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Abstract
A statistical testing method is developed to analyze a Regional Metrology Organization (RMO)
key comparison (KC) with linking to the corresponding KC conducted by the International
Committee of Weights and Measures (CIPM). We establish a statistical model to which a
generalized least-squares method is applied to determine a linking invariant, ensuring that
the CIPM KC reference value is unchanged by the analysis. The proposed method generally
gives different unilateral and bilateral degrees of equivalence (DOEs) from those assessed by
other methods. The approach accounts for uncertainty information provided by all participating
laboratories and correlation information provided by the linking laboratories. Since decisions
are made on the basis of calculated DOEs, we emphasize that it is valuable to have adequate
knowledge of the properties of methods used for analyzing the results from an RMO KC.

Keywords: CIPM and regional key comparisons, key comparison reference value,
degrees of equivalence, statistical model, generalized least squares, uncertainty propagation

(Some figures may appear in colour only in the online journal)

1. Introduction

The International Committee of Weights and Measures
(CIPM) Mutual Recognition Arrangement (MRA) [1] is tech-
nically supported by key comparisons (KCs), for which pur-
pose the CIPM Consultative Committees (CCs) provide KCs
in many metrology disciplines. The KCs are implemented to
establish the degree of equivalence of national measurement
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standards maintained by national metrology institutes (NMIs)
and to provide for the mutual recognition of calibration and
measurement certificates issued by NMIs. The calibration and
measurement capabilities (CMCs) of participating NMIs must
be consistent with the results derived from the KCs.

Although there is no official guideline for CIPM KC
data evaluation, many analyses are conducted based on peer-
reviewed publications such as those given in the references to
this paper to determine the unilateral and bilateral degrees of
equivalence (DoEs) for the laboratories participating in a KC.
It is noted that DoEs consist of both value and uncertainty
components, while the value components are often mislead-
ingly referred to as the unilateral or bilateral DoEs.

These DoEs are measures indicating the extent to
which the conducted measurements are consistent with a
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consensus value, the KC reference value (KCRV), and among
themselves.

The following is noted in the MRA document:

‘Participation in a CIPM key comparison is
open to laboratories having the highest tech-
nical competence and experience, normally
the member laboratories of the appropriate
Consultative Committee.’ [1, clause 6.1]

To establish global metrological traceability, frameworks
in addition to the CIPM KCs are needed. The MRA docu-
ment [1] explicitly requires Regional Metrology Organization
(RMO) KCs and RMO supplementary comparisons to take
place. These RMO comparisons must be linked to the results
in the CIPM KCs to show the degree of consistency of the
measurements among laboratories participating in the RMO
and CIPM comparisons. In this regard, the MRA document
states

‘RMO key comparisons must be linked to
the corresponding CIPM key comparisons by
means of joint participants. The degree of equi-
valence derived from an RMO key comparison
has the same status as that derived from aCIPM
key comparison.’ [1, clause 3.2]

‘The results of the RMO key comparisons
are linked to key comparison reference val-
ues established by CIPM key comparisons
by the common participation of some insti-
tutes in both CIPM and RMO comparisons.’

[1, annex T.4].

An approach is therefore needed to assess the unilateral
DoE that is directly related to the KCRV in the CIPM KC,
which is referred to as the CIPM KCRV in the present study.

Similarly to the CIPMKCs, there is no official guideline for
the analysis of the RMO KCs but procedures given in papers
such as [2–6] can be applied. A concern is that in our under-
standing no statistical (hypothesis) testing approach has been
suggested in these studies. Generally, testing and estimation
are the two main approaches to decision making from data.

There are some studies where no statistical model is spe-
cified so that it is difficult to say which of the two approaches
is employed. For example, Elster et al [3] describes such a
method for which we can naturally derive the same proced-
ure as theirs by using an estimation approach as shown in
appendix C. Further, Kharitonov and Chunovkina [4] report
two methods to give unilateral DoEs without adopting a stat-
istical model. One of the two methods, called procedure C in
their paper, is essentially incorporated in the method proposed
by Decker et al [2] to develop a practical procedure.

Thus, as far as we know, there has been no method in
which a statistical testing approach based on a specific stat-
istical model is explicitly given. One possible drawback of the
simple application of such a model may be that the measurand
estimated by the CIPM KCRV would be re-estimated through
the RMO KC analysis if special treatment were not given, as
explained in section 3.

That the CIPM KCRV is not to be changed by the results
of an RMO comparison is supported by [7, chapter 4] and [8]
and especially by the statements

‘. . .RMO key comparisons extend the metrolo-
gical equivalence established by the CIPM key
comparisons to a greater number of national
metrology institutes . . .’ [1, annex T.9]

‘The linkage does not modify the value and the
uncertainty of the master CIPM key compar-
ison reference value, which remains unique and
non-altered for the whole family [the CIPMKC
and the corresponding RMO KCs]. It simply
extends thematrix of equivalence and the graph
of equivalence in order to give evidence on
the comparability between institutes that have
participated . . .’ [9]

In this study, we develop a statistical data analysis of RMO
KCs in which the measurand in the CIPM KC is not re-
estimated, and consequently obtain unilateral and bilateral
DoEs as statistics in a standard testing approach. Although
re-estimation is largely inconsistent with the objectives of the
MRA, it possesses some technical advantages in that with a
large set of RMO participants, it would be expected that the
resulting consensus value would often be better defined.

Moreover, to show explicit linking between the unilateral
and bilateral DoEs and the CIPMKCRV, we introduce a ‘link-
ing invariant’, which is also considered in the study by Decker
et al [2]. To determine the linking invariant, a generalized
least-squares (GLS) method is developed in which the estim-
ate, the KCRV, of the measurand in the CIPM KC is fixed.
Then, we propose unilateral and bilateral DoEs to be clearly
used as statistics in statistical testing using the linking invari-
ant. These unilateral and bilateral DoEs are generally differ-
ent from those in previous studies. We will characterize those
differences in this paper through the application to an actual
example and simulations.

Literature searches indicate that quantitative information
on the correlation coefficients, which is important information
in RMO KC analyses, is often not available. There are excep-
tions. In the fluid flow example in section 5, the correlation
coefficients were assessed as 0.8 [10]. In a KC of lamp spectral
irradiance [11] for wavelengths from 250 nm to 2500 nm, par-
ticipating laboratories were requested to separate uncertain-
ties due to correlated and uncorrelated effects. These effects
depend on the lamp being compared and the wavelength used.
Based on that information, for low wavelengths, correlation
coefficients for one laboratory were ≈ 0.8, whereas for high
wavelengths they were ≈ 0.4. On the other hand, for a vibra-
tion accelerometer comparison [12], it is stated that, since
no information about correlations is available, the data are
treated as being uncorrelated. The last case appears to be
quite common despite the frequent availability of uncertainty
budgets from which the correlation coefficients could poten-
tially be determined [13]. In the present study, we handle only
cases where the correlation coefficients between the reported
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values from identical laboratories are quantitatively reported
or assessed.

