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ARTICLE INFO ABSTRACT

Handling Editor: Marti Nadal The purpose of this study was to identify a characteristic elemental tyre fingerprint that can be utilised in at-
mospheric source apportionment calculations. Currently zinc is widely used as a single element tracer to quantify
tyre wear, however several authors have highlighted issues with this approach. To overcome this, tyre rubber
T%re tread was digested and has been analysed for 25 elements by ICP-MS to generate a multielement profile.
Tire wear . Additionally, to estimate the percentage of the tyre made up of inert fillers, thermogravimetric analysis was
Elemental analysis . .
Source profiles p.e'rformed on a subset. Comparisons were made‘ between passenger car and heavy 'goods vehicle tyre compo-
ICP-MS sition, and a subset of tyres had both tread and sidewall sampled for further comparison. 19 of the 25 elements
were detected in the analysis. The mean mass fraction of zinc detected was 11.17 g/kg, consistent with previous
estimates of 1% of the tyre mass. Aluminium, iron, and magnesium were found to be the next most abundant
elements. Only one source profile for tyre wear exists in both the US and EU air pollution species profile da-
tabases, highlighting the need for more recent data with better coverage of tyre makes and models. This study
provides data on new tyres which are currently operating on-road in Europe and is therefore relevant for ongoing
atmospheric studies assessing the levels of tyre wear particles in urban areas.
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1. Introduction

Tyre rubber has a chemically complex makeup designed to maximise
its performance and reliability. It is comprised primarily of rubbers
including natural rubber (NR), polyisoprene rubber, polybutadiene
rubber (PB), and styrene-butadiene rubber (SBR). Other ingredients
include vulcanisation agents and accelerators, fillers, and antioxidants
(Sommer et al., 2018; Williams and Besler, 1995). Understanding the
chemical and elemental composition of tyre rubber is a challenge, as the
composition varies due to the specific make, model and purpose of the
tyre and the highly proprietary nature of tyre formulations (Hicks et al.,
2021).

Car tyres typically contain around 75% SBR, 10%-25% PB and
0-15% NR, as summarised in Table 1. In contrast, heavy goods vehicle
(HGV) tyres typically contain 10% SBR, 10% PB and around 80% NR

(Camatini et al., 2001). The difference in composition is due to the
different required service conditions (higher load, longer service life,
different lateral forces) that truck tyres must endure (Barbin, 2018;
Lepine et al., 2022). Sulphur, selenium, and tellurium are used as
vulcanisation agents and represent approximately 1-2% of the mass of
both HGV and car tyres (Harrison et al., 2012; Hicks et al., 2021). These
compounds are added to elastomers in 3-4 parts per hundred parts of
rubber (Camatini et al., 2001; Grigoratos and Martini, 2014). Pb, Mg,
Zn, some sulphur compounds, and calcium oxides are added as vulca-
nisation accelerators. Several metals are used as catalysts to convert
butadiene into polybutadiene rubber, and commonly include Nd, Co, Ni,
Ti, and Li (International Institute of Synthetic Rubber Products Inc,
2012; Rackaitis and Graves, 2017). Other trace metals may be detected
in tyre rubber as contaminants of crude oil derived synthetic rubbers
(Grigoratos and Martini, 2014; Kocher et al., 2010; Kreider et al., 2010).

Abbreviations: ICP-MS, Inductively coupled plasma mass spectrometry; NR, Natural rubber; SBR, Styrene-butadiene rubber; PB, Polybutadiene rubber; HGV,
Heavy goods vehicle; PAH, Polycyclic aromatic hydrocarbon; TGA, Thermogravimetric analysis; sPLS-DA, Sparse partial least squares-discriminant analysis; NTP,

National Toxicology Program; PM, Particulate Matter.
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Table 1
Generic tyre compound examples, in parts per hundred rubber (phr).

Car Tread (phr) Heavy duty Sidewall (phr)

Natural Rubber 60
SBR 75

Polybutadiene 25 40
Carbon black 75 60
Zinc oxide 3.0 3.0
Process oil 40 5.0
Sulphur 2.0 3.0

adapted from Barbin, 2018

Tyre rubber, either stored as end-of-life tyres or recycled into rubber
products has been linked to metal and polycyclic aromatic hydrocarbons
(PAH) runoff into the environment, so an understanding of the metal
content of tyres is vitally important to monitor and quantify environ-
mental contributions from tyre wear emissions (Adachi and Tainosho,
2004; Legret and Pagotto, 1999; Mantecca et al., 2009; Rogge et al.,
1993; Sadiq et al., 1989; Sieber et al., 2020).

