
1.  Introduction
The term “representation uncertainty” is used in the Earth sciences to describe an uncertainty that occurs at the 
comparison interface of two different representations of the same physical quantity, although each sub-commu-
nity has its own ways of characterizing and evaluating these quantities (Bulgin et al., 2016; Janjić et al., 2018). 
Uncertainty, as defined by the International Vocabulary of Metrology (VIM) (Joint Committee for Guides in 
Metrology JCGM, 2012) is a measure of the dispersion of the possible values that could be assigned to a meas-
ured quantity. Measurement error is the difference between the measured value and the true or reference value, 
and is unknown. Historically the terms “error” and “uncertainty” have mistakenly been used interchangeably and 
the need to establish a clear vocabulary to avoid confusion has been advocated in several recent publications (e.g., 
Merchant et al., 2017; Loew et al., 2017; Mittaz et al., 2019.) and throughout the workshop. Where not explicitly 
stated, VIM definitions have been used throughout this paper.

The first Joint Workshop on Representation Uncertainty in the Earth Sciences was held online from 23rd to 25th 
March 2021, sponsored by the National Centre for Earth Observation. This discussion-based workshop was open 
to scientists working in the fields of Earth observation (EO), data assimilation (DA), forecast verification and 
post-processing (FVPP), and metrology. The workshop was attended by 72 participants from a range of institu-
tions including universities, the Met Office, the European Center for Medium Wave Forecasting, the UK national 
metrology institute and the National Oceanic and Atmospheric Administration. The workshop was designed to 
maximize discussion time, beginning with short presentations on where representation uncertainty might occur 
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Plain Language Summary  This paper describes a workshop which brought together experts from 
different Earth science disciplines to discuss and attempt to define the term “representation uncertainty”. We 
make observations of the Earth using satellites, ground based instruments (such as weather stations), air and 
sea-borne sensors. These observations are used in their own right, and also by computer models to generate 
weather forecasts. The observations themselves are imperfect and we quantify these imperfections using the 
term “uncertainty”. In this paper we discuss the uncertainty that occurs when we compare two different sets 
of observations, two different models, observations and models, or where there are differences in underlying 
assumptions. As well as the uncertainties inherent in models and observations, there is also an uncertainty due 
to the fact that the two things being compared are not representing a phenomenon in exactly the same way. For 
example, a satellite observation may represent an average value over a few hundred square meters, while an 
instrument on the surface measures only at a single point (typically one-square-meter or less), and the model 
represents an area of several square kilometres. Understanding those differences is essential to be able to 
properly combine different sets of observations, and observations with models.
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within the Earth sciences and introducing the field of metrology, which underpins the science of uncertainty. 
Discussion groups were held first within each discipline, and then across the different disciplines, posing the 
questions “Where are we now (in the context of understanding and quantifying representation uncertainty)?” 
and “What could we do going forward?” Science talks and poster contributions were made, showcasing ongoing 
research toward quantifying representation uncertainty. The workshop concluded with a panel discussion summa-
rizing the key outcomes identified within each discipline. The workshop promoted consistent use of terminology 
across all disciplines to facilitate discussion.

2.  Workshop Outcomes
2.1.  Defining Representation Uncertainty

One of the main challenges of the meeting was to find a definition of representation uncertainty that was widely 
applicable across the disciplines represented at the workshop. The “working definition” was regularly revisited 
throughout the meeting and during the concluding panel discussion, the following definition was proposed:

“Representation uncertainty is associated with a comparison of two quantities (that are themselves uncer-
tain). This representation uncertainty occurs only at the comparison interface.”

Representation uncertainty is recognised as a wider term that includes many different sources of uncertainty, each 
of which is often described by a more specific term (for example, sampling uncertainty). This broad definition, 
examples of which are shown in Figure 1, should be applicable across all disciplines, as it allows the detail of how 
representation uncertainty arises to be different for each comparison, which we acknowledge is often complex.