This paper is organized as follows. Section 2 gives assump-
tions on the analysis, shows mathematical forms for the value
components of unilateral and bilateral DoEs, and discusses
general principles of the statistical testing approach we use as
an extension of the analysis of a CIPMKC. Section 3 provides
a GLS approach to estimate the linking invariant and makes
comparisonwith other available studies. Section 4 provides the
uncertainty evaluation of the DoEs. Section 5 applies the ana-
lysis to an actual example from the fluid flow area. We discuss
the features of our proposal in section 6 through simulations.
Section 7 gives a brief summary of this study.

In this work, as in the GUM [14], for economy of notation
the same symbol is used for the random variable that repres-
ents a quantity and a realization of the quantity. For improved
visualization, zero elements in some matrices are replaced by
blanks, such as in expression (26).

All calculations given in this paper were made using
MATLABR2022aGeneral Release (9.12.0.1884302) using an
Intel×64-based processor with an i5-5300U core, a 2.30 GHz
CPU and a 64 bit operating system.

2. Available information and statistical model

2.1. Available information

Let IL = {1, . . . ,L} denote the indices of the linking laborat-
ories in the CIPM and RMO KCs, Ix = {L+ 1, . . . ,M} those
of the non-linking laboratories in the CIPM KC, and, finally,
Iy = {L+ 1, . . . ,N} those of the non-linking laboratories in the
RMO KC.

The following information is assumed to be available:

1. Data xi,u(xi), i = 1, . . . ,M, representing values and associ-
ated standard uncertainties, respectively, provided by theM
participants in the CIPM KC;

2. Analogously, yi,u(yi), i = 1, . . . ,N, provided by the N par-
ticipants in the corresponding RMO KC;

3. Correlation coefficients ρi, i = 1, . . . ,L, provided by the L
laboratories that participated in both comparisons, the link-
ing laboratories;

4. The CIPM KCRV xref, taken here as the weighted mean
(WM) of the data in point 1.

Regarding point 4, we consider only cases where the CIPM
KCRV xref is obtained as theWM of the xi, i ∈ IL ∪ Ix, as given
later in expression (4). Some of the reported data might not
be used in actual CIPM KCs in the computation of the WM.
We will give some remarks on that possibility in appendix B.
Further, although our approach can potentially be adapted to
choices other than the WM, we do not consider that option
here.

2.2. Linking invariant and DOEs

In our analysis, the linking of the data in an RMO KC to
a CIPM KC is expressed explicitly. For this purpose, we

introduce a linking invariant hlink as do Decker et al [2]. The
value yi + hlink may be interpreted as what would have been
reported by laboratory i in the RMO KC had it actually parti-
cipated in the CIPM KC.

In this subsection, we show the computation and discuss the
interpretation of unilateral and bilateral DoEs using the link-
ing invariant. Here, the value component of the unilateral DoE
is a statistic that expresses the difference between the repor-
ted value and the CIPM KCRV after adjustment by a linking
invariant. Similarly, the value component of the bilateral DoE
expresses the difference between the reported values from two
laboratories after adjustment by a linking invariant.

The value component of the unilateral DoE for non-linking
laboratory j ∈ Iy in an RMO KC using the linking invariant
hlink is

d(RMO)
j = yj+ hlink − xref. (1)

The bilateral DoE is the difference between the unilateral
DoEs after the adjustment. When values from the two KCs
are to be compared, the value component of the bilateral DoE
between laboratory j ∈ Iy in the RMO KC and laboratory ℓ ∈
IL ∪ Ix in the CIPM KC is

d(RMO, CIPM)
j,ℓ = d(RMO)

j − d(CIPM)
ℓ . (2)

Because the CIPM KCRV remains unchanged, the unilateral
DoE of a linking laboratory is also not adjusted based on the
results of an RMO KC, and expression (2) is employed for
the relation between a non-linking laboratory in the RMO KC
and a linking laboratory. The value components of the bilat-
eral DoEs between non-linking laboratories j ∈ Iy and ℓ ∈ Iy
in the RMO KC are similarly given by

d(RMO, RMO)
j,ℓ = d(RMO)

j − d(RMO)
ℓ . (3)

2.3. Interpretation of the unilateral DoE in a CIPM KC analysis

The value components of the DoEs in section 2.2 are regarded
as test statistics. This interpretation can be considered to be a
natural extension of the practice of a typical CIPM KC ana-
lysis. How we can interpret the unilateral DoEs in a CIPM KC
is thus explained in this subsection before showing the statist-
ical approach for RMO KC analyses.

The CIPM KCRV xref and its associated standard uncer-
tainty u(xref) are given by Cox [15]:

xref = u2 (xref)
∑

i∈IL∪Ix

xi
u2 (xi)

, u2 (xref) =

[ ∑
i∈IL∪Ix

1
u2 (xi)

]−1

,

(4)

and the unilateral DoE (d(CIPM)
j , U(CIPM)

j ) for laboratory j ∈
IL ∪ Ix is

d(CIPM)
j = xj− xref, U(CIPM)

j = ku
(
d(CIPM)
j

)
, (5)

where

u2
(
d(CIPM)
j

)
= u2 (xj)− u2 (xref) . (6)
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and k is the coverage factor, which is equal to 1.96 under the
assumption of normality.

Candidates for a statisticalmodel for the unilateral DoEs (5)
in a CIPM KC include

xi ∼ N
(
µx,u

2 (xi)
)

for all i ∈ IL ∪ Ix, (7)

with which we can derive the model

d(CIPM)
j ∼ N

(
0,u2

(
d(CIPM)
j

))
. (8)

Here µx denotes a value of the measurand and N(µ,σ2) the
normal distribution with mean µ and standard deviation σ. It
is noted that while xref is an estimate of the measurand, µx is
the true value of it. Bayesian hypothesis testing for model (7)
has been suggested by Kacker et al [16], in which the unilat-
eral DoEs (5) are given as test statistics.

For statistical testing, the following score, called the En
score, for the jth participant is computed from the unilateral
DoE:

E(CIPM)
j =

d (CIPM)
j

U (CIPM)
j

.

The En score suggests ‘satisfactory’ performance when its
absolute value is no greater than unity and ‘unsatisfactory’ oth-
erwise. The probability of ‘unsatisfactory’ performance for a
specific laboratory when model (7) holds is 5 %, that is, on
average once in 20 KCs. Performance evaluation using the En
score can hence be interpreted as a statistical test with a sig-
nificance level of 5 %. Note that the statistical test is not for
the consistency of the values in aggregate like the χ2 test in
[15] but that of the value provided by a specific laboratory. In
other words, E(CIPM)

j is not used as a component of multiple
tests for model (7) but a sole statistic for it with high power of
test against the bias from µx in the distribution of xj. When the
main interest of a CC Working Group is whether a participant
has a bias or not, the hypothesis testing approach using this
model can be used.

