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1 BACKGROUND

The data recorded by a sensor operating in the field, possibly as part of a deployed sensor
network, are used by different end-user communities for different purposes. For example, in
the case of underwater acoustic measurement, the data might be used for event detection
and attribution to derive temporal, spatial and amplitude information about the event, which
can be anthropogenic or natural. Another use might be for ocean noise monitoring in which
the data are used to derive metrics for ambient noise maps for a given spatial region and
time period, for example, the percentage of time that an exposure threshold for sound
pressure level is exceeded. Yet another use might be for environmental monitoring in which
the data are used to derive long-term (e.g., decadal) trends in sound pressure level and to
correlate characteristics of the recorded sound with natural and anthropogenic sound
sources.

The Joint Research Project 19ENV03 “Infra-AUV” of the European Metrology Programme for
Innovation and Research (EMPIR) [1] has delivered traceable calibration of acoustic,
underwater, and seismic sensors for measurements at low frequencies, as well as improved
knowledge of their performance in-situ. Various case studies have been used to demonstrate
the impact for different end-user communities of that traceability and improved knowledge.
Specifically, the project has investigated methods for the propagation of uncertainty,
including that associated with the calibration of a sensor, through models for high-level
derived parameters related to various end-user applications. Quantifying reliably the
uncertainty for estimates of these high-level parameters is essential when those estimates
are used for decision-making or to inform policy, as well as to understand the comparability
and consistency of estimates relating to different locations and times.

The objective of the study described in this report is to investigate the propagation of
uncertainty through models related to a particular end user application, viz., a study of the
data provided by acoustic sensors at the hydroacoustic stations that form part of the
International Monitoring System operated by the Commission for the Comprehensive
Nuclear-Test-Ban Treaty (CTBT) [2]. Each hydroacoustic station consists of three acoustic
sensors placed in the deep ocean sound channel where the vertical sound speed profile
exhibits a minimum. The locations of the stations allow good spatial coverage of the world’s
oceans by taking advantage of the physical principles governing the propagation of sound in
water. The sampling frequency for the sound pressure recordings is 250 Hz to provide
information at acoustic frequencies up to 100 Hz, and a bit depth of 24 bits yields a maximum
possible dynamic range of approximately 144 dB. Data is available over periods of years,
and at some stations for periods in excess of ten years. Although the primary aim of the data
is to support the monitoring of the Comprehensive Nuclear Test Ban Treaty, it is also made
available by to support environmental research and, consequently, is used by users in many
other and diverse applications.

The report is organised as follows. In Section 2 we describe the data processing chain from
the raw measured data recorded by a hydroacoustic sensor to advanced derived parameters
of interest to a user. In Sections 3 and 4 we describe, respectively, the sources of uncertainty
considered to influence the data processing chain and the numerical method used to
propagate those uncertainties through the chain. In Sections 5 to 8 we illustrate the results of
that uncertainty propagation for a snapshot of data recorded by a single hydroacoustic
sensor over a period of four days. A summary is given in Section 9. Finally, Section 12
contains the results in graphical and numerical forms.

2 DATA PROCESSING CHAIN

The data processing chain is composed of the following stages [3].
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2.1 STAGE 1

The input to this stage is a time series of raw measured data in counts that are provided by
the measuring system (an analogue to digital converter attached to a hydroacoustic sensor)
with a sampling frequency of 250 Hz. The output is a time series of values of sound power
spectral density level (SPSDL) in the unit of dB re 1 uPa?/Hz. The output depends on the
choice of an averaging time interval for extracting frequency information and the choice of a
frequency band. Examples of averaging time intervals are 1 minute and 10 minutes, and the
choice of averaging time interval determines the sampling frequency of the output time
series, i.e., the sampling frequency is 1 per minute for the choice of a 1-minute averaging
time interval. Examples of frequency bands are 10—100 Hz (broadband), 1—10 Hz (very low),
10—40 Hz (low), 40—70 Hz (medium), and 70—100 Hz (high). The output is derived from the
input using information about the measuring system in terms of a scaling factor (for
converting counts to values of sound pressure in pascals) and its calibration in terms of a
frequency response (for describing the frequency-dependent behaviour of the measuring
system).