Approximately 1.3 million tonnes of tyre wear are released into the
environment in Europe each year (Wagner et al., 2018). Previous work
has identified several potential tracer elements that have been proposed
to distinguish and quantify tyre rubber particles in complex environ-
mental particulate matter (PM) samples. Elements identified previously
include As, Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mo, Na, Ni, Pb, S, Sb, Se, Si, Te,
Ti, and V, with Zn being the most frequently used (Grigoratos and
Martini, 2014; Klockner et al., 2019; Kocher et al., 2010). However, no
consensus has been reached on which of these metals are the most
suitable or reliable tracers as there are sources of all these elements in
the environment (Fussell et al., 2022; Grigoratos and Martini, 2014;
Klockner et al., 2019). Without a tracer specific to tyres, there is a
fundamental gap in knowledge required by source apportionment,
health, and environmental sectors. Authors such as Klockner et al.,
(2019) suggest that using a single element marker for tyre wear may
only be suitable if a method for removing the environmental matrix
components can be developed. Hicks et al. (2021) used zinc as a single
element tracer with a scaling factor of 50 to quantify tyre rubber, and
with this scaling factor found atmospheric tyre wear concentrations in
London to be approximately 1 pg/m3. Tyre wear emissions are projected
to increase steadily over the next ten years. According to UK data sub-
mitted to the United Nations Convention on Long-range Transboundary
Air Pollution, non-exhaust emissions (combined brake, tyre and resus-
pended road wear) are expected to rise to nine kilotonnes by 2030, while
exhaust emissions continue to decrease (Convention on Long-range
Transboundary Air Pollution, n.d.). To address this, we present a
comprehensive analysis of tyre rubber to identify tyre wear tracers to fill
the knowledge gap. Elemental tracers have been selected, despite
organic alternatives being available (Golmann et al., 2021), as it allows
for the use of x-ray fluorescence detectors, that are already used in the
air quality monitoring network (Hicks et al., 2021). Scanning electron
microscopy with energy dispersive X-ray spectroscopy methods have
been developed and validated with machine learning to identify tyre
wear particles based on elemental composition, however, these too are
not able to integrate with already existing metal infrastructure (Jarlskog
et al., 2022a, 2022b).

2. Materials and methods
2.1. Tyre rubber samples

Samples of tyre tread and sidewall were collected from car and
HGVs. Tyre tread samples were collected as tyre vent spews, which are
the small hair-like protrusions found on the tyre surface as air escapes
the mould during tyre moulding. Vent spews were removed from the
tyre tread of new, undriven tyres using a clean ceramic blade and stored
prior to analysis. Tyre sidewall samples were also vent spews, but taken
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from the side of the tyre surface.

Samples from 60 car tyres were provided by Emissions Analytics
(High Wycombe, United Kingdom). 22 tyres had both their tread and
sidewall sampled for comparison. A further 3 tyres had samples of the
tread taken using a ceramic knife in-house to give a total of 63 car tread
samples, and 22 car sidewall samples.

12 HGV tyres were sampled at the University of Witswatersrand as
part of a Centre for Sustainable Road Freight collaboration. Nine HGV
samples were tyre vent spews, with the remainder being shavings taken
off of the tyre tread surface. An additional HGV tyre was sampled in
house. All samples were cut to the correct mass for digestion using a
ceramic knife, if required. A full list of tyres sampled is available as
Table A1, and a representative image of the samples as Figure B1.

2.2. Digestion method

Tyre samples of 5-50 mg were cut into small (~1 mm) sized pieces
and digested to liberate the elements for analysis as soluble nitrates from
the rubber using a MARS 6 Microwave Digestion System (CEM, Buck-
ingham, UK) with iWave temperature control and MARSXpress vessels.
9 ml of concentrated (70%) nitric acid suitable for trace element analysis
(225711, 99.9999% impurity free, Sigma-Aldrich, Gillingham, UK) and
1 ml of 30% hydrogen peroxide suitable for trace element analysis
(95321, Sigma-Aldrich, Gillingham, UK) were used as digestion mixture,
following a method recommended by the manufacturer. In brief, sam-
ples were digested at 220 °C for 20 min. After digestion, samples were
made up to 50 ml in a volumetric flask using inductively coupled plasma
mass spectrometry (ICP-MS) grade water and diluted for analysis as
appropriate. A full digestion method is available as Appendix B.1.

