, denote the amplitude and phase 
responses of the hydroacoustic sensor defined by calibration frequencies 𝑓𝑓𝑐𝑐,𝑗𝑗 (with 𝑓𝑓𝑐𝑐,0 =
0 Hz) and calibrated amplitudes 𝐴𝐴𝑐𝑐,𝑗𝑗 and calibrated phases 𝜙𝜙𝑐𝑐,𝑗𝑗. Furthermore, let Δ𝑇𝑇1 denote 
the averaging time interval, and (𝑓𝑓𝐿𝐿 ,𝑓𝑓𝑈𝑈) the frequency band. 
The measurement function is specified as follows. For the 𝑟𝑟th averaging time interval defined 
by start-time (𝑟𝑟 − 1)Δ𝑇𝑇1 and end-time 𝑟𝑟Δ𝑇𝑇1: 
 

1.1 Identify those points with indices 𝐼𝐼𝑟𝑟 for which (𝑟𝑟 − 1)Δ𝑇𝑇1 ≤ 𝑡𝑡0,𝑖𝑖 < 𝑟𝑟Δ𝑇𝑇1. 
 

1.2 Apply the scaling factor: 𝑆𝑆𝑟𝑟,𝑖𝑖 = 𝐺𝐺𝑆𝑆0,𝑖𝑖 . 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟. 
 

1.3 Form the (singled-sided) FFT �𝑓𝑓𝑟𝑟,𝑗𝑗 ,𝐴𝐴𝑟𝑟,𝑗𝑗 ,𝜙𝜙𝑟𝑟,𝑗𝑗�, 𝑗𝑗 = 0, …𝑛𝑛𝑟𝑟, of the signal values 𝑆𝑆𝑟𝑟,𝑖𝑖 , 𝑖𝑖 ∈
𝐼𝐼𝑟𝑟, defined by frequencies 𝑓𝑓𝑟𝑟,𝑗𝑗 ∈ [0,𝐹𝐹𝑠𝑠/2], amplitudes 𝐴𝐴𝑟𝑟,𝑗𝑗 and phases 𝜙𝜙𝑟𝑟,𝑗𝑗, where 𝐹𝐹𝑠𝑠 =
250 Hz is the sampling frequency for the signal values. 
 

1.4 Interpolate the amplitude and phase responses of the hydroacoustic sensor to the 
frequencies of the FFT to give calibration data �𝑓𝑓𝑟𝑟,𝑗𝑗 ,𝐴𝐴′𝑐𝑐,𝑗𝑗 ,𝜙𝜙′𝑐𝑐,𝑗𝑗�, 𝑗𝑗 = 0 = 1, …𝑛𝑛𝑟𝑟. 
 

1.5 Remove the effect of the hydrophone response from the signal values: 𝐴𝐴′𝑟𝑟,𝑗𝑗 =
𝐴𝐴𝑟𝑟,𝑗𝑗/𝐴𝐴′𝑐𝑐,𝑗𝑗 and 𝜙𝜙′𝑟𝑟,𝑗𝑗 = 𝜙𝜙𝑟𝑟,𝑗𝑗 − 𝜙𝜙′𝑐𝑐,𝑗𝑗 , 𝑗𝑗 = 0, … ,𝑛𝑛𝑟𝑟. 
 

1.6 Identify those points with indices 𝐽𝐽𝑟𝑟 for which 𝑓𝑓𝐿𝐿 ≤ 𝑓𝑓𝑟𝑟,𝑗𝑗 ≤ 𝑓𝑓𝑈𝑈. 
 

1.7 Calculate 𝑡𝑡1,𝑟𝑟 =  (𝑟𝑟 − 1)Δ𝑇𝑇1. 
 

1.8 Calculate 𝑆𝑆1,𝑟𝑟 = 20 log10 �∑ 𝐴𝐴′𝑟𝑟,𝑗𝑗
2

𝑗𝑗∈𝐽𝐽𝑟𝑟 − 10 log10(𝑓𝑓𝑈𝑈 − 𝑓𝑓𝐿𝐿). 

The output is the time series �𝑡𝑡1,𝑟𝑟 , 𝑆𝑆1,𝑟𝑟�, 𝑟𝑟 = 1, … ,𝑛𝑛1. 
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2.2 STAGE 2 
 
The input to this stage is the output from stage 1. The output is a time series of values of 
SPSDL representing summary statistics extracted from the distributions of values taken over 
some aggregation time interval. Examples of summary statistics are 𝑃𝑃1,𝑃𝑃10,𝑃𝑃50,𝑃𝑃90 and 𝑃𝑃99, 
where 𝑃𝑃𝑛𝑛 denotes the 𝑛𝑛th percentile. Examples of aggregation time intervals include one day, 
one week, one month and one year, and the choice of aggregation time interval determines 
the sampling frequency of the output time series, i.e., the sampling frequency is 1 per day for 
the choice of a 1-day aggregation time interval. 
 