This stage of the data processing chain is described as follows. Let (to,i,SO,i),i =1,..,1ng,
denote the input to stage 1 comprising a time series of raw measured data in counts. Let ¢
denote the scaling factor, and (fCJ-,AC,j,¢CJ),j =0, ...n., denote the amplitude and phase
responses of the hydroacoustic sensor defined by calibration frequencies f ; (with f., =

0 Hz) and calibrated amplitudes A, ; and calibrated phases ¢, ;. Furthermore, let AT; denote

the averaging time interval, and (f, fy) the frequency band.
The measurement function is specified as follows. For the rth averaging time interval defined
by start-time (r — 1)AT; and end-time rAT;:

1.1 Identify those points with indices I,. for which (r — 1)AT; < t,; < rAT;.

1.2 Apply the scaling factor: S, ; = GSy;.i € I,.

1.3 Form the (singled-sided) FFT (f,.;, Ay, ¢+ ),j = 0, ..n,, of the signal values S, ;,i €
L., defined by frequencies f; ; € [0, F;/2], amplitudes A, ; and phases ¢, ;, where F; =
250 Hz is the sampling frequency for the signal values.

1.4 Interpolate the amplitude and phase responses of the hydroacoustic sensor to the
frequencies of the FFT to give calibration data (£, ;,A'c;,¢'c;),j =0 =1,..7n,.

1.5 Remove the effect of the hydrophone response from the signal values: A', ; =
AT,j/A,C,j and ¢,T,j = (]‘)r’j - (P’C'j,j = 0, vy Ny

1.6 Identify those points with indices J,. for which f, < f,.; < f,.

1.7 Calculate t;,, = (r — 1)AT;.

1.8 Calculate S; , = 201log; /Z,-E]T A2 —10logio(fy — fu)-

The output is the time series (t;,,5;,),7 = 1,..,n,.
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2.2 STAGE 2

The input to this stage is the output from stage 1. The output is a time series of values of
SPSDL representing summary statistics extracted from the distributions of values taken over
some aggregation time interval. Examples of summary statistics are P;, P, Pso, Py and Pyq,
where B, denotes the nth percentile. Examples of aggregation time intervals include one day,
one week, one month and one year, and the choice of aggregation time interval determines
the sampling frequency of the output time series, i.e., the sampling frequency is 1 per day for
the choice of a 1-day aggregation time interval.

This stage of the data processing chain is described as follows. Let (t;;,S;;),i = 1,...,ny,
denote the output from stage 1 comprising a time series of values of SPSDL for a given
averaging time interval and a given frequency band. Let AT, denote the aggregation time
interval for this stage 2, and Pz (y) the function that returns the sample g-percentile of the
values in y. For example, Ps,(y) returns the sample median of the values in y, which is
obtained by sorting the values of y into non-decreasing order and selecting the central value
if the number of values in y is odd or the average of the two central values if the number is
even.

The measurement function is specified as follows. For the rth aggregation time interval
defined by start-time (r — 1)AT, and end-time rAT,:

2.1 Identify those points with indices I,. for which (r — 1)AT, < t;; < rAT,.
2.2 Calculate t,, = (r — 1)AT;,.

2.3 Calculate S, . = Pg(Sy,: i € I).
The output is the time series (t,,,S2,),7 = 1, ..., n,.
2.3 STAGE 3

The input to this stage is the output from stage 2. The output from this stage is the value of
an advanced parameter derived from the input having the purpose of meeting the
requirement of a specific application or user. An example can be to use the output from stage
2 for the purpose of understanding the characteristics of the underwater noise at the location
of the sensor. For example, whether there is a long-term trend in the noise or whether the
characteristics of the noise are correlated with some other environmental variable, such as
sea surface temperature. The challenge is to undertake an analysis of the time series data,
when that analysis might be model-driven or data-driven, to extract information about those
characteristics.

2.4 OTHER EXAMPLES

In another example of a data processing chain, stage 1 involves applying the scaling factor,
removing the effect of the hydrophone response, and then applying the inverse FFT to return
a time series of values of sound pressure in the unit of pascals at the same sampling
frequency as the raw measured data. Stage 2 can then be to apply the stage 1 measurement
function to each hydroacoustic sensor in a collection of spatially distributed sensors for the
purpose of event detection and attribution, i.e., estimating the time and location of an event
and correlating that information with known events. Here, an event of interest might be
characterised by a particular acoustic signature or by a sound pressure that exceeds a
particular threshold. The challenge is to identify when the event is registered by each sensor
and to use that information (specifically the differences between those registration times and
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the locations of the sensors) to determine the time and location of the event, which constitute
the required advanced derived parameters. In this case, knowledge of phase information,
and correcting for the phase response of the hydroacoustic sensor, is important for the
accurate determination of the times at which events are detected by the different sensors.