2.3. ICP-MS analysis

Analyses were conducted using an inductively coupled plasma mass
spectrometer (Perkin Elmer Nexion 350D quadrupole-based ICP-MS).
Calibration standards for the 25 elements of interest were decided based
on literature review and prepared as external calibration solutions using
a commercially available standard (109487, Merck Millipore, Gilling-
ham, United Kingdom), two single element high purity standards
(50334 and 18021, Sigma-Aldrich, Gillingham, United Kingdom) and a
custom high purity standard (Agilent Technologies, Cheadle, United
Kingdom). The ICP-MS internal standards were 103Rh, 1151 and 185Re,
and an independently prepared quality control standard (SPS-SW2, LGC
Standards, United Kingdom) was analysed 3-6 times throughout the run
to ensure calibration precision. Raw intensities were internal standard
corrected and blank subtracted.

2.4. Uncertainty analysis

An uncertainty analysis for the ICP-MS measurement, including the
digestion method, was performed by the National Physical Laboratory.
Measurement equations were derived for the method (Appendix C), and
from these an uncertainty budget was developed. The uncertainty
budget and associated uncertainty for each step of the analysis is
available in Appendix D. The measurement uncertainty was calculated
using an approach adapted from Brown et al., (2010) and derived in
accordance with the Guide to the expression of uncertainty in mea-
surement (Joint Committee for Guides in Metrology, 2008). The result of
the uncertainty calculation, which uses example data taken from a
typical tyre analysis, is a relative expanded uncertainty for the method
of 12.6%. The expanded uncertainty is based on a standard uncertainty
multiplied by a coverage factor, k = 2, providing a coverage probability
of approximately 95%.

2.5. Thermogravimetric analysis

The concentration of rubber polymers, carbon black and inert
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material was estimated in car tyre rubber tread using thermogravimetric
analysis (TGA). Five tyres were selected at random, three from the
Performance/High End manufactueres, and two from the “mid-range”
manufacturers. The TGA method was adapted from ASTM Standard Test
Method D6370 — 99. In brief, 5 mg of tyre vent spew was cut into 1 mm
lengths for analysis. Samples were heated from room temperature to
600 °C in a nitrogen atmosphere at 10 °C per minute to break down the
organic components (rubber polymers, oils, plasticizers, and antioxi-
dants). The atmosphere was then switched to air where the mass lost is
due to carbon black. Any remaining mass (ash) is due to tyre fillers. If the
tyre sample contains CaCO3 or AI(OH)3(3H20), these will be lost during
the heating cycle (ASTM International, 2019).

2.6. Statistical analysis

GraphPad Prism 9.4.0 was used to summarise and graph the data,
including calculating means and standard deviations and perform sta-
tistical analyses. A Sparse Partial Least Squares Discriminant Analysis
(sPLS-DA) was performed in RStudio (Version 2022.07.0 + 548) using
MixOmics package (version 6.20.0) (Rohart et al., 2017). The sPLS-DA
was tuned to optimise number of components, number of variables
and prediction distance. Correlation analysis was also performed in
RStudio, using Psych package to generate a correlation matrix.