Our interpretation of unilateral DoEs as test statistics is
explained here. Performance is satisfactory when the value
component of the unilateral DoE is not significantly different
from zero. When performance is unsatisfactory, it is expected
that investigation to find causes of the inconsistency is conduc-
ted. It is not generally expected that the computed value parts
of unilateral DoEs are used for compensation purposes.

Alternative interpretations are possible. For instance, there
are some studies where the value components of unilateral
DoEs are interpreted as estimators of hidden biases. Details
are given in appendix C.1. It is worth noting that the bias
estimation approach gives the physical meaning of the DoEs
as hidden biases and their associated uncertainties. Based on
this idea, once the non-zero hidden biases are discovered in
the KCs, they may need to be corrected regardless of the
performance evaluations of the En scores (because they are
physically meaningful biases). Our impression is that since
such corrections are not often implemented in many metro-
logy fields, most CIPM CCs regard the DoEs as non-physical
but statistical.

However, since both approaches can give the same uni-
lateral DoEs in a CIPM KC as shown in the present sub-
section and appendix C.1, the choice does not influence the
computation. Further, in an RMO KC analysis, there could
be differences in the computed DoEs provided by these two
approaches.

2.4. Statistical model to be validated in an RMO KC analysis

The value components of the DoEs specified in section 2.2 are
considered as test statistics for statistical testing. Such testing
is implemented in this study to check the validity of statistical
models.

Define

zi =
[
xi
yi

]
,

Vi =
[

u2 (xi) ρiu(xi)u(yi)
ρiu(xi)u(yi) u2 (yi)

]
, i ∈ IL,

where Vi is the covariance matrix associated with zi. We
assume the following statistical model for the generation of
the data in the CIPM KC and those reported by the linking
laboratories in the RMO KC:

zi ∼ N(µ, Vi) , i ∈ IL,
xi ∼ N

(
µx, u2 (xi)

)
, i ∈ Ix

(9)

where µ= [µx, µy]
⊤, N(µ,V) denotes the bivariate normal

distribution with mean µ and covariance V, and µy denotes a
value of the measurand in the RMO KC. Defining the differ-
ence between the values of the CIPM- and RMO-KC measur-
ands as η = µx−µy, the estimate of η is the linking invariant
hlink. The definition of η is given so that hlink is consistent with
the linking invariant defined by Decker et al [2].

It should be noted that model (9) is not checked by the value
components of the DoEs specified in section 2.2 because that
is confirmed by the interpretation in section 2.3. Although the
correlation information is not validated in the CIPM KC, we
assume it is reliable, being based on information provided in
carefully checked uncertainty budgets, for example.

The statistical model to be validated using the DoEs spe-
cified in section 2.2 is

yi ∼ N
(
µx− η, u2 (yi)

)
, i ∈ Iy. (10)

Model (10) is regarded as the statistical model suggested by
laboratory i under the assumption of normality. Based on this
statistical model, we investigate the distributions of the d(RMO)

j ,

d(RMO, CIPM)
j,ℓ and d(RMO, RMO)

j,ℓ . Then, the En scores are used for
statistical testing.

3. Linking invariant as a GLS solution

We consider first the best linear unbiased estimators (BLUEs)
of µx and η having the GLS solutions xblue and hblue, respect-
ively, using the data in model (9).

4
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The solution vector for the GLS problem would be

[xblue, hblue]
⊤
= argmin

x,h
f(x,h) ,

f(x,h) =
∑
i∈IL

e⊤i V
−1
i ei +

∑
i∈Ix

(xi − x)2

u2 (xi)
, (11)

where

ei = ei (x,y) = [xi − x, yi + h− x]⊤ . (12)

We do not include in expression (11) a sum involving yj ∈ Iy
because the linking invariant must be determined using only
the most reliable information, namely, that from the labor-
atories in the CIPM KC (including the linking laboratories,
of course). By checking the validity of the statistical model
for yj with j ∈ Iy after determining the linking invariant, we
can avoid the discussion of possible outliers in yj with j ∈ Iy.

In the solution so provided, hblue would be the linking
invariant, as required, and xblue would be a new CIPM KCRV.
More information would have been used by the approach in
determining this new CIPM KCRV (compared with the data
originally used in the CIPM comparison only), which implies
that it could be an improved value. However, despite this
potential benefit, any change to the KCRV would be incon-
sistent with the MRA as emphasized in section 1: the results
from the RMO comparison must be expressed in terms of the
KCRV provided by the CIPM KC.

Accordingly, a solution that preserves the CIPMKCRV xref
can simply be obtained after setting x= xref in expression (11).
By defining hlink as the linking invariant for this purpose, the
problem simplifies as follows:

hlink = argmin
h

g(h) , g(h) =
∑
i∈IL

e⊤i,refV
−1
i ei,ref, (13)

where

ei,ref = ei (xref,y) = [xi − xref, yi + h− xref]
⊤
, (14)

because the difference between f(xref,h) and g(h), namely, the
second sum in expression (11) with x= xref, is independent
of h. It should be noted that although x in expression (11) is
essentially fixed to xref in this formulation, µx in model (9) is
not fixed.

Since, using symmetry,

dg(h)
dh

=
∑
i∈IL

[
0
1

]⊤
V−1
i ei,ref +

∑
i∈IL

e⊤i,refV
−1
i

[
0
1

]
= 2

∑
i∈IL

e⊤i,refV
−1
i

[
0
1

]
,

at the minimum of g,∑
i∈IL

e⊤i,refV
−1
i

[
0
1

]
= 0.

After some algebra, we obtain the following expression:

hlink =− 1
Q

∑
i∈IL

[pi (xi − xref)+ qi (yi − xref)] , (15)

where[
pi
qi

]
= Vi

−1

[
0
1

]
=

1(
1− ρ2i

)
u(xi)u(yi)

[
−ρi
u(xi)/u(yi)

]
(16)

and (also defining P, which is used later)

P=
∑
i∈IL

pi, Q=
∑
i∈IL

qi. (17)

The linking invariant hlink can be expressed as a linear
combination of the uncertain inputs xi and yi as shown
in expressions (15) and (16). In the uncertainty evalu-
ation of hlink, we can hence apply the law of propaga-
tion of uncertainty [14, 17], which would be exact in these
circumstances.