3 SOURCES OF UNCERTAINTY

It is assumed that there are three sources of uncertainty that impact the data processing
chain described above.

The first is random noise inherent in the sensor, which affects each raw measured count
independently. The effect is considered to be modelled as the output of the analogue to
digital converter applied to samples drawn randomly and independently from a continuous
Gaussian distribution defined by an expectation of zero and a prescribed variance o3.

The second is the estimation of the scaling factor G. The effect is considered to be modelled
by a continuous Gaussian distribution defined by an expectation equal to the estimate G of G
and a prescribed variance .

The third is the calibration of the sensor. Suppose the calibration is defined by amplitude and
phase responses given at discrete frequencies f. ;,j = 0, ..., n¢, and denoted, respectively, by

(fejrAcj) and (fo, dc;).Jj =0, ..., n.. The effect is considered to be modelled by a
multivariate Gaussian distribution for each of amplitude and phase defined by an expectation
vector comprising the estimates of the response (4. 4, ...,Aanc for amplitude and (13C,1, ""$C:nc
for phase) and prescribed variance matrices (V, for amplitude and V, for phase). This model
assumes the calibrations of amplitude and phase are independent, but a more general

treatment would consider the effect for both amplitude and phase to be modelled by a single
multivariate Gaussian distribution.

These sources of uncertainty will give rise to uncertainty in the values of SPSDL in the time
series that constitute the output of stage 1 of the data processing chain and in the values of
the summary statistics of SPSDL that constitute the output of stage 2. In this work we
consider the evaluation of that uncertainty, and how it propagates through the data
processing chain. We note that the second and third of these sources of uncertainty give rise
to possible mutual correlation between the values of SPSDL of the summary statistics for
those values.

4 METHOD OF UNCERTAINTY PROPAGATION

In this work we use a Monte Carlo (MC) method [4, 5] as a numerical approach for
propagating measurement uncertainty through a defined measurement function or through
the composition of a sequence of measurement functions. The advantages of the approach
are that it does not require the explicit calculation of sensitivity coefficients, and it makes no
assumptions about the nature of the measurement functions, i.e., that they are linear or
mildly non-linear, or about the nature of the probability distributions for the outputs from those
measurement functions, i.e., that they are Gaussian or approximately Gaussian. The
disadvantage of the approach, however, is that it can be computationally expensive.

Given a measurement function Y = f(X) relating m output quantities ¥ = (Y3, ...,¥,,)T to N
input quantities X = (X4, ..., Xy)T and a (joint) probability density function gy (&) forX the
Monte Carlo method involves repeating the following steps forr =1, ..., M:

I.  Make a random draw x,. for X from the probability density function gx($);
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Il.  Evaluate the measurement function to obtain a random draw y,. = f(x,) for Y from its
(unknown) probability density function.

The (sample) average y and (sample) covariance matrix Vy of the samples y,.,r =1, ..., M,
provide, respectively, an estimate of ¥ and its uncertainty.

For the problem treated in this work, one consideration is the computational effort involved
that is dominated by the time to evaluate the measurement function representing stages 1
and 2 of the data processing chain. The required computational effort can limit the number M
of Monte Carlo trials that can be performed in practice and, in turn, the reliability of the
results that are obtained from the calculation. A further consideration is when the number m
of output quantities is large, which is the case for the output of stage 1 of the data processing
chain. In that case, it can be difficult to store the complete covariance matrix for those
quantities, and it can be necessary to store the information captured by the covariance matrix
in a compressed (and approximate) form (see, for example, [6]).

5 DATA

We consider data recorded by the hydroacoustic sensor HO1W1, the first hydrophone at the
IMS station west of Cape Leeuwin. Figure 1 illustrates the inputs to and outputs from stages
1 and 2 in the data processing chain described above. The top graph shows the input to
stage 1 comprising a time series of raw measured data in counts over four days. The middle
graph shows the output from stage 1 comprising a time series of values of SPSDL for an
averaging time interval of 1 min and the frequency band 10 Hz — 40 Hz. The bottom graph
shows the output from stage 2 comprising values of the summary statistics P;, Py, Pso, Poo
and Py, for an aggregation time interval of 1 day, and there are twenty such parameters.