3. Results
3.1. Metallic composition of tyre rubber

Results of car tread rubber analysis are summarised in Fig. 3-1, and
Table E2. The combined results for car and HGV tyres are shown in
Table E1. B, Cr, Mo, P, Tl, and W were all not detected above the limit of
detection, calculated from 3*c where o is the standard deviation of the
blanks. As expected, Zn is the most abundant element, followed by Al,
Fe, Mg, Ti, Cu, and Ba. Table E2 compares the results of car and HGV
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tyre analysis with five key previous studies. Overall, the mean values are
comparable to what has been reported in the literature (Kocher et al.,
2010; Kreider et al., 2010), with a few exceptions (Kennedy and Gadd,
2003; National Toxicology Program, 2019). Al, Fe and Mg levels were all
detected at much higher concentrations compared to Kennedy and
Gadd’s work in 2003, but where lower than results obtained by the
National Toxicology Programme in 2019 (Kennedy and Gadd, 2003;
National Toxicology Program, 2019). Al and Co concentrations agree
well with the literature, except for the experiment conducted as part of
the National Toxicology Program’s Research Report (National Toxi-
cology Program, 2019). This may be explained by the much larger
sample size in this present study and by different digestion methods
(although no details are provided by the NTP for comparison). Con-
centrations differ from the Kennedy and Gadd (2003) report commis-
sioned for the New Zealand Ministry of Transport, for almost every
element shared between the two experiments. Kennedy and Gadd
(2003) and Kocher et al., (2010) use a dry ashing method to prepare
their tyre samples for dissolution in acid, rather than using a microwave
assisted method as other studies have done (Klockner et al., 2019;
Kreider et al., 2010; Kennedy and Gadd, 2003).

There were differences in abundance of elements in rubber tread
between HGV and car tyres. Mn, Fe, Co, Rb, Sb, and Ba were all
significantly (p < 0.05) increased in HGV tyres compared to car tyres, as
shown in Fig. 3-2. Differences between truck and car tyres are relevant
due to the different compositions the tyres have to cope with required
service conditions (Barbin, 2018). Literature on specific manufacturing
differences and in particular elemental composition of car compared to
HGYV tyres is scarce, however it is well understood that HGV tyres must
be designed to withstand the higher loads and lateral forces that these
tyres experience, and to maximise service life compared to cars (Lepine
et al., 2022). In Kennedy and Gadd’s (2003) study of tyre elemental
composition two “truck” tyres were included, one from a light truck, the
other from an HGV. While the authors conducted no statistical analysis
of the differences between the two tyre types their data shows that Al,

Car Tyre Analysis
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Fig. 3-1. Summary of car tyre tread rubber analysis results, N = 63. The elements analysed are shown at the X-axis, and the mean concentration with standard

deviation on the Y-axis (mg/kg of dry sample).
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Fig. 3-2. Car (green, solid, N = 63) and HGV (grey, patterned, N = 13) tread
rubber metal composition analysis. The elements analysed are shown at the X-
axis and the mean concentration is on the Y-axis with standard deviation bars
(mg/kg of dry sample). Significant differences between car and HGV compo-
sition were tested for using an unpaired t-test, with individual variance
computed for each comparison using Holm-$idék’s multiple comparisons test (*
p < 0.05, ** p < 0.01, *** p < 0.001). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of
this article.)

Mn, Fe, Zn, and Pb were all enriched in truck/HGV tyres, but contrary to
our results, they saw that Ba levels were reduced. Having data for both
HGV and car tyres allows for a different source profile to be developed
for each vehicle type. While there is no significant increase in Zn con-
centration, differences in Mn, Fe, Rb and Ba could be used to distinguish
levels of tyre wear attributable to each vehicle.

3.2. Tread surface and Sidewall comparison

22 car tyres had both the tread surface and sidewall sampled to test if
there were differences in the formulation between the sites and the re-
sults are shown in Fig. 3-3. Significant differences were observed in Mg,
V, Ni, Zn, As, Rb, Sb, Ba, La and Pb concentrations. To the best of our
knowledge, this is the first time that the elemental composition of tyre
tread has been compared to sidewall. Tyre polymer composition is
specifically tailored to the requirements for each part of the tyre. Tyre
tread is designed to have “maximum resistance to abrasion, tear,
cracking, chipping, heat build-up, and aging” according to Georgia and
Mayeau (1963); while the sidewall composition is important for traction
and handling influencing, along with inflation, radial and lateral stiff-
ness (Ridha and Theves, 1994).