4. Uncertainty component of DOEs

4.1. Unilateral DOEs

The standard uncertainty u(d(RMO)
j ) associated with the value

component d(RMO)
j of the unilateral DoE for non-linking labor-

atory j ∈ Iy in the RMOKC is considered. Since the KCRV xref
and the linking invariant hlink are independent of the reported
value yj, expression (1) and the uncertainty propagation law
[14, clause 5.2] give

u2
(
d(RMO)
j

)
= u2 (yj)+ u2 (hlink)+ u2 (xref)− 2u(xref,hlink) .

(18)

We consider only unilateral DoEs for non-linking laborator-
ies in the RMO KC, since the unilateral DoEs for the linking
laboratories have already been evaluated in the CIPM KC.

The variance u2(hlink) and covariance u(xref,hlink) are

u2 (hlink) =
1
Q

+
(P+Q)2

Q2
u2 (xref) , (19)

u(xref,hlink) =
P+Q
Q

u2 (xref) , (20)

the derivations of which are given in appendix A. Hence,
expressions (18) to (20) give

u2
(
d(RMO)
j

)
= u2 (yj)+

1
Q

+
P2

Q2
u2 (xref) . (21)

5
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The uncertainty component of the unilateral DoE is

U(RMO)
j = ku

(
d(RMO)
j

)
,

where k is the coverage factor equal to 1.96 in this study as a
consequence of the assumed normality and the coverage factor
of 95 %. The En score for laboratory j is computed using

E(RMO)
j =

d(RMO)
j

U(RMO)
j

.

4.2. Bilateral DOEs

The standard uncertainty u(d(RMO, CIPM)
j,ℓ ) associated with the

value component d(RMO, CIPM)
j,ℓ of the bilateral DoE between

the non-linking laboratory j in an RMO KC and laborat-
ory ℓ in a CIPM KC, that is, j ∈ Iy and ℓ ∈ IL ∪ Ix, is con-
sidered. Expression (2) and the uncertainty propagation rule
[14, clause 5.2] give

u2
(
d(RMO, CIPM)
j,ℓ

)
= u2 (yj)+ u2 (hlink)+ u2 (xℓ)

− 2u(xℓ,hlink) . (22)

The standard uncertainty u(hlink) of the linking invariant is
given by expression (19) and the covariance as follows:

u(xℓ,hlink) =
P+Q
Q

u2 (xref) , (23)

the derivation of which is given in appendix A.
For the standard uncertainty associated with the value com-

ponent d(RMO, CIPM)
j,ℓ of the bilateral DoE between the non-

linking laboratories j ∈ Iy in an RMO KC and the laborat-
ories ℓ ∈ IL ∪ Ix in the CIPM KC, the use of expressions (6)
and (21) yields

u2
(
d(RMO, CIPM)
j,ℓ

)
=

[
u2 (yj)+

1
Q

+
P2

Q2
u2 (xref)

]
+
[
u2 (xℓ)− u2 (xref)

]
= u2

(
d(RMO)
j

)
+ u2

(
d(CIPM)
ℓ

)
.

It should be noted that this computation is valid only when the
CIPM KCRV is computed as the WM of the reported values
including xℓ. For a case where xℓ is not used in the computa-
tion, the uncertainty evaluation is given in appendix B.

The standard uncertainty u(d(RMO, RMO)
j,ℓ ) associated with

the value component d(RMO, RMO)
j,ℓ of the bilateral DoE between

the non-linking laboratories j and ℓ in an RMO KC, that is,
for j, ℓ ∈ Iy, is discussed. From expression (3),

d(RMO, RMO)
j,ℓ = yj− yℓ.

Since no correlation between yj and yℓ is assumed, the uncer-
tainty propagation rule [14, clause 5.1] yields

u2
(
d(RMO, RMO)
j,ℓ

)
= u2 (yj)+ u2 (yℓ) .

The uncertainty components of the bilateral DoEs in both
cases are

U (RMO,CIPM)
j,ℓ = ku

(
d(RMO, CIPM)
j,ℓ

)
,

U (RMO,RMO)
j,ℓ = ku

(
d(RMO, RMO)
j,ℓ

)
, (24)

where k is as before. The En scores based on these bilateral
DoEs are formed using

E(RMO,CIPM)
j,ℓ =

d(RMO,CIPM)
j,ℓ

U(RMO,CIPM)
j,ℓ

, E(RMO,RMO)
j,ℓ =

d(RMO,RMO)
j,ℓ

U(RMO,RMO)
j,ℓ

.

(25)

5. Application to a fluid flow RMO comparison

5.1. Computation of linking invariant

We use the data reported in APMP.FF-K4 [10], which is an
RMO KC in the area of fluid flow. Two artefacts were cir-
culated in this comparison with nominal volumes of 20 l
and 100 ml. The data for the artefact with nominal volume of
20 l are employed as the actual example in the present study.
The results of APMP.FF-K4 were linked to those of CCM.FF-
K4 [18]. Two laboratories participating in the comparisons had
been nominated as the linking laboratories.

In CCM.FF-K4, three artefacts with nominal volume 20 l
identified as TS 710-04, TS 710-05 and TS 710-06 were cir-
culated. The WM in expression (4) was used only for the data
for TS 710-06. For TS 710-04 and TS 710-05, another com-
putational method was employed to avoid influence from pos-
sible outliers. The CIPM KCRV was computed as the mean of
the three values. Here, only the data for TS 710-06 are used.
Therefore, it should be noted that the actual analysis cannot
be directly compared to our results. In APMP.FF-K4, only
one artefact was circulated, and the data on it are used in our
analysis.

The reported values and their associated standard uncer-
tainties in both KCs are shown in table 1 and illustrated in
figure 1. For CCM.FF.K4, only the data for TS 710-06 are
shown in the table. Laboratories 1 and 2 are the linking labor-
atories: IL = {1,2}. The values reported by laboratory 1 for
the CCM and the APMP comparisons are correlated due to
a common reference standard and the use of the same instru-
ment. A similar statement can be made for laboratory 2. Both
correlation coefficients ρ1 and ρ2 were assessed as 0.8 in [10].
The laboratory identifiers are not identical to those in the final
report of those KCs.

Eight laboratories participated in CCM.FF-K4. All reported
values were used in the computation of the WM of the data for
TS 710-06, so Ix = {3, . . . ,8}. TheWM for the CIPMKC data
and its associated standard uncertainty are computed as

xref −m0 = 5.670 ml, u(xref) = 0.071 ml,

where m0 = 20 000 ml is the nominal volume.

6
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Table 1. APMP.FF-K4 [10] and CCM.FF-K4 [18] as an example of linking. The linking laboratories are laboratories 1 and 2. For simplicity
of expression, the reported values are offset by the nominal value m0 = 20 000 ml.