This stage of the data processing chain is described as follows. Let �𝑡𝑡1,𝑖𝑖 , 𝑆𝑆1,𝑖𝑖�, 𝑖𝑖 = 1, … ,𝑛𝑛1, 
denote the output from stage 1 comprising a time series of values of SPSDL for a given 
averaging time interval and a given frequency band. Let Δ𝑇𝑇2 denote the aggregation time 
interval for this stage 2, and 𝑃𝑃𝛽𝛽(𝒚𝒚) the function that returns the sample 𝛽𝛽-percentile of the 
values in 𝒚𝒚. For example, 𝑃𝑃50(𝒚𝒚) returns the sample median of the values in 𝒚𝒚, which is 
obtained by sorting the values of 𝒚𝒚 into non-decreasing order and selecting the central value 
if the number of values in 𝒚𝒚 is odd or the average of the two central values if the number is 
even. 
 
The measurement function is specified as follows. For the 𝑟𝑟th aggregation time interval 
defined by start-time (𝑟𝑟 − 1)Δ𝑇𝑇2 and end-time 𝑟𝑟Δ𝑇𝑇2: 
 

2.1 Identify those points with indices 𝐼𝐼𝑟𝑟 for which (𝑟𝑟 − 1)Δ𝑇𝑇2 ≤ 𝑡𝑡1,𝑖𝑖 < 𝑟𝑟Δ𝑇𝑇2. 
 

2.2 Calculate 𝑡𝑡2,𝑟𝑟 =  (𝑟𝑟 − 1)Δ𝑇𝑇2. 
 

2.3 Calculate 𝑆𝑆2,𝑟𝑟 = 𝑃𝑃𝛽𝛽(𝑆𝑆1,𝑖𝑖: 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟). 

The output is the time series �𝑡𝑡2,𝑟𝑟 , 𝑆𝑆2,𝑟𝑟�, 𝑟𝑟 = 1, … ,𝑛𝑛2. 
 
2.3 STAGE 3 
 
The input to this stage is the output from stage 2. The output from this stage is the value of 
an advanced parameter derived from the input having the purpose of meeting the 
requirement of a specific application or user. An example can be to use the output from stage 
2 for the purpose of understanding the characteristics of the underwater noise at the location 
of the sensor. For example, whether there is a long-term trend in the noise or whether the 
characteristics of the noise are correlated with some other environmental variable, such as 
sea surface temperature. The challenge is to undertake an analysis of the time series data, 
when that analysis might be model-driven or data-driven, to extract information about those 
characteristics. 
 
2.4 OTHER EXAMPLES 
 
In another example of a data processing chain, stage 1 involves applying the scaling factor, 
removing the effect of the hydrophone response, and then applying the inverse FFT to return 
a time series of values of sound pressure in the unit of pascals at the same sampling 
frequency as the raw measured data. Stage 2 can then be to apply the stage 1 measurement 
function to each hydroacoustic sensor in a collection of spatially distributed sensors for the 
purpose of event detection and attribution, i.e., estimating the time and location of an event 
and correlating that information with known events. Here, an event of interest might be 
characterised by a particular acoustic signature or by a sound pressure that exceeds a 
particular threshold. The challenge is to identify when the event is registered by each sensor 
and to use that information (specifically the differences between those registration times and 
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the locations of the sensors) to determine the time and location of the event, which constitute 
the required advanced derived parameters. In this case, knowledge of phase information, 
and correcting for the phase response of the hydroacoustic sensor, is important for the 
accurate determination of the times at which events are detected by the different sensors. 
 
3 SOURCES OF UNCERTAINTY 
 
It is assumed that there are three sources of uncertainty that impact the data processing 
chain described above.  
 
The first is random noise inherent in the sensor, which affects each raw measured count 
independently. The effect is considered to be modelled as the output of the analogue to 
digital converter applied to samples drawn randomly and independently from a continuous 
Gaussian distribution defined by an expectation of zero and a prescribed variance 𝜎𝜎𝑁𝑁2. 
 
The second is the estimation of the scaling factor 𝐺𝐺. The effect is considered to be modelled 
by a continuous Gaussian distribution defined by an expectation equal to the estimate 𝐺𝐺� of 𝐺𝐺 

and a prescribed variance 𝜎𝜎𝐺𝐺2. 
 