Table 1, adapted from Barbin (2018), summarises generic tyre rub-
ber compositions, comparing additives to tread rubber vs sidewall rub-
ber. A requirement for rubber with a higher tensile strength may explain
the higher levels of zinc observed in sidewall rubber in this experiment

I Tread
E Sidewall

Conc (mg/kg)

2 a9 N O L0 2 2 .00
Pe®® §9, 9893 oV i

qyéQ,ﬂ © Q«'\ %\49;3 “9 @Q“@. od @\S\@G‘) @1}\@

Fig. 3-3. Tread (blue, solid, N = 22) vs sidewall (brown, patterned, N = 22)
metallic composition. The elements analysed are shown at the X-axis and the
concentration is on the Y-axis with standard deviation (mg/kg of dry sample).
Significant differences between the tread and sidewall composition were tested
for using a Ratio paired t-test per row, with individual ranks computed for each
comparison using Holm-Sid4k’s multiple comparisons test. (* p < 0.05, ** p <
0.01, *** p < 0.001). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Environment International 178 (2023) 108047

(Mostoni et al., 2019). Magnesium is also significantly enriched in
sidewall rubber, which too may be explained using magnesium oxide
(MgO) as vulcanisation cure activator, acid neutralising agent and
crosslinker (Akrochem, n.d.; Roy et al., 2015).

3.3. sPLS-DA

A sparse partial least squares-discriminant analysis (SPLS-DA) was
employed to distinguish manufacturers based on their elemental
composition by reducing the number of variables, shown as Fig. 3-4. The
sPLS-DA was tuned using MixOmics v6.20.0 to include four components,
with 5, 6, 10 and 10 variables for each component respectively. The aim
of the sPLS-DA analysis is to maximise the covariance between
elemental composition and manufacture (Le Cao et al., 2019). A 3D
representation of the sPLS-DA is included as Fig. F1, and the variable and
contribution plots available as Fig. F2 A-C. The sPLS-DA shows poor
separation of the datapoints on the score plot. From this we concluded
that there was little variance in elemental composition between manu-
facturers included in this study. The manufacturers range from high-end,
industrial leaders to budget manufacturers. The analysis shown here
agrees with the PCA analysis performed by Sjodin et al. (2010) who also
saw no grouping with the PCA performed on their data. In conjunction
with this dataset, it is concluded that there is no statistical difference in
manufacturers, thus making differentiation by manufacturer in ambient
environments unsubstantiated due to the range each tyre manufacturer
covers across both x-variants.

There was some separation of Manufacturer L, which was driven by
Mg concentration based off the variable plot, shown in Fig. F2A.
Manufacturer L tyres were found to have significantly (p < 0.05) higher
magnesium concentrations than three of the manufacturers tested,
Manufacturer H, Manufacturer M and Manufacturer Q as shown in
Fig. 3-5. The notable exception is Manufacturer N, a budget brand
manufactured in China that is not a subsidiary of Manufacturer L, who
also had high levels of magnesium. Manufacturers with fewer than one
tyre sampled were not included in the sPLS-DA but were included in
Fig. 3-5 for illustration.

Magnesium is used both as a filler and as a curing agent for elasto-
mers. The increased concentration of Mg may be the result of manu-
facturers L and N replacing carbon black or other fillers with magnesium
(Akrochem, n.d.; Hebei Meishen Technology Co., Ltd, 2020).

sPLS-DA Tyre Rubber

2.5-

Legend

Manufactuer C
Manufactuer E
Manufactuer F
Manufactuer H
Manufactuer K
Manufactuer L
= Manufactuer M
* Manufactuer Q
* Manufactuer R

X-variate 2: 20% expl. var

2 0 2 1
X-variate 1: 10% expl. var

Fig. 3-4. sPLS-DA of tyre rubber samples. Manufacturers are grouped by
symbol and circled in their respective colour. X-variate 1 explains 10% of the
variance of the data, while 20% is explained by X-variate 2. Only manufacturers
with more than one tyre included in the study were included in the sPLS-
DA analysis.
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Magnesium Concentration by Manufacturer 3.4. Correlation analysis
1000~

To identify elements that may be suitable as tracers for tyre wear in

complex PM samples, a Spearman’s correlation analysis was performed

T 8007 for all elements using the results from the car tread rubber analysis. The
% - results are shown as a Scatter PLot Of Matrices (SPLOM) diagram as
a 6004 Fig. 3-6. Correlation coefficients for each pair of elements are shown on
.E' the top right, with their associated p-value. Histograms and density plots
2 are shown along with the element symbol along the diagonal. The bot-
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bottom diagonal. Concentrations in ppb are displayed along the edge of the plot. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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elements and are summarised as Table 2. The most highly correlated
pair was Ni and Cu, with a Spearman’s r of 0.77 and mean ratio of 0.84.
An ideal tracer would be correlated highly to Zn, as Zn is the most
abundant element in tyres. Sb and Ni were the two highest correlations
with Zn, with ratios of 168,409 and 1374.6, respectively. A correlation
matrix for HGV tyre tread is included as Fig. G1.