6 RESULTS FORM STAGE 2 OUTPUTS

The results described in the section are each obtained using a Monte Carlo method and M =
100 trials. An “updating approach” is used to update the values of the estimates of the

stage 2 outputs, as well as the covariance matrix for those estimates, which does not depend
on storing the values of the stage 2 outputs for all the Monte Carlo trials [7]. Such an
approach would become necessary as the number of stage 2 outputs and/or the number of
Monte Carlo trials are increased.

Figure 2 shows results that summarise the influence of signal noise alone. The top graph
shows the standard uncertainty for each of the stage 2 outputs, which comprise the summary
statistics for SPDL for each of the four days of observation, as a function of signal-to-noise
ratio oy (in percent), and the bottom graph shows the correlation matrix for the outputs
corresponding to the largest value of gy. Similarly, Figure 3 shows results that summarise
the influence of the scale factor alone as a function of the relative standard deviation g;; (in
percent), and Figure 4 considers the influence of the calibration alone. In this case, g, (in
percent) denotes the relative standard deviation of the amplitudes in the frequency response
with no uncertainty for the phases in that response.

We note that:

e Signal noise does not lead to correlation between the stage 2 outputs. The
uncertainties of the Pyq estimates are larger than the uncertainties for the other
summary statistics. They vary proportionately with gy, whereas the uncertainties for
the other summary statistics are essentially invariant to ay.
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e The effect of the scaling factor is to produce perfect (positive) correlation between the
stage 2 outputs. For a given choice of g, there is no difference between the
uncertainties for the outputs, and those uncertainties vary proportionately with o;;.

e The effect of the calibration uncertainty (restricted to uncertainty in the amplitude
response only) is to produce high correlation between the stage 2 outputs. For a
given choice of g, there are only small differences between the uncertainties for the
outputs, and those uncertainties vary proportionately with g,.

Finally, Figure 5 illustrates results that summarise the influence of the combination of signal
noise, scaling factor and calibration. The graph shows the correlation matrix for the stage 2
outputs corresponding to the largest values of gy, g; and g,. In this case, the correlations
between the outputs are generally high except, most notably, for the Py estimates and, to a
lesser extent, for the P, estimates. We expect the influence of signal noise to dominate for
the Pyq estimates, and the observed behaviour then mimics that illustrated in Figure 2.

7 COMPACT REPRESENTATION OF THE UNCERTAINTY INFORMATION

In the examples considered above, for which there are only twenty stage 2 outputs, it is
straightforward to store and work with the covariance matrix for those outputs. However, a
challenge is to do so when the observation period lasts for many years, and the size of the
covariance matrix becomes prohibitively large to store in full. For example, the hydrophone
HO1W1 has been recoding data for more than 15 years. Then, considering an aggregation
time interval of 1 day for an observation period of 15 years and all five summary statistics
would generate 27,375 stage 2 outputs, and a covariance matrix of 749,390,625 elements.
Ignoring the symmetry of the matrix, i.e., storing it as a full matrix, and assuming each matrix
element is stored as a 64-bit double, the matrix would require of the order of 5.5 GB of
memory. However, the results from Section 6 suggest that the correlation matrix is structured
and, consequently, there is the possibility to exploit that structure to provide a compact, albeit
approximate, representation of the matrix.

We consider the case oy = 0.16 %, o; = 0.1 % and g4 = 0.35 % and run three Monte Carlo
calculations with M = 1000 as follows:

(MC/A) considering the influence of signal noise only, which produces uncorrelated
effects in the stage 2 outputs,

(MC/B) considering scaling factor uncertainty and calibration uncertainty only, which
produce correlated effects in the stage 2 outputs, and

(MC/C) considering the influences of signal noise, scaling factor uncertainty and
calibration uncertainty.

To illustrate the output of the Monte Carlo calculation, Figure 6 shows the approximations to
the probability density functions for the five stage 2 outputs (statistical percentiles) for the last
aggregation period (day 4). The distributions are well-separated, and closer inspection shows
that they appear “Gaussian” in their form.

Table 1 compares the estimates of the stage 2 outputs obtained from the three Monte Carlo
calculations as well as directly in terms of the input data to stage 1 in the data processing
pipeline (denoted by “DATA”). We note that there is agreement between the estimates for the
methods DATA and MC/B, and between the estimates for MC/A and MC/C, with the
estimates for the latter pair of methods being consistently greater than those for the former
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pair. The methods MC/A and MC/C include the effect of signal noise, which in this case is
interpreted through the summary statistics as an additional source of sound.