CCM.FF-K4 APMP.FF-K4

Lab. i (xi−m0)/ml u(xi)/ml Lab. i (yi−m0)/ml u(yi)/ml

1 5.60 0.17 1 −7.06 0.31
2 5.59 0.22 2 −7.13 0.22

3 5.63 0.36 3 −7.50 0.25
4 5.04 0.37 4 −7.13 0.22
5 5.98 0.31 5 −7.02 0.33
6 5.54 0.20 6 −8.43 1.00
7 5.96 0.14 7 −9.97 0.48
8 5.54 0.15 8 −6.90 1.10

9 −7.67 0.33
10 −6.61 0.33
11 −7.15 0.22

Correlation: ρ1 = ρ2 = 0.8

Figure 1. Reported data in (a) CCM.FF-K4 (the CIPM KC) [18]
and (b) APMP.M.FF-K4 [10] (the RMO KC), as given in table 1.
Vertical bars show the expanded uncertainty for k= 1.96. The
legend in (a) also applies to (b). The y-axis ranges are different but
the scale intervals are identical.

The covariance matrix for z1 is

V1 =

[
u2 (x1) ρ1u(x1)u(y1)

ρ1u(x1)u(y1) u2 (y1)

]
=

[
0.0289 0.0422
0.0422 0.0961

]
ml2.

Thus, using expression (16),[
p1
q1

]
=

[
−42.2
28.9

]
ml−2,[

p2
q2

]
=

[
−45.9
57.4

]
ml−2,

and Q= 86.3 ml−2, using the right-hand expression (17).
Thus, expression (15) yields the linking invariant

hlink =− 1
Q

2∑
i=1

[pi (xi − xref)+ qi (yi− xref)] = 12.700 ml.

We can compare this result with those of previous studies.
Decker et al [2] suggested a linking invariant by using the stat-
istical method proposed by Kharitonov and Chunovkina [4].
In their method, the linking invariant is obtained through the
following computation:

hlink =

[
2∑

i=1

1
u2 (xi− yi)

]−1 2∑
i=1

xi− yi
u2 (xi− yi)

= 12.701 ml.

Moreover, while the linking invariant is not given in the
method proposed by Elster et al [3], it is naturally derived by
comparing expression (1) in the present study with expression
(27) in their paper. For a matrix Λ with (i, j) element Λi,j =

u(d(CIPM)
i − yi, d

(CIPM)
j − yj) for i, j ∈ IL, the linking invariant

is given as

hlink =

([
1
1

]⊤
Λ−1

[
1
1

])−1(
Λ−1

[
1
1

])⊤ [
x1 − y1
x2 − y2

]
= 12.704 ml.

This approach could be interpreted as an extension of the study
given by Sutton [5]. More is shown in appendix C.2.

7
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Table 2. Unilateral degrees of equivalence for non-linking laboratories and En scores computed using the data in table 1.
E(RMO)
j = d(RMO)

j /U(RMO)
j is formed for performance evaluation.

Our proposal

Kharitonov and
Chunovkina

[4]/Decker et al [2] Elster et al [3]/Sutton [5]

Lab. j d(RMO)
j /ml U(RMO)

j /ml E(RMO)
j d(RMO)

j /ml U(RMO)
j /ml d(RMO)

j /ml U(RMO)
j /ml

3 −0.47 0.55 −0.85 −0.47 0.56 −0.47 0.56
4 −0.10 0.50 −0.20 −0.10 0.51 −0.10 0.51
5 0.01 0.69 0.01 0.01 0.70 0.01 0.70
6 −1.40 1.98 −0.71 −1.40 1.98 −1.40 1.98
7 −2.94 0.97 −3.02 −2.94 0.98 −2.94 0.98
8 0.13 2.17 0.06 0.13 2.17 0.13 2.17
9 −0.64 0.69 −0.92 −0.64 0.70 −0.64 0.70
10 0.42 0.69 0.60 0.42 0.70 0.42 0.70
11 −0.12 0.50 −0.24 −0.12 0.51 −0.12 0.51

The differences among these values are insignificant com-
pared to possible statistical errors in this example. The stand-
ard uncertainty u(hlink) associated with hlink is 0.108 ml using
expression (19). However, it is shown that there are differences
between the analysis methods. Section 6 will offer a synthetic
data set to show that these differences can have a serious influ-
ence on the results.

5.2. Computation of DOEs

To exemplify the computation of the DoEs, we again apply the
linking of APMP.M.FF-K4 with a part of the data in CCM.FF-
K4. Specifically, we take the unilateral DoE of laboratory 10
in APMP.M.FF-K4:

d(RMO)
10 = y10 + hlink − xref = 0.42 ml.

Using the computations in section 5.1 and P= p1 + p2 =
−88.1 ml−2,

u
(
d(RMO)
10

)
=

[
u2 (y10)+

1
Q

+
P2

Q2
u2 (xref)

]1/2
= 0.35 ml.

The En score for the performance of laboratory j is
computed as

E(RMO)
j =

d(RMO)
j

U(RMO)
j

.

The En score suggests ‘satisfactory’ when |E(RMO)
j |⩽ 1 as

explained in section 2.3. For laboratory 10,

E(RMO)
10 =

d(RMO)
10

U(RMO)
10

= 0.60.

Table 2 shows all the computed unilateral DoEs for the data in
table 1. Only |E(RMO)

7 | exceeds unity, implying that laboratory
7 reported an extreme value, an extreme uncertainty or both.
The proposed analysis for an RMOKC, however, is unaffected

by the existence of possible outliers from non-linking laborat-
ories, because the linking invariant is determined only using
the data in a CIPM KC and the data from linking laboratories.

For comparison, we show the results from the other meth-
ods mentioned in section 5.1. It is found that almost the same
results are reported by the three approaches. In this example,
strong correlations are considered between the two values of
the linking laboratories, and |d(CIPM)

1 | and |d(CIPM)
2 | are much

smaller thanU(CIPM)
1 andU(CIPM)

2 , respectively. These facts res-
ult in the small difference between the methods employed as
explained in section 6, and a synthetic case where we can find
significant differences is shown there.

As an instance of a bilateral DoE, we focus on the rela-
tionship between laboratory 10 in APMP.M.FF-K4 and labor-
atory 4 in CCM.FF-K4. The value counterpart d(RMO,CIPM)

10,4 of
the bilateral DoE is assessed as

d(RMO,CIPM)
10,4 = d(RMO)

10 − d(CIPM)
4 = 1.05 ml.

The standard uncertainty associated with d(RMO,CIPM)
10,4 is

computed as

u
(
d(RMO,CIPM)
10,4

)
=
[
u2
(
d(RMO)
10

)
+ u2

(
d(CIPM)
4

)]1/2
= 0.51 ml.