Significant negative correlations to Al were also observed. Sb, Ni,
and Zn were all inversely correlated with Al with ry values equal to
—0.70, —0.69 and —0.66 respectively. Kennedy and Gadd (2003) re-
ported correlations between metals detected in tyre rubber, however
they only reported positive correlations and summarised the correlation
p-value rather than providing correlation coefficients. Aluminium
powder has been shown to decrease vulcanisation time of thick rubber
materials and lead to improvements in their longevity, which may
explain the strong negative correlation with zinc — by incorporating
aluminium you reduce the need for vulcanisation accelerators (Vinod
et al., 2001).

Contrary to previous work, there was no strong correlation between
zinc and cadmium (r; = 0.37) shown for any of the analysed samples
(David and Williams, 1975; Kennedy and Gadd, 2003). David and Wil-
liams (1975) stated that the low cadmium levels in their tyres was due to
the efficacy of the zinc oxide purification process. In the nearly 50 years
since the David and Williams study, Zn, S, and Cd refining has improved
and this may contribute to low levels of cadmium being detected, and no
strong correlation with zinc (Fthenakis, 2004). The ten highest Spear-
man’s r values and associated mean ratios as summarised in Table 2.

3.5. Comparison of tyre composition and tyre Performance

Comparisons were made between elemental composition and tyre
metadata (tyre width, aspect ratio, diameter, load opacity and max
speed). The only finding was a non-significant increase in aluminium
concentration as wet gripping improves from C to A, as shown in Fig. 3-
7. One aluminium concentration was excluded as an outlier, being over
two orders of magnitude higher than other samples. A 2001 patent by
Sumitomo Rubber Ind Ltd claimed that increasing amounts of
aluminium hydroxide added to polymer formulation improved wet grip
performance (Kikuchi et al., 2001). A later patent by the same company,
however, stated that this increased aluminium hydroxide reduced
abrasion resistance, and this resulted in reduced mileage and a shorter
tyre lifespan (Miyazaki, 2019). Despite the purported reduction in tyre
lifespan, we observed a trend of increased aluminium concentration

Aluminium concentration
by Wet Grip Rating - Car Tyres
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Fig. 3-7. Mean aluminium concentration with standard deviation shown for
car tyres compared to wet grip rating found on EU standard tyre label. Number
of samples shown above standard deviation. Wet grip ratings are calculated by
braking from 80 km/h to 20 km/h in wet conditions according to Regulation
(EU), 2020 on the labelling of tyres with respect to fuel efficiency and other
parameters. ‘A’ is the shortest stopping distance in wet conditions, ‘E’ is the
longest. No tyres with wet grip rating ‘D’ or ‘E’ were included in the dataset.
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with improved wet grip rating, but no significant difference was found.

This finding demonstrates how certain chemical species are added to
tyres to optimise their performance characteristics. Trends for other
elements, in particular those associated with polymer catalysis, may not
be as clearly seen due to there being several possible compounds that a
manufacturer could include. For example, Nd, Co, Ni, Ti, and Li are all
used as catalysts for the polymerisation of butadiene rubber (Interna-
tional Institute of Synthetic Rubber Products Inc, 2012, Rackaitis and
Graves, 2017).

3.6. Thermogravimetric analysis

To determine the percentage of inorganic fillers by mass, tread from
five tyres were analysed by thermogravimetric analysis (TGA) following
a method adapted from the Standard Test Method D6370 — 99. Fig. 3-8
shows the TGA analysis for five manufacturers. The first change in mass
represents loss of rubber components and polymers, the second change
in mass, under air, is loss of the carbon black filler as described by
Standard Test Method D6370 — 99 (ASTM International, 2019). What
remains are the inorganic fillers, including silica, titanium dioxide and
zinc oxide (Barbin, 2018; Kreider et al., 2010).