Let Vy, V; 4 and V be the covariance matrices obtained from the three Monte Carlo
calculations specified above. We define an approximation to V by

V' =D+ df,1,

where D is the diagonal matrix obtained by setting all off-diagonal elements in V) to zero,
ag,A is the average of the elements of V; 4, and 1 is a square matrix of dimension equal to the
number of stage 2 outputs with all its elements set to one. The specification of I/ is based on
two assumptions: firstly, that the uncertainties associated with those influences giving rise to
uncorrelated and correlated effects in the stage 2 outputs can be propagated separately and
their variances combined additively; secondly, that the uncertainty information for those
uncorrelated and correlated effects can be represented by covariance matrices having
simple structures, viz, as a diagonal matrix and as a multiple of a unit matrix, respectively.
For the example used as illustration above, this matrix is specified by 27,375 + 1 values if
those elements known to be exactly zero or one are ignored. Figure 7 and Figure 8 show the
correlation matrices obtained from VV and V', respectively, which appear to have a very similar
structure. The effect of replacing V by V' on the uncertainty associated with the estimate of a
derived stage 3 output is investigated in the following section.

In practice and supported by the results from Section 6, we expect the elements of Vy, and
Vs 4 to depend only weakly on the period (or day over which the values of SPSDL are
aggregated) but more strongly on the summary statistic. In this case, D can be defined
approximately by five values, one for each summary statistic that can be read from pre-
calculated graphs such as those shown in Figure 2. Furthermore, V' can be constructed from
the covariance matrices Vy and V;; , evaluated for a (much) shorter observation period. In
these ways, both the calculation and storage of V' can be made very efficient. Figure 12
Influence of noise factor alone: standard uncertainty for each of the stage 2 outputs, which
comprise the summary statistics for SPDL for the four aggregation periods, as a function of
signal to noise ratio (top), and the correlation matrix for the outputs corresponding to the
largest value of signal noise (bottom).

8 IMPACT ON FURTHER ADVANCED DERIVED PARAMETERS
For the summary statistic Pg, let the stage 2 outputs comprise the data (ti,P[;_i),i =1,..,m

In the examples considered before, g is 1, 10, 50,90 or 99, m = 4, and ¢t; is 0, 1, 2 and 3.
We define the stage 3 outputs to be the value a; at ¢, = 1.5 (the average of the values t;),

and the slope bg, of a straight-line function fitted to the data by ordinary least-squares. The
stage 3 output az provides a single representative value of P; and the stage 3 output by the
rate of change of P with respect to time (or its trend).

Define

ag ¢ Ppa P 1 -t
CB=<bﬁ)’ c={ ), pg=\ [ pP=| | Xp={i o)
Cyg Pﬁ‘m Pog 1 tm - tC

and
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X, 0 0
x=<0 . 0)
0 0 Xo

Then, formally, the estimates c of the stage 3 outputs are given by
c = (X"X)"'X"p,

which defines a linear relationship between p and c¢. Consequently, using a generalised form
of the law of propagation of uncertainty (LPU) [5], the covariance matrices V}, and V; for p and
c, respectively, are related by

v, = (X"X) XV, x(XTX) .

(In practice, and to avoid loss of numerical precision, the above calculations are undertaken
in terms of an orthogonal factorisation of the design matrix X.)

Let p be the estimates of the stage 2 outputs calculated directly in terms of the input data to
stage 1 in the data processing pipeline (denoted by “DATA” in Table 1). We evaluate the
stage 3 outputs in the following ways:

(MC) by running a Monte Carlo calculation considering the influences of
signal noise, scaling factor uncertainty and calibration uncertainty,

(LPU/a) using the formal expressions for ¢ and V, given above with V, =V from
Section 7,
(LPU/b) using the formal expressions for ¢ and V; given above with 1, = Vy

from Section 7, and

(LPU/c) using the formal expressions for ¢ and V, given above with I}, = V' from
Section 7.

Table 2 compares the estimates of the stage 3 outputs obtained in these different ways as
well as directly in terms of the input data to stage 1 in the data processing pipeline (denoted
by “DATA”). Figure 9 shows together this further stage of the data processing pipeline in
terms of the outputs from stage 2, which are used as the inputs to stage 3, and the outputs of
stage 3 displayed as trend-lines for each of the summary statistics. Four of those statistics
shows an increasing trend whereas Pyq shows a decreasing trend. We note that:

e As expected, the estimates of the stage 3 outputs from the methods DATA, LPU/a,
LPU/b and LPU/c are identical because all the methods are implementing the same
formulae for evaluating the stage 3 outputs in terms of the stage 2 outputs.