For the performance evaluation, the En score,

E(RMO, CIPM)
10,4 =

d(RMO, CIPM)
10,4

ku
(
d(RMO, CIPM)
10,4

) = 1.1

with k= 1.96 is also considered. We see an ‘unsatisfactory’
result in this case. Thus, an ‘unsatisfactory’ performance in a
bilateral DoE can arise even when performances using the uni-
lateral DoEs of the two concerning laboratories are evaluated
to be ‘satisfactory’.

Table 3 shows the bilateral DoEs computed for laboratory
10 in the RMO KC. We find some ‘unsatisfactory’ perform-
ances where |E(RMO,CIPM)

10,ℓ |> 1 or |E(RMO,RMO)
10,ℓ |> 1. Actions to

be taken when such results occur depend on decisions taken

8
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Table 3. Assessed bilateral DoEs involving laboratory 10 in the RMO KC based on the data in table 1, where (R,C) ≡ (RMO,CIPM) and
(R,R) ≡ (RMO,RMO).

CC.FF-K4 APMP.FF-K4

Lab. ℓ d(R,C)10,ℓ /ml U(R,C)
10,ℓ /ml E(R,C)

10,ℓ Lab. ℓ d(R,R)10,ℓ /ml U(R,R)
10,ℓ /ml E(R,R)

10,ℓ

1 0.49 0.76 0.6 1 — — —
2 0.50 0.81 0.6 2 — — —

3 0.46 0.98 0.5 3 0.89 0.81 1.1
4 1.05 0.99 1.1 4 0.52 0.78 0.7
5 0.11 0.91 0.1 5 0.41 0.91 0.4
6 0.55 0.79 0.7 6 1.82 2.06 0.9
7 0.13 0.73 0.2 7 3.36 1.14 2.9
8 0.55 0.74 0.7 8 0.29 2.25 0.1

9 1.06 0.91 1.2
10 — — —
11 0.54 0.78 0.7

by the CC Working Group. It should be noted that the data
in table 1 is taken as a numerical example, and a different
approach was implemented in the actual analyses [10].

6. Demonstration of the proposed method using
synthetic data

No serious difference is found in the linking invariants and
unilateral DoEs by the three approaches for APMP.M.FF-K4
as shown in section 5. In general, these approaches may dif-
fer appreciably depending on the data. In this section, the dif-
ference between methods is shown using a synthetic data set.
Consequently, it can be said that an essential difference can
arise only when the correlations between two values from the
linking laboratories are weak. To explain clearly the reasons
for the difference, a deliberately simple synthetic data set is
used in which the correlation coefficient of the single linking
laboratory is varied.

The synthetic example is given in table 4 and figure 2. It
is assumed that five laboratories participate in the CIPM KC.
Laboratory 1 is the only linking laboratory. The correlation
coefficient is varied from 0 to 1. The assumed CIPM KC data
are shown in figure 2(a). The CIPM KCRV xref is given as
the WM, −0.65, of x1, . . . ,x5 with u(xref) = 0.35.

The data for the synthetic example in table 4 relate to (a)
the CIPM KC and (b) the RMO KC in figure 2. The results
obtained are portrayed in figure 2 as (c) the linking invari-
ant hlink and (d) the En score E

(RMO)
2 .

It should be noted that when there is only a single linking
laboratory, the linking invariant given by Decker’s method [2]
and that derived through Elster’s method [3] are identical. We
cannot find any differences either in the set of assessed DoEs
with these two methods. We refer to this identical approach as
the reference method in this section.

We focus on only a single non-linking laboratory in an
RMOKC for simplicity of discussion.When assessing the uni-
lateral DoE of a laboratory, data from non-linking laboratories
other than the concerned laboratory have no effect. Therefore,
there is no need to consider multiple non-linking laboratories

Table 4. Data employed in the simulation in section 6. The only
linking laboratory is laboratory 1.

CIPM KC RMO KC

Lab. xi u(xi) Lab. yi u(yi)

1 0.0 0.5 1 0.0 0.5

2 −1.3 1.0 2 1.9 1.0
3 −1.3 1.0
4 −1.3 1.0
5 −1.3 1.0

to characterize a unilateral DoE. The assumed RMO KC data
are shown in figure 2(b).

The linking invariant hlink is a function of ρ1 in our proposal.
Figure 2(c) shows the variation of hlink. It is found that in the
reference method, hlink is a constant, because

hlink = x1 − y1

is given independently of the magnitude of ρ1.3 We can hence
find the difference between these two linking invariants, with
the difference at a maximumwhen ρ1 = 0 in the interval [0, 1].

Using our proposal when ρ1 = 0, expression (15) simply
gives

hlink =− 1
q1

[p1 (x1 − xref)+ q1 (y1 − xref)] = xref − y1.

It is thus found that

d(RMO)
2 = y2 + hlink − xref = y2 − y1.

In the case of using the reference method when ρ1 = 0,

d(RMO)
2 = y2 + hlink − xref = y2 − [y1 − (x1 − xref)] .

In other words, with our proposal, the amount to be compared
with y2 is given as y1. With the reference method, the value y1

3 hlink is not a constant with respect to ρi for i ∈ IL when there are multiple
linking laboratories.

9
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Figure 2. Data for the synthetic example in table 4 for (a) the CIPM
KC and (b) the RMO KC, and results obtained for (c) the linking
invariant hlink and (d) the En score E

(RMO)
2 . The legends in (a) and

(c) apply also to (b) and (d), respectively.

in our proposal is compensated by the difference between x1
and xref. This difference is evaluated as insignificant in the
CIPM KC in accordance with section 2.3, because

∣∣∣E(CIPM)
1

∣∣∣=
∣∣∣d(CIPM)

1

∣∣∣
U(CIPM)

1

=
0.65
0.69

= 0.9< 1.

In our proposal, the difference x1 − xref is neglected because no
common bias in x1 and y1 is suggested through the information
ρ1 = 0. In the statistical testing concept shown in section 2.3,
the purpose of the CIPM KC is to validate that the hidden
bias is zero. When no significant bias is found for laborat-
ory 1 in the CIPM KC and no correlation suggested, the zero
bias may naturally reflect the qualitative conclusion obtained
through the CIPM KC. In the reference method, the common
bias is suggested evenwhen no correlation is assumed. In other
words, the distribution of the quantity for which y1 is a realiza-
tion has a mean to be estimated by the insignificant bias. Thus,
we can find the conceptual and statistical difference between
two methods.

This difference in the linking invariant can have practical
effect in performance evaluation. For ρ1 = 0, the proposed
method gives

d(RMO)
2 = 1.9, U(RMO)

2 = 2.2,

E(RMO)
2 =

d(RMO)
2

U(RMO)
2

= 0.9.

The reference method gives

d(RMO)
2 = 2.6, U(RMO)

2 = 2.3,

E(RMO)
2 =

d(RMO)
2

U(RMO)
2

= 1.1.