The third is the calibration of the sensor. Suppose the calibration is defined by amplitude and 
phase responses given at discrete frequencies 𝑓𝑓𝑐𝑐,𝑗𝑗 , 𝑗𝑗 = 0, … ,𝑛𝑛𝐶𝐶, and denoted, respectively, by 
�𝑓𝑓𝑐𝑐,𝑗𝑗 ,𝐴𝐴𝑐𝑐,𝑗𝑗� and �𝑓𝑓𝑐𝑐,𝑗𝑗 ,𝜙𝜙𝑐𝑐,𝑗𝑗�, 𝑗𝑗 = 0, … ,𝑛𝑛𝑐𝑐. The effect is considered to be modelled by a 
multivariate Gaussian distribution for each of amplitude and phase defined by an expectation 
vector comprising the estimates of the response (𝐴̂𝐴𝑐𝑐,1, … , 𝐴̂𝐴𝑐𝑐,𝑛𝑛𝑐𝑐 for amplitude and 𝜙𝜙�𝑐𝑐,1, … ,𝜙𝜙�𝑐𝑐,𝑛𝑛𝑐𝑐 
for phase) and prescribed variance matrices (𝑉𝑉𝐴𝐴 for amplitude and 𝑉𝑉𝜙𝜙 for phase). This model 
assumes the calibrations of amplitude and phase are independent, but a more general 
treatment would consider the effect for both amplitude and phase to be modelled by a single 
multivariate Gaussian distribution. 
 
These sources of uncertainty will give rise to uncertainty in the values of SPSDL in the time 
series that constitute the output of stage 1 of the data processing chain and in the values of 
the summary statistics of SPSDL that constitute the output of stage 2. In this work we 
consider the evaluation of that uncertainty, and how it propagates through the data 
processing chain. We note that the second and third of these sources of uncertainty give rise 
to possible mutual correlation between the values of SPSDL of the summary statistics for 
those values.  
 
4 METHOD OF UNCERTAINTY PROPAGATION 
 
In this work we use a Monte Carlo (MC) method [4, 5] as a numerical approach for 
propagating measurement uncertainty through a defined measurement function or through 
the composition of a sequence of measurement functions. The advantages of the approach 
are that it does not require the explicit calculation of sensitivity coefficients, and it makes no 
assumptions about the nature of the measurement functions, i.e., that they are linear or 
mildly non-linear, or about the nature of the probability distributions for the outputs from those 
measurement functions, i.e., that they are Gaussian or approximately Gaussian. The 
disadvantage of the approach, however, is that it can be computationally expensive. 
 
Given a measurement function 𝒀𝒀 = 𝑓𝑓(𝑿𝑿) relating 𝑚𝑚 output quantities 𝒀𝒀 = (𝑌𝑌1, … ,𝑌𝑌𝑚𝑚)T to 𝑁𝑁 
input quantities 𝑿𝑿 = (𝑋𝑋1, … ,𝑋𝑋𝑁𝑁)T and a (joint) probability density function 𝑔𝑔𝑿𝑿(𝝃𝝃) for 𝑿𝑿, the 
Monte Carlo method involves repeating the following steps for 𝑟𝑟 = 1, … ,𝑀𝑀: 
 

I. Make a random draw 𝒙𝒙𝑟𝑟 for 𝑿𝑿 from the probability density function 𝑔𝑔𝑿𝑿(𝝃𝝃); 
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II. Evaluate the measurement function to obtain a random draw 𝒚𝒚𝑟𝑟 = 𝑓𝑓(𝒙𝒙𝑟𝑟) for 𝑌𝑌 from its 
(unknown) probability density function. 

The (sample) average 𝒚𝒚� and (sample) covariance matrix 𝑉𝑉𝒀𝒀 of the samples 𝒚𝒚𝑟𝑟 , 𝑟𝑟 = 1, … ,𝑀𝑀, 
provide, respectively, an estimate of 𝒀𝒀 and its uncertainty. 
For the problem treated in this work, one consideration is the computational effort involved 
that is dominated by the time to evaluate the measurement function representing stages 1 
and 2 of the data processing chain. The required computational effort can limit the number 𝑀𝑀 
of Monte Carlo trials that can be performed in practice and, in turn, the reliability of the 
results that are obtained from the calculation. A further consideration is when the number 𝑚𝑚 
of output quantities is large, which is the case for the output of stage 1 of the data processing 
chain. In that case, it can be difficult to store the complete covariance matrix for those 
quantities, and it can be necessary to store the information captured by the covariance matrix 
in a compressed (and approximate) form (see, for example, [6]). 
 