¢ However, the estimates obtained from the method MC are different from those
obtained from the other methods. In Section 7 we saw that the stage 2 outputs
obtained from a Monte Carlo method that considered the influence of signal were
biased high, and this effects filters through to the estimation of the stage 3 outputs.

Table 3 compares the uncertainties associated with the estimates obtained in the different
ways in terms of the standard uncertainties u(ag) and u(bg) associated with the pair of stage
3 outputs for stage 2 outputs Pz and their correlation coefficient r(ag, bg). (The correlation
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coefficients for stage 3 outputs corresponding to different summary statistics are not
presented because they are considered to be of less importance and interest.) We note that:

e The standard uncertainty u(az) obtained using the methods MC, LPU/a, and LPU/c

are consistent, and the uncertainty obtained using the method LPU/b is
underestimated. For this stage 3 output, the contributions to the uncertainty from the
scale factor uncertainty and calibration uncertainty, which produce correlated effects
in the stage 2 outputs, cannot be neglected.

e The standard uncertainty u(bg) obtained using all the methods are consistent. For

this stage 3 output, the contributions to the uncertainty from the scale factor
uncertainty and calibration uncertainty, which produce correlated effects in the stage
2 outputs, can be neglected.

e The compact, albeit approximate, representation V' of V would seem to be adequate
for the evaluation of the uncertainties for the stage 3 outputs.

e The correlation coefficients are also close to zero, which indicates that the ag and bg
are weakly correlated, which is a consequence of the chosen parametrisation of the
straight-line trend function, viz., the parameter az is chosen to be the value of the
function at the mean of the values t;,i = 1, ..., m.

9 SUMMARY

We have investigated for a particular user application how uncertainty propagates through a
data processing pipeline that starts with the raw data recorded by a sensor and finishes with
advanced derived parameters which convey useful information. The application concerns
raw data recorded by a hydroacoustic sensor taken from the International Monitoring System
of the CTBT and parameters describing characteristics of summary statistics of the
distributions of values of SPSDL derived from the raw data. In this application we find that
the contribution from a given source of uncertainty depends on the nature of the source (e.g.,
signal noise compared to calibration uncertainty) and the nature of the parameter (e.g., a
representative value of SPSDL compared to a temporal trend in SPSDL values). We also
found that it was possible to construct compact, albeit approximate, representations of the
uncertainty information at intermediary stages in the data processing pipeline that meant that
the propagation of uncertainty could be done efficiently. It can be expected that these results
are specific to the application, but it is hoped that the approach taken in the investigation can
be used as a template for other applications.
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Figure 1 Stages in data processing chain: input to stage 1 (top), output
of stage 1 and input to stage 2 (middle), and output of stage 2. (The
dotted lines joining the daily values are included for purposes of

visualisation only.)

Page 11 of 18



NPL Report AC 25

0.06

0.04

0.02

0.06

0.04

0.02

0
o, (%
\ (%)
Period 1 Period 2
0.06
0.04
—
~
/f'
- 0.02 e
— 0
0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
Period 3 Period 4
0.06
—P1
P10
0.04 P50
. e Po0
L - P99
- 0.02
— e
0
0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

123 4567 8 910111213 14151617 181920

Figure 2 Influence of noise factor alone: standard uncertainty for each of
the stage 2 outputs, which comprise the summary statistics for SPDL for
the four aggregation periods, as a function of signal to noise ratio (top),
and the correlation matrix for the outputs corresponding to the largest

value of signal noise (bottom).
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Figure 3 Influence of scaling factor alone: standard uncertainty for each
of the stage 2 outputs, which comprise the summary statistics for SPDL
for the four aggregation periods, as a function of the relative standard
deviation of the scaling factor (top), and the correlation matrix for the
outputs corresponding to the largest value of scaling factor uncertainty
(bottom).
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Figure 4 Influence of calibration alone: standard uncertainty for each of
the stage 2 outputs, which comprise the summary statistics for SPDL for
the four aggregation periods, as a function of relative standard deviation
of the amplitudes in the frequency response (top), and the correlation
matrix for the outputs corresponding to the largest value of calibration