That |E(RMO)
2 | is less than unity for the proposed method and

greater than unity for the reference method may have signific-
ance in terms of any decisions made. Figure 2(d) shows the
variation of E(RMO)

2 as a function of ρ1. Not only at ρ1 = 0
but for ρ1 ⩽ 0.4, the above discrepancy between the analysis
methods arises.

The larger ρ1 is, the smaller are the differences in the link-
ing invariant and E(RMO)

2 between the twomethods.When ρ1 =
1, the unilateral DoEs given by the two methods are mutu-
ally consistent. The reason for the consistency is that expres-
sion (15) yields

hlink → x1 − y1,

when ρ1 → 1. The value of hlink is obtained using
p1/q1 =−ρ1u(y1)/u(x1) =−ρ1 →−1 for ρ1 → 1. This result
means that the compensation given for the reference method
is similarly applied for our proposal. The difference from the
case of ρ1 = 0 is that the common bias in x1 and y1 is implied
through the correlation information provided by the linking
laboratory. It can be said that our proposal gives minimal
compensations based on the reliability of the uncertainty and
correlation information provided by the linking laboratories.
In contrast, the reference method may compensate biases as
much as possible whenever the data support it.

In bothmethods, since hlink has no uncertainty when ρ1 = 1,
the unilateral DoE is[
d(RMO)
2 ,U(RMO)

2

]
=
[
y2 + x1 − y1 − xref, k

√
u2(y2)+ u2(xref)

]
.

The uncertainty component of the unilateral DoE is determ-
ined to be smaller than that for the case of no correlation. In
general, since using the correlation information can make the
analysis more precise, the correlation informationmust be spe-
cified reliably.

The advantages of the proposed method and the reference
method can be summarized as follows:

1. The presently proposed method compensates insignificant
biases in a CIPM KC only when the possible biases are
implied in the correlation information.

2. The reference method compensates insignificant biases in
a CIPM KC even when the possible biases are not implied
in the given information.

Since the methods have different features, the CC should
choose an analysis method in accordance with its intention
to implement an RMO KC. When linking laboratories report
smaller uncertainties than non-linking laboratories in an RMO
or the number of linking laboratories is large, the difference
between these two methods can be marginal.

10
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7. Summary

A statistical testing procedure is developed to analyze an RMO
KC with linking to the corresponding CIPM KC. A statistical
model in which biases are not considered is employed. This
model can be implemented to check whether a bias exists stat-
istically in a reported value. To determine a parameter of the
linking invariant, we use the GLS method under the condition
that the CIPM KCRV is fixed.

The proposed method generally gives different unilateral
and bilateral DoEs from those assessed by other available
methods. Compared to the other methods, our proposal has
the advantage that insignificant biases found in a CIPM KC
are compensated only when the possible biases are implied
in the correlation information. In other words, our proposal
is based on the reliability of the uncertainty and correlation
information given by the linking laboratories. Since decisions
are made on the basis of calculated DoEs, a conclusion is that
it is valuable to have adequate knowledge of the properties
of available linking methods for analyzing the results from an
RMO KC.
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Appendix A. Determination of elements in
uncertainty evaluations

A.1. Covariances between reported values and the CIPM
KCRV

The derivation of u(xi,xref) and u(yi,xref) for i ∈ IL is given.
For this purpose, we use the exclusive WM xex,i for laboratory
i, that is, the WM after excluding laboratory i’s data, and the
associated standard uncertainty u(xex,i), given by

xex,i = u2 (xex,i)
∑

j∈IL∪Ix\i

xj
u2 (xj)

,

u2 (xex,i) =
∑

j∈IL∪Ix\i

1
u2 (xj)

.

As a consequence, using expressions (4), we can write

xref = u2 (xref)
∑

j∈IL∪Ix\i

xj
u2 (xj)

+ u2 (xref)
xi

u2 (xi)

= u2 (xref)
xex,i

u2 (xex,i)
+ u2 (xref)

xi
u2 (xi)

.

Using this result, by defining

zi,ref =

 xref
xi
yi

, Ci,ref =

 u2 (xref)/u2 (xex,i)
u2 (xref)/u2 (xi) 1

1

,
(26)

we have

zi,ref = C⊤
i,ref

 xex,i
xi
yi

.
Applying the rule for propagating covariances [17, clause 6.2],
the covariance matrix associated with zi,ref is

Vi,ref =
[
u2 (xref) v⊤i,ref
vi,ref Vi

]
= C⊤

i,ref

[
u2 (xex,i)

Vi

]
Ci,ref.

In particular, after explicitly evaluating this product,

vi,ref =
[
u(xi,xref)
u(yi,xref)

]
=

 1

ρi
u(yi)
u(xi)

u2 (xref) . (27)

A.2. Relationship between concerned variables

The expression for vi,ref is used to express the covariance mat-
rix for

s⊤link = [x1 y1 . . . xL yL xref xL+1] .

Vlink denotes the covariance matrix for slink given by

Vlink =


V1 v1,ref

. . .
...

VL vL,ref
v⊤1,ref · · · v⊤L,ref u2 (xref) u2 (xref)

u2 (xref) u2 (xL+1)

, (28)

because u(xL+1,xref) = u2(xref) since u(xi,xref) = u2(xref) for
i ∈ IL as in expression (27). This result also extends to
u(xi,xref) by replacing xL+1 by xi, for i ∈ Ix, in expression (28).

Define

t⊤link = [xref x1 xL+1 hlink] .

The relationship between tlink and slink is given as follows:

tlink = C⊤
linkslink = [c1,link c2,link c3,link c4,link]

⊤ slink,

where

c⊤1,link = [0 . . . 0 1 0] ,

c⊤2,link = [1 0 . . . 0] ,

c⊤3,link = [0 . . . 0 1] ,

c⊤4,link =− 1
Q
[p1 q1 . . . pL qL − (P+Q) 0] .

11
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A.3. Covariance between the CIPM KCRV and the linking
invariant

The rule for propagating covariances [17, clause 6.2] indicates
that the covariance between the ith and the jth element in tlink is

c⊤i,linkVlinkcj,link.

For example, the covariance between xref and hlink is given as

u(xref,hlink) = c⊤1,linkVlinkc⊤4,link.

This relationship results in expression (20).

A.4. Covariance between the reported values in the CIPM
KC and the linking invariant

The covariance between x1 and hlink is given as

u(x1,hlink) = c⊤2,linkVlinkc4,link

=− 1
Q

[
1
0

]⊤
V1

[
p1
q1

]
+
P+Q
Q

u2 (xref) .