5 DATA 
 
We consider data recorded by the hydroacoustic sensor H01W1, the first hydrophone at the 
IMS station west of Cape Leeuwin. Figure 1 illustrates the inputs to and outputs from stages 
1 and 2 in the data processing chain described above. The top graph shows the input to 
stage 1 comprising a time series of raw measured data in counts over four days. The middle 
graph shows the output from stage 1 comprising a time series of values of SPSDL for an 
averaging time interval of 1 min and the frequency band 10 Hz ─ 40 Hz. The bottom graph 
shows the output from stage 2 comprising values of the summary statistics 𝑃𝑃1,𝑃𝑃10,𝑃𝑃50,𝑃𝑃90 
and 𝑃𝑃99 for an aggregation time interval of 1 day, and there are twenty such parameters. 
 
6 RESULTS FORM STAGE 2 OUTPUTS 
 
The results described in the section are each obtained using a Monte Carlo method and 𝑀𝑀 =
100 trials. An “updating approach” is used to update the values of the estimates of the 
stage 2 outputs, as well as the covariance matrix for those estimates, which does not depend 
on storing the values of the stage 2 outputs for all the Monte Carlo trials [7]. Such an 
approach would become necessary as the number of stage 2 outputs and/or the number of 
Monte Carlo trials are increased.  
 
Figure 2 shows results that summarise the influence of signal noise alone. The top graph 
shows the standard uncertainty for each of the stage 2 outputs, which comprise the summary 
statistics for SPDL for each of the four days of observation, as a function of signal-to-noise 
ratio 𝜎𝜎𝑁𝑁 (in percent), and the bottom graph shows the correlation matrix for the outputs 
corresponding to the largest value of 𝜎𝜎𝑁𝑁. Similarly, Figure 3 shows results that summarise 
the influence of the scale factor alone as a function of the relative standard deviation 𝜎𝜎𝐺𝐺 (in 
percent), and Figure 4 considers the influence of the calibration alone. In this case, 𝜎𝜎𝐴𝐴 (in 
percent) denotes the relative standard deviation of the amplitudes in the frequency response 
with no uncertainty for the phases in that response. 
 
We note that: 
 

• Signal noise does not lead to correlation between the stage 2 outputs. The 
uncertainties of the 𝑃𝑃99 estimates are larger than the uncertainties for the other 
summary statistics. They vary proportionately with 𝜎𝜎𝑁𝑁, whereas the uncertainties for 
the other summary statistics are essentially invariant to 𝜎𝜎𝑁𝑁. 
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• The effect of the scaling factor is to produce perfect (positive) correlation between the 
stage 2 outputs. For a given choice of 𝜎𝜎𝐺𝐺, there is no difference between the 
uncertainties for the outputs, and those uncertainties vary proportionately with 𝜎𝜎𝐺𝐺. 
 

• The effect of the calibration uncertainty (restricted to uncertainty in the amplitude 
response only) is to produce high correlation between the stage 2 outputs. For a 
given choice of 𝜎𝜎𝐴𝐴, there are only small differences between the uncertainties for the 
outputs, and those uncertainties vary proportionately with 𝜎𝜎𝐴𝐴. 

Finally, Figure 5 illustrates results that summarise the influence of the combination of signal 
noise, scaling factor and calibration. The graph shows the correlation matrix for the stage 2 
outputs corresponding to the largest values of 𝜎𝜎𝑁𝑁, 𝜎𝜎𝐺𝐺 and 𝜎𝜎𝐴𝐴. In this case, the correlations 
between the outputs are generally high except, most notably, for the 𝑃𝑃99 estimates and, to a 
lesser extent, for the 𝑃𝑃1 estimates. We expect the influence of signal noise to dominate for 
the 𝑃𝑃99 estimates, and the observed behaviour then mimics that illustrated in Figure 2. 
 
7 COMPACT REPRESENTATION OF THE UNCERTAINTY INFORMATION 
 
In the examples considered above, for which there are only twenty stage 2 outputs, it is 
straightforward to store and work with the covariance matrix for those outputs. However, a 
challenge is to do so when the observation period lasts for many years, and the size of the 
covariance matrix becomes prohibitively large to store in full. For example, the hydrophone 
H01W1 has been recoding data for more than 15 years. Then, considering an aggregation 
time interval of 1 day for an observation period of 15 years and all five summary statistics 
would generate 27,375 stage 2 outputs, and a covariance matrix of 749,390,625 elements. 
Ignoring the symmetry of the matrix, i.e., storing it as a full matrix, and assuming each matrix 
element is stored as a 64-bit double,  the matrix would require of the order of 5.5 GB of 
memory. However, the results from Section 6 suggest that the correlation matrix is structured 
and, consequently, there is the possibility to exploit that structure to provide a compact, albeit 
approximate, representation of the matrix. 
 