uncertainty (bottom).
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Figure 5 Combination of influences: the correlation matrix for the stage 2
outputs corresponding to the largest values of signal to noise ratio,
scaling factor uncertainty and calibration uncertainty.
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Figure 6 Combination of influences: approximations to the probability
density functions for the five stage 2 outputs (statistical percentiles) for
the last aggregation period obtained from a Monte Carlo calculation.
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Figure 7 Combination of influences: correlation matrix for the stage 2
outputs accounting for the influence factors of signal noise, ratio,
scaling factor and calibration.
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Figure 8 Combination of influences: an approximation to the correlation
matrix for the stage 2 outputs accounting for the influence factors of
signal noise, ratio, scaling factor and calibration.
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Figure 9 A further stage in the data processing chain: output of stage 2
and input to stage 3 (circles joined by dotted lines), and output of stage

3 (solid lines).

Table 1 Estimates of stage 2 outputs.

PERCENTILE PERIOD DATA MC/A MC/B Mc/C
1 90.7683 91.5096 90.7682 91.5091

2 90.4079 91.2155 90.4076 91.2155

Py 3 91.3478 92.0013 91.3476 92.0019
4 90.6284 91.3979 90.6284 91.3978

1 91.0117 91.7364 91.0116 91.7362

2 90.6873 91.4558 90.6871 91.4555

Pro 3 91.6058 92.2382 91.6058 92.2382
4 90.9325 91.6625 90.9323 91.6620

1 91.5191 92.1681 91.5191 92.1679

Py, 2 91.3151 91.9934 91.3145 91.9936
3 92.0750 92.6559 92.0743 92.6559

4 92.0009 92.5784 92.0007 92.5780

1 92.4327 92.9630 92.4326 92.9627

2 92.0334 92.6133 92.0332 92.6133

Poo 3 93.1352 93.5982 93.1349 93.5980
4 92.7263 93.2353 92.7263 93.2348

1 06.3358 96.5553 96.3357 96.5557

P 2 96.6281 96.8377 96.6281 96.8371
» 3 97.6392 97.7947 97.6390 97.7935
4 05.1949 954897 95.1949  95.4908
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Table 2 Estimates of stage 3 outputs.

PERCENTILE P; METHOD ag by
DATA 90.7881 0.0520

MC 91.5311 0.0453

P, LPU/a 90.7881 0.0520
LPU/b 90.7881 0.0520

LPU/c 90.7881 0.0520

DATA 91.0593 0.0681

MC 91.7730 0.0560

Pyy LPU/a 91.0593 0.0681
LPU/b 91.0593 0.0681

LPU/c 91.0593 0.0681

DATA 91.7275 0.2205

MC 92.3489 0.1893

Pso LPU/a 91.7275 0.2205
LPU/b 91.7275 0.2205

LPU/c 91.7275 0.2205

DATA 92.5819 0.1983

MC 93.1022 0.1801

Poy LPU/a 92.5819 0.1983
LPU/b 92.5819 0.1983

LPU/c 92.5819 0.1983

DATA 96.4495 -0.2412

MC 96.6693 -0.2238

Pyo LPU/a 96.4495 -0.2412
LPU/b 96.4495 -0.2412

LPU/c 96.4495 -0.2412

Table 3 Uncertainties associated with estimates of stage 3 outputs.

PERCENTILE P, METHOD u(ag) u(bg) r(ag, bg)
MC 0.0132 0.0057 0.0226

P LPU/a 0.0132 0.0057 0.0226
1 LPU/b 0.0062 0.0057 0.1278
LPU/c 0.0129 0.0056 0.0539

MC 0.0119 0.0026 0.0670

p LPU/a 0.0119 0.0026 0.0670
10 LPU/b 0.0028 0.0027 0.0206
LPU/c 0.0117 0.0026 0.0033

MC 0.0118 0.0023 -0.0203

P LPU/a 0.0118 0.0023 -0.0203
50 LPU/b 0.0024 0.0023 0.0765
LPU/c 0.0116 0.0023 0.0147

MC 0.0125 0.0043 -0.0111

P LPU/a 0.0125 0.0043 -0.0111
920 LPU/b 0.0047 0.0040 -0.1288
LPU/c 0.0123 0.0041 -0.0357

MC 0.0171 0.0124 0.0846

P LPU/a 0.0171 0.0124 0.0846
9 LPU/b 0.0127 0.0118 0.0660
LPU/c 0.0173 0.0118 0.0479
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