Since [
1
0

]⊤
V1

[
p1
q1

]
=

[
1
0

]⊤
V1V

−1
1

[
0
1

]
= 0,

we obtain

u(x1,hlink) =
P+Q
Q

u2 (xref) . (29)

Moreover, we obtain the covariance u(xL+1,hlink) as

u(xL+1,hlink) = c⊤3,linkVlinkc4,link =
P+Q
Q

u2 (xref) . (30)

Expressions (29) and (30) can be generalized without any
changes in their right sides for the cases of xi for i ∈ IL and
i ∈ Ix, respectively. Thus, expression (23) is obtained.

A.5. Variance of the linking invariant

The variance of hlink is

u2 (hlink) = c⊤4,linkVlinkc4,link.

Following some algebra, paying regard to symmetry we obtain

u2 (hlink) =
1
Q2

∑
j∈IL

[pj qj] Vj

[
pj
qj

]
− 2

P+Q
Q2

∑
j∈IL

v⊤j,ref

[
pj
qj

]

+
(P+Q)2

Q2
u2 (xref) .

Now, using expressions (16), (17) and (27),

[pj qj] Vj

[
pj
qj

]
= qj, v⊤j,ref

[
pj
qj

]
= 0.

Hence, expression (19) is obtained.

Appendix B. Bilateral degree of equivalence with
the values unused in the computation of the
reference value

In the body of the paper, we assume that all reported values in
the CIPMKC are used in the computation of the CIPMKCRV,
which is the WM of those values. However, in practice, values
regarded as outliers by the CC Working Group are not used
in the computation. In this section, we show the evaluation of
the bilateral DoE between a laboratory reporting one of the
outliers in the CIPM KC and an RMO KC participant.

The reported value from the laboratory participating in the
CIPMKC is denoted by xℓ. The variance of the unilateral DoE
d(CIPM)
ℓ = xℓ − xref is not given by expression (6) but by

u2
(
d(CIPM)
j

)
= u2 (xj)+ u2 (xref) . (31)

The value component of the bilateral DOEs is given by
formula (2). To derive the uncertainty component, while for-
mula (22) always holds, formula (23) does not apply when xℓ
is not used in the computation of the KCRV. Instead,

u(xℓ,hlink) = 0 (32)

because xℓ is not used in the assessment of hlink.
Expressions (19), (22), (31) and (32) give

u2
(
d(RMO, CIPM)
j,ℓ

)
= u2 (yj)+

[
1
Q

+
(P+Q)2

Q2
u2 (xref)

]
+ u2 (xℓ)

=

[
u2 (yj)+

1
Q

+
P2

Q2
u2 (xref)

]
+
[
u2 (xℓ)+ u2 (xref)

]
+ 2

P
Q
u2 (xref)

= u2
(
d(RMO)
j

)
+ u2

(
d(CIPM)
ℓ

)
+ 2

P
Q
u2 (xref) .

U(RMO,CIPM)
j,ℓ and E(RMO,CIPM)

j,ℓ are computed by applying formu-
lae (24) and (25) using the obtained standard uncertainty.

Appendix C. Unilateral degree of equivalence as an
estimated bias

C.1. Bias estimation approach in a single CIPM KC

It is sometimes considered that the value component d(CIPM)
i of

a unilateral DoE in expressions (5) is an estimate of the bias
for laboratory i. Based on that concept, White [6] developed
the model in which biases ∆i are assumed as follows:

xi ∼ N
(
µx+∆i,u

2 (xi)
)

for all i ∈ IL ∪ Ix. (33)

To obtain estimates of∆i, a constraint is needed since there are
only m data (x1, . . . ,xm) and m+ 1 quantities (∆1, . . . ,∆m,µx)
to be estimated. One possible constraint [6] is
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m∑
i=1

∆i

u2 (xi)
= 0. (34)

White [6] gives expression (5) with variance (6) as least-
squares solutionswith usingmodel (33) and (34). Several stud-
ies previously used this concept [19].

C.2. Extension of the bias estimating approach to an RMO
KC

The model of expression (33) may be extended to the analysis
of an RMO KC as follows:

zi ∼ N
(
[µx+∆i, µy+∆i ]

⊤
, Vi

)
, i ∈ IL,

xi ∼ N
(
µx+∆i, u

2 (xi)
)
, i ∈ Ix,

yi ∼ N
(
µy+∆(RMO)

i , u2 (yi)
)
, i ∈ Iy, (35)

with constraint (34). The term ∆(RMO)
i is the bias for laborat-

ory i in the RMO KC, while ∆i is that for laboratory i in the
CIPM KC, which can be a linking laboratory. To handle the
linking invariant explicitly, µx− η is employed in expression
(10) instead of µy in expression (35). As far as we are aware,
there has been no publication in which model (35) with con-
straint (34) is straightforwardly employed. However, there are
some studies in which an equivalent model is employed.

Sutton [5] proposed a statistical model with explicit biases.
The model is generally given and details are not specifically
suggested in his paper. We developed the details in the pro-
posed model on the assumption used in this study, and derive
the model that is equivalent to

zi ∼ N
(
[µx+∆i,µy+∆i ]

⊤
, Vi
)
, i ∈ IL,

yj ∼ N
(
µy+∆(RMO)

i , u2 (yi)
)
, i ∈ Iy,

xref ∼ N
(
µx,u

2 (xref)
)
,

the covariances u(xi,xref) and u(yi,xref) being given by expres-
sion (27). In [5], a constant as large as the CIPM KCRV
is defined as K, and the distributions of xi−K and K− xref
are considered rather than xi and xref (if our understanding
is correct). Specifically, K− xref ∼ N(K−µx,u2(xref)) is con-
sidered. Giving the distributions of xi and xref is however stat-
istically equivalent to giving those of xi−K and K− xref.

The analysis with this statistical model can be consequently
identical to that with the model with expression (35) with the
constraint with expression (34), when the WM is employed as
the CIPM KCRV. If we apply model (33) and take the WM as
the CIPMKCRV xref, the distribution of xref has the population
mean of (

m∑
i=1

1
u2 (xi)

)−1( m∑
i=1

∆i

u2 (xi)

)
+µx.

When expression (34) is used as a constraint, the mean is
given as µx. Thus, expression (34) is implicitly applied in this
method.

Moreover, the unilateral DoE d(RMO)
i derived as the GLS

estimate of∆(RMO)
i based on the model of expression (35) and

the bilateral DoEs obtained through expressions (2) and (3)
are identical to those suggested by Elster et al [3] when the
CIPM KCRV is given as the WM in expression (4). Although
those authors developed the procedure in the absence of a spe-
cific model, we interpret their study as corresponding to that
developed that by Sutton [5] and clarifying somemathematical
expressions in it.

It should be noted that through the bias estimation method
explained in this appendix, the re-estimation of µx is imple-
mented, which can be interpreted as the re-determination of
the KCRV purposely avoided in our proposal in the main
manuscript.
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