We consider the case 𝜎𝜎𝑁𝑁 = 0.16 %, 𝜎𝜎𝐺𝐺 = 0.1 % and 𝜎𝜎𝐴𝐴 = 0.35 % and run three Monte Carlo 
calculations with 𝑀𝑀 = 1000 as follows:  
 

(MC/A) considering the influence of signal noise only, which produces uncorrelated 
effects in the stage 2 outputs, 

 
(MC/B) considering scaling factor uncertainty and calibration uncertainty only, which 

produce correlated effects in the stage 2 outputs, and 
 
(MC/C) considering the influences of signal noise, scaling factor uncertainty and 

calibration uncertainty. 
 
To illustrate the output of the Monte Carlo calculation, Figure 6 shows the approximations to 
the probability density functions for the five stage 2 outputs (statistical percentiles) for the last 
aggregation period (day 4). The distributions are well-separated, and closer inspection shows 
that they appear “Gaussian” in their form. 
 
Table 1 compares the estimates of the stage 2 outputs obtained from the three Monte Carlo 
calculations as well as directly in terms of the input data to stage 1 in the data processing 
pipeline (denoted by “DATA”). We note that there is agreement between the estimates for the 
methods DATA and MC/B, and between the estimates for MC/A and MC/C, with the 
estimates for the latter pair of methods being consistently greater than those for the former 
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pair. The methods MC/A and MC/C include the effect of signal noise, which in this case is 
interpreted through the summary statistics as an additional source of sound. 
 
Let 𝑉𝑉𝑁𝑁, 𝑉𝑉𝐺𝐺,𝐴𝐴 and 𝑉𝑉 be the covariance matrices obtained from the three Monte Carlo 
calculations specified above. We define an approximation to 𝑉𝑉 by 
 

𝑉𝑉′ = 𝐷𝐷 +  𝜎𝜎𝐺𝐺,𝐴𝐴
2 𝟏𝟏, 

 
where 𝐷𝐷 is the diagonal matrix obtained by setting all off-diagonal elements in 𝑉𝑉𝑁𝑁 to zero, 
𝜎𝜎𝐺𝐺,𝐴𝐴
2  is the average of the elements of 𝑉𝑉𝐺𝐺,𝐴𝐴, and 𝟏𝟏 is a square matrix of dimension equal to the 

number of stage 2 outputs with all its elements set to one. The specification of 𝑉𝑉′ is based on 
two assumptions: firstly, that the uncertainties associated with those influences giving rise to 
uncorrelated and correlated effects in the stage 2 outputs can be propagated separately and 
their variances combined additively; secondly, that the uncertainty information for those 
uncorrelated and correlated effects can be represented by covariance matrices having 
simple structures, viz, as a diagonal matrix and as a multiple of a unit matrix, respectively. 
For the example used as illustration above, this matrix is specified by 27,375 + 1 values if 
those elements known to be exactly zero or one are ignored. Figure 7 and Figure 8 show the 
correlation matrices obtained from 𝑉𝑉 and 𝑉𝑉′, respectively, which appear to have a very similar 
structure. The effect of replacing 𝑉𝑉 by  𝑉𝑉′ on the uncertainty associated with the estimate of a 
derived stage 3 output is investigated in the following section.  
 
In practice and supported by the results from Section 6, we expect the elements of 𝑉𝑉𝑁𝑁 and 
𝑉𝑉𝐺𝐺,𝐴𝐴 to depend only weakly on the period (or day over which the values of SPSDL are 
aggregated) but more strongly on the summary statistic. In this case, 𝐷𝐷 can be defined 
approximately by five values, one for each summary statistic that can be read from pre-
calculated graphs such as those shown in Figure 2. Furthermore, 𝑉𝑉′ can be constructed from 
the covariance matrices 𝑉𝑉𝑁𝑁 and 𝑉𝑉𝐺𝐺,𝐴𝐴 evaluated for a (much) shorter observation period. In 
these ways, both the calculation and storage of 𝑉𝑉′ can be made very efficient. Figure 12 
Influence of noise factor alone: standard uncertainty for each of the stage 2 outputs, which 
comprise the summary statistics for SPDL for the four aggregation periods, as a function of 
signal to noise ratio (top), and the correlation matrix for the outputs corresponding to the 
largest value of signal noise (bottom). 
 