Percentage mass remaining ranged from 45.6% — 28.3% with a
mean of 35.8%. Manufacturer H (brown) had the highest mass
remaining after TGA, and very little mass change associated with carbon
black, which suggests that an inert filler such as silica is being used
instead of carbon black. Manufacturer O (turquoise) had the highest
concentration of carbon black of the five tyres tested, with 11% mass
being lost after switching from a nitrogen environment to air. By
contrast, Manufacturer L had the lowest mass change when the TGA
environment was switched to air. Manufacturer L had a statistically
higher magnesium concentration than Manufacturers E, H, O and R, as
described earlier in Fig. 3-5. The TGA analysis combined with ICP-MS
may suggest that Manufacturer L is using MgO as a filler rather than
carbon black. The two tyres with the highest concentrations of carbon
black are from “mid-range” cost manufactures (Manufacturer O and R),
whereas the “premium” tyre manufacturers had a higher portion of inert
filler and lower concentration of carbon black (Manufacturer E, H and
L). Silica fillers are more challenging to incorporate into the rubber
formulation but have been shown to improve the performance of the
tyre. Al-Hartomy et al., (2015) and Bertora et al., (2011) report that wet
gripping is improved, and fuel consumption is reduced when silica is
used as a reinforcing filler. The tyres from Manufacturers E, H and L
were all wet grip class “A” tyres, with short stopping distances, while
tyres from Manufacturers O and R were class “B” tyres.

4. Discussion

Table 3 summarises some of the sources and functions of each of the
seven most abundant elements detected in this experiment. A current
understanding of the composition of tyre rubber is essential if we are to
accurately quantify the amount of tyre wear in the atmosphere. Using
elemental tracers allows for this measurement using already established
infrastructure, despite the challenges highlighted by Fussell et al.,
(2022), Klockner et al., (2019) and Grigoratos and Martini, (2014). A
multielement tyre fingerprint allows for subtraction of the contributions
of the roadside derived particulate matter through positive matrix fac-
torisation (PMF) or through solving a chemical mass balance (CMB)
equation similar to work by Font et al., (2022). In the development of a
tyre tracer, understanding the differences or similarities in concentra-
tions may be important in selecting the elements to include or exclude
from a source profile. While profiles currently exist for several aspects of
the tyre industry such as volatile gasses during tyre production, or PM
from tyre burning, there is no tyre PM profile included in the US EPA’s
SPECIATE air pollution profile database (Simon et al., 2010). There is a
source profile for tyre wear included in the EU’s SPECIEUROPE source
profile database (Pernigotti et al., 2016), but this profile is based on the



D.P. O’Loughlin et al.

— Manufacturer E
Manufacturer H
Manufacturer L
Manufacturer O

— Manufacturer R

N
'
20 :
RT-600°C in Ny i 600-800°C in Air

0 260 460 660 860
Temperature (°C)

Environment International 178 (2023) 108047

[ Rubbers and Polymers
[ Carbon Black
O Ash remaining

58.7%
52.6%

59.9%
60.5%
63.9%

1.9%
401 4.2 = 7% b 5o
8%l 7.8%

X 2 ® X
207 | < ) < ~ @
N~ v oo} (2] [ee]
c [ae] < [ar) N N
& & & LS
& § R & £
& & ¢ o &
& d N & &
oo‘) &> ,,;~‘° &> >
N N4 & N4 «

Fig. 3-8. A: TGA thermogram showing temperature vs percentage total weight by manufacturer. B: Bar chart summarising weight associated with tyre components
(Rubbers and Polymers, Carbon Black and Ash Remaining). As temperature increases, mass is lost due to liberation of tyre rubber components. Temperature was
ramped at 10 °C/min, from room temperature to 600 °C in Ny, then from 600 to 800 °C in air.

Table 3
Possible sources of abundant elements detected in tyre rubber.

Element Source/Function

Zinc Vulcanisation activator/accelerator, promoting rubber crosslink
formation (Grigoratos and Martini, 2014)

Iron Component of steel belts in tyre structure (Barbin, 2018)

Aluminium hydroxide may be added to tyres to increase their grip in

wet or wintery conditions; however, this has been shown to reduce the

life of the tyre through reduced abrasion resistance (Kikuchi et al.,

2001; Miyazaki, 2019). Aluminium powder has also been used to

reduce the vulcanisation time for thick rubber composites (Vinod

et al., 2001).