8 IMPACT ON FURTHER ADVANCED DERIVED PARAMETERS 
 
For the summary statistic 𝑃𝑃𝛽𝛽, let the stage 2 outputs comprise the data �𝑡𝑡𝑖𝑖 ,𝑃𝑃𝛽𝛽,𝑖𝑖�, 𝑖𝑖 = 1, … ,𝑚𝑚. 
In the examples considered before, 𝛽𝛽 is 1, 10, 50, 90 or 99, 𝑚𝑚 = 4, and 𝑡𝑡𝑖𝑖 is 0, 1, 2 and 3. 
We define the stage 3 outputs to be the value 𝑎𝑎𝛽𝛽 at 𝑡𝑡𝑐𝑐 = 1.5 (the average of the values 𝑡𝑡𝑖𝑖), 
and the slope 𝑏𝑏𝛽𝛽, of a straight-line function fitted to the data by ordinary least-squares. The 
stage 3 output 𝑎𝑎𝛽𝛽 provides a single representative value of 𝑃𝑃𝛽𝛽 and the stage 3 output 𝑏𝑏𝛽𝛽 the 
rate of change of 𝑃𝑃𝛽𝛽 with respect to time (or its trend). 
 
Define 
 

𝒄𝒄𝛽𝛽 = �
𝑎𝑎𝛽𝛽
𝑏𝑏𝛽𝛽
� , 𝒄𝒄 = �

𝒄𝒄1
⋮
𝒄𝒄99

�  , 𝒑𝒑𝛽𝛽 = �
𝑃𝑃𝛽𝛽,1
⋮

𝑃𝑃𝛽𝛽,𝑚𝑚

� , 𝒑𝒑 = �
𝒑𝒑1
⋮
𝒑𝒑99

� , 𝑿𝑿𝛽𝛽 = �
1 𝑡𝑡1 − 𝑡𝑡𝑐𝑐
⋮ ⋮
1 𝑡𝑡𝑚𝑚 − 𝑡𝑡𝑐𝑐

�, 

 
and 
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𝑿𝑿 = �
𝑿𝑿1 0 0
0 ⋱ 0
0 0 𝑿𝑿99

�. 

 
Then, formally, the estimates 𝒄𝒄 of the stage 3 outputs are given by 
 

𝒄𝒄 = �𝑿𝑿T𝑿𝑿�−1𝑿𝑿T𝒑𝒑, 
 
which defines a linear relationship between 𝒑𝒑 and 𝒄𝒄. Consequently, using a generalised form 
of the law of propagation of uncertainty (LPU) [5], the covariance matrices 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝑐𝑐 for 𝒑𝒑 and 
𝒄𝒄, respectively, are related by 
 

𝑉𝑉𝑐𝑐 = �𝑿𝑿T𝑿𝑿�−1𝑿𝑿T𝑉𝑉𝑝𝑝𝑿𝑿�𝑿𝑿T𝑿𝑿�
−1. 

 
(In practice, and to avoid loss of numerical precision, the above calculations are undertaken 
in terms of an orthogonal factorisation of the design matrix 𝑿𝑿.) 
 
Let 𝒑𝒑 be the estimates of the stage 2 outputs calculated directly in terms of the input data to 
stage 1 in the data processing pipeline (denoted by “DATA” in Table 1). We evaluate the 
stage 3 outputs in the following ways: 
 

(MC) by running a Monte Carlo calculation considering the influences of 
signal noise, scaling factor uncertainty and calibration uncertainty, 

 
(LPU/a) using the formal expressions for 𝒄𝒄 and 𝑉𝑉𝑐𝑐 given above with 𝑉𝑉𝑝𝑝 = 𝑉𝑉 from 

Section 7, 
 
(LPU/b) using the formal expressions for 𝒄𝒄 and 𝑉𝑉𝑐𝑐 given above with 𝑉𝑉𝑝𝑝 = 𝑉𝑉𝑁𝑁 

from Section 7, and 
 
(LPU/c) using the formal expressions for 𝒄𝒄 and 𝑉𝑉𝑐𝑐 given above with 𝑉𝑉𝑝𝑝 = 𝑉𝑉′ from 

Section 7. 
 

Table 2 compares the estimates of the stage 3 outputs obtained in these different ways as 
well as directly in terms of the input data to stage 1 in the data processing pipeline (denoted 
by “DATA”). Figure 9 shows together this further stage of the data processing pipeline in 
terms of the outputs from stage 2, which are used as the inputs to stage 3, and the outputs of 
stage 3 displayed as trend-lines for each of the summary statistics. Four of those statistics 
shows an increasing trend whereas 𝑃𝑃99 shows a decreasing trend. We note that: 
 

• As expected, the estimates of the stage 3 outputs from the methods DATA, LPU/a, 
LPU/b and LPU/c are identical because all the methods are implementing the same 
formulae for evaluating the stage 3 outputs in terms of the stage 2 outputs. 
 

• However, the estimates obtained from the method MC are different from those 
obtained from the other methods. In Section 7 we saw that the stage 2 outputs 
obtained from a Monte Carlo method that considered the influence of signal were 
biased high, and this effects filters through to the estimation of the stage 3 outputs. 

 
Table 3 compares the uncertainties associated with the estimates obtained in the different 
ways in terms of the standard uncertainties 𝑢𝑢(𝑎𝑎𝛽𝛽) and 𝑢𝑢(𝑏𝑏𝛽𝛽) associated with the pair of stage 
3 outputs for stage 2 outputs 𝑃𝑃𝛽𝛽 and their correlation coefficient 𝑟𝑟(𝑎𝑎𝛽𝛽 , 𝑏𝑏𝛽𝛽). (The correlation 
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coefficients for stage 3 outputs corresponding to different summary statistics are not 
presented because they are considered to be of less importance and interest.) We note that: 
 

• The standard uncertainty 𝑢𝑢(𝑎𝑎𝛽𝛽) obtained using the methods MC, LPU/a, and LPU/c 
are consistent, and the uncertainty obtained using the method LPU/b is 
underestimated. For this stage 3 output, the contributions to the uncertainty from the 
scale factor uncertainty and calibration uncertainty, which produce correlated effects 
in the stage 2 outputs, cannot be neglected. 
 

• The standard uncertainty 𝑢𝑢(𝑏𝑏𝛽𝛽) obtained using all the methods are consistent. For 
this stage 3 output, the contributions to the uncertainty from the scale factor 
uncertainty and calibration uncertainty, which produce correlated effects in the stage 
2 outputs, can be neglected.  
 

• The compact, albeit approximate, representation 𝑉𝑉′ of 𝑉𝑉 would seem to be adequate 
for the evaluation of the uncertainties for the stage 3 outputs. 
 

• The correlation coefficients are also close to zero, which indicates that the 𝑎𝑎𝛽𝛽 and 𝑏𝑏𝛽𝛽 
are weakly correlated, which is a consequence of the chosen parametrisation of the 
straight-line trend function, viz., the parameter 𝑎𝑎𝛽𝛽 is chosen to be the value of the 
function at the mean of the values 𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚. 

 
9 SUMMARY 
 
We have investigated for a particular user application how uncertainty propagates through a 
data processing pipeline that starts with the raw data recorded by a sensor and finishes with 
advanced derived parameters which convey useful information. The application concerns 
raw data recorded by a hydroacoustic sensor taken from the International Monitoring System 
of the CTBT and parameters describing characteristics of summary statistics of the 
distributions of values of SPSDL derived from the raw data. In this application we find that 
the contribution from a given source of uncertainty depends on the nature of the source (e.g., 
signal noise compared to calibration uncertainty) and the nature of the parameter (e.g., a 
representative value of SPSDL compared to a temporal trend in SPSDL values). We also 
found that it was possible to construct compact, albeit approximate, representations of the 
uncertainty information at intermediary stages in the data processing pipeline that meant that 
the propagation of uncertainty could be done efficiently. It can be expected that these results 
are specific to the application, but it is hoped that the approach taken in the investigation can 
be used as a template for other applications. 
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12 FIGURES AND TABLES 
 

 

 

 
Figure 1 Stages in data processing chain: input to stage 1 (top), output 
of stage 1 and input to stage 2 (middle), and output of stage 2. (The 
dotted lines joining the daily values are included for purposes of 
visualisation only.) 
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Figure 2 Influence of noise factor alone: standard uncertainty for each of 
the stage 2 outputs, which comprise the summary statistics for SPDL for 
the four aggregation periods, as a function of signal to noise ratio (top), 
and the correlation matrix for the outputs corresponding to the largest 
value of signal noise (bottom). 
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Figure 3 Influence of scaling factor alone: standard uncertainty for each 
of the stage 2 outputs, which comprise the summary statistics for SPDL 
for the four aggregation periods, as a function of the relative standard 
deviation of the scaling factor (top), and the correlation matrix for the 
outputs corresponding to the largest value of scaling factor uncertainty 
(bottom). 
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Figure 4 Influence of calibration alone: standard uncertainty for each of 
the stage 2 outputs, which comprise the summary statistics for SPDL for 
the four aggregation periods, as a function of relative standard deviation 
of the amplitudes in the frequency response (top), and the correlation 
matrix for the outputs corresponding to the largest value of calibration 
uncertainty (bottom). 
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Figure 5 Combination of influences: the correlation matrix for the stage 2 
outputs corresponding to the largest values of signal to noise ratio, 
scaling factor uncertainty and calibration uncertainty. 

 
Figure 6 Combination of influences: approximations to the probability 
density functions for the five stage 2 outputs (statistical percentiles) for 
the last aggregation period obtained from a Monte Carlo calculation. 
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Figure 7 Combination of influences: correlation matrix for the stage 2 
outputs accounting for the influence factors of signal noise, ratio, 
scaling factor and calibration. 