Magnesium oxide is added to tyres as a vulcanisation accelerator and

has been added to rubber since the 1840s. It is more commonly used

today as a curing agent and to neutralise acids in polychloroprene and

other elastomers, as well as being a filler, and giving the rubber fire,

wear, and corrosion resistant properties (Akrochem, n.d.; Hebei

Meishen Technology Co., Ltd, 2020).

Steel cords used in tyre manufacture are coated with a layer of brass to

improve adhesion between the rubber and the metal (Barbin, 2018;

Paulthangam et al., 2022).

Titanium (along with cobalt, nickel, and chromium) are used as

catalysts in the conversion of 1,3-butadiene to polybutadiene rubber (

Rackaitis and Graves, 2017).

Barium is added to other rubber products as a filler and for its acid

resistant properties (Barbin, 2018; Vijayaram, 2009). Barium

products, barite and Blanc Fixe (BaSO,) are advertised as improving

“aging resistance and weatherability” of tyres (9X Minerals LLC, 2021;

XiMi, N.D.)

Aluminium

Magnesium

Copper

Titanium

Barium

WEAREM Wear particles from road traffic report and includes just eight
elements. Their data is drawn from a sample of 70% studded and 30%
non-studded tyres, and analysed tyre wear particles generated in a
simulator (Sjodin et al., 2010). This current data is more appropriate for
air quality source profiles, as they are taken from pure rubber samples,
allowing for quantification of rubber contribution without being diluted
by road or stud wear. When fed into appropriate source apportionment
calculations, these data have the potential to enable researchers to
quantify tyre wear in complex air pollution samples. Similar ICP-MS
analysis has been conducted on a sample of mixed brake dust (Selley
et al., 2020), however further work is needed to develop a compre-
hensive source profile for brake and road surface wear.

Further analysis of light goods vehicle, bus and HGV tyres is required
to further explore the possibility of having a unique multielement source
profile for these vehicle types. Particularly relevant in cities with
restricted car traffic (for example, cities with congestion charges), the
ability to attribute the amount of tyre wear to vehicle type would allow
for targeted regulation of rubber emissions to reduce total rubber in
urban atmospheres. While less relevant for air quality, the elemental
composition of the entire tyre is important for environmental moni-
toring. End of life tyres have many recyclable applications, and previous

studies have already demonstrated how metals associated with recycled
tyre rubber material can leach into aquatic environments. Zinc levels
were significantly enriched in sidewall rubber compared to tread,
highlighting the risk posed by zinc leaching from end-of-life tyres
(Baensch-Baltruschat et al., 2020; Parker-Jurd et al., 2021; Rhodes et al.,
2012; Wik and Dave, 2009).

The relative expanded uncertainty for the method was derived to be
12.6%. This figure was calculated for the entire method including acid
digestion. Although no studies have calculated measurement uncer-
tainty specifically for tyre analysis, the value of 12.6% is comparable to
other expanded uncertainty estimates made for ICP-MS methods (7.7%
to 13.6% for metals in drinking water, (Tanase et al., 2015), and allows
for individual results to be reported with the expanded uncertainty of
the method.

This study presents the most recent and comprehensive analysis of
tyre rubber, to provide a source profile that can be used to identify and
quantify tyre rubber emissions. There is not enough variation in
elemental composition to be able to reliably distinguish between man-
ufacturers using the elements included in this research, despite TGA
analysis showing a range of mass remaining between 28.3% — 45.6%.
However, significant differences for certain elements were found for
passenger car and HGV, and tread and sidewall comparisons, which may
enable tyre wear emissions to be associated with these sources. The next
steps for these data are inclusion in a source profile that can be utilised
by atmospheric monitoring teams.The composition of tyre wear parti-
cles generated from real world or simulated driving conditions should be
compared to the pure tyre studies to understand how the composition is
diluted from road contributions, and this work is underway (Klockner
et al., 2019; Kreider et al., 2010). Additionally, the in vitro toxicity of
these particles need to be further assessed, (Fussell et al., 2022) and a
detailed understanding of tyre composition may allow for identification
of components driving toxicity.
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