 
Figure 8 Combination of influences: an approximation to the correlation 
matrix for the stage 2 outputs accounting for the influence factors of 
signal noise, ratio, scaling factor and calibration. 
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Figure 9 A further stage in the data processing chain: output of stage 2 
and input to stage 3 (circles joined by dotted lines), and output of stage 
3 (solid lines). 

 
Table 1 Estimates of stage 2 outputs. 

PERCENTILE PERIOD DATA MC/A MC/B MC/C 

𝑃𝑃1 

1 90.7683 91.5096 90.7682 91.5091 
2 90.4079 91.2155 90.4076 91.2155 
3 91.3478 92.0013 91.3476 92.0019 
4 90.6284 91.3979 90.6284 91.3978 

𝑃𝑃10 

1 91.0117 91.7364 91.0116 91.7362 
2 90.6873 91.4558 90.6871 91.4555 
3 91.6058 92.2382 91.6058 92.2382 
4 90.9325 91.6625 90.9323 91.6620 

𝑃𝑃50 

1 91.5191 92.1681 91.5191 92.1679 
2 91.3151 91.9934 91.3145 91.9936 
3 92.0750 92.6559 92.0743 92.6559 
4 92.0009 92.5784 92.0007 92.5780 

𝑃𝑃90 

1 92.4327 92.9630 92.4326 92.9627 
2 92.0334 92.6133 92.0332 92.6133 
3 93.1352 93.5982 93.1349 93.5980 
4 92.7263 93.2353 92.7263 93.2348 

𝑃𝑃99 

1 96.3358 96.5553 96.3357 96.5557 
2 96.6281 96.8377 96.6281 96.8371 
3 97.6392 97.7947 97.6390 97.7935 
4 95.1949 95.4897 95.1949 95.4908 
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Table 2 Estimates of stage 3 outputs. 
PERCENTILE 𝑷𝑷𝜷𝜷 METHOD 𝒂𝒂𝜷𝜷 𝒃𝒃𝜷𝜷 

𝑃𝑃1 

DATA 90.7881 0.0520 
MC 91.5311 0.0453 

LPU/a 90.7881 0.0520 
LPU/b 90.7881 0.0520 
LPU/c 90.7881 0.0520 

𝑃𝑃10 

DATA 91.0593 0.0681 
MC 91.7730 0.0560 

LPU/a 91.0593 0.0681 
LPU/b 91.0593 0.0681 
LPU/c 91.0593 0.0681 

𝑃𝑃50 

DATA 91.7275 0.2205 
MC 92.3489 0.1893 

LPU/a 91.7275 0.2205 
LPU/b 91.7275 0.2205 
LPU/c 91.7275 0.2205 

𝑃𝑃90 

DATA 92.5819 0.1983 
MC 93.1022 0.1801 

LPU/a 92.5819 0.1983 
LPU/b 92.5819 0.1983 
LPU/c 92.5819 0.1983 

𝑃𝑃99 

DATA 96.4495 -0.2412 
MC 96.6693 -0.2238 

LPU/a 96.4495 -0.2412 
LPU/b 96.4495 -0.2412 
LPU/c 96.4495 -0.2412 

  

Table 3 Uncertainties associated with estimates of stage 3 outputs. 
PERCENTILE 𝑷𝑷𝜷𝜷 METHOD 𝒖𝒖(𝒂𝒂𝜷𝜷) 𝒖𝒖(𝒃𝒃𝜷𝜷) 𝒓𝒓(𝒂𝒂𝜷𝜷,𝒃𝒃𝜷𝜷) 

𝑃𝑃1 

MC 0.0132 0.0057 0.0226 
LPU/a 0.0132 0.0057 0.0226 
LPU/b 0.0062 0.0057 0.1278 
LPU/c 0.0129 0.0056 0.0539 

𝑃𝑃10 

MC 0.0119 0.0026 0.0670 
LPU/a 0.0119 0.0026 0.0670 
LPU/b 0.0028 0.0027 0.0206 
LPU/c 0.0117 0.0026 0.0033 

𝑃𝑃50 

MC 0.0118 0.0023 -0.0203 
LPU/a 0.0118 0.0023 -0.0203 
LPU/b 0.0024 0.0023 0.0765 
LPU/c 0.0116 0.0023 0.0147 

𝑃𝑃90 

MC 0.0125 0.0043 -0.0111 
LPU/a 0.0125 0.0043 -0.0111 
LPU/b 0.0047 0.0040 -0.1288 
LPU/c 0.0123 0.0041 -0.0357 

𝑃𝑃99 

MC 0.0171 0.0124 0.0846 
LPU/a 0.0171 0.0124 0.0846 
LPU/b 0.0127 0.0118 0.0660 
LPU/c 0.0173 0.0118 0.0479 
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