2.2.  Metrology and Uncertainty in Earth Science Applications

Metrology ensures international consistency and century-long stability of measurements for both science and 
trade by providing traceability to the International System of Units, the SI. More recently, metrologists have also 
started to apply the principles of metrological traceability to provide confidence in data derived from modeling. 
Metrological traceability is built on two core concepts: uncertainty analysis, defined by the Guide to the Expres-
sion of Uncertainty in Measurement (the GUM;  JCGM 100:2008), and comparisons, formalized to validate 
uncertainty assessments. Metrologists have worked with the EO community for several decades but have had 
limited interactions with the DA and FVPP communities.

The Earth sciences often have data value chains, where one community's output becomes another community's 
input. Each stage of the chain, whether based on instruments or modeling, can be described by a “measurement 
model” that combines quantities from the previous stage's output, and new quantities introduced in this process-
ing step. Additionally, there will be assumptions inherent in the form of the model which Mittaz et al. (2019) 
described as the “plus zero uncertainty”, written by including a 𝐴𝐴 + 0 into an equation form of the measurement 
model.

Thus there are two types of uncertainty associated with a value calculated by (or processed through) a “measure-
ment model”. First, the propagated uncertainty comes from the input quantities, through the GUM methods, to 
an uncertainty associated with the calculated value. This describes the dispersion of probable values around the 
measured (or processed) value that can be reasonably attributed to the target quantity. Then there is the uncer-
tainty associated with the extent to which the measurand defined by the model represents the quantity of interest 
– the 𝐴𝐴 + 0 term. This could include, but is not limited to, representation uncertainty.

2.3.  Current Status Within Each Research Discipline

In this section we include some examples of where representation uncertainty occurs within the different disci-
plines and relate these back to the definition given in Section 2.1, using the shorthand notation (“a”) (“b”) (“c”) 
and (“d”) to refer to the four example types of representation uncertainty as defined in Figure 1. It should be 
noted that these types are not always mutually exclusive and a given comparison may include more than one of 
the examples we provide for illustration.
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2.3.1.  Earth Observation (Remotely Sensed and In-Situ)

EO includes both in-situ and remote sensing measurements. There are “plus zero uncertainties” identified in EO 
data production that represent a conceptual comparison between the evaluated quantity and the desired quan-
tity (“d”), or a definitional difference between what users want and what data producers can provide (“d”). 
Representation uncertainty may arise at the comparison interface between two datasets, for example, ground-
based and satellite observations (“b” and/or “c”), where representation uncertainty arises both from making 
small-to-large area average comparisons, and because in-situ data are typically sparse; hence error statistics 
from comparisons with satellite data are not necessarily globally representative (despite a global distribution of 
observations). Error statistics may also mask data complexity (“d”, Povey and Grainger, 2019). Representation 
uncertainty is also inherent in the extent to which the measured variable matches the target geophysical quantity, 
either due to imperfections in the measurement equation or user requirements that do not match the “measure-
ment model” (“d”, Stier, 2016).

Considering in-situ measurements (observations performed at the location of the phenomenon), representation 
uncertainty often occurs when a continuous data field in time or space is inferred from discrete measurements. 
This uncertainty may change temporally as sampling capacity for global measurements increases (Good, 2016). 
When filling data gaps to provide spatially complete data fields, representation uncertainty can be introduced 

Figure 1.  Schematic detailing examples of the comparison interface at which representation uncertainty occurs. At this interface, the quantity 𝐴𝐴 𝐴𝐴 is the result of a 
comparison of observed or modeled quantities, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 . These quantities are transformed through the functions 𝐴𝐴 𝐴𝐴 (𝑥𝑥) and 𝐴𝐴 𝐴𝐴(𝑦𝑦) to bring them to the comparison interface. 
The comparison is performed as some function of the difference between the transformed quantities, producing the result 𝐴𝐴 𝐴𝐴 = ℎ(𝑓𝑓 (𝑥𝑥) − 𝑔𝑔(𝑦𝑦)) . Both 𝐴𝐴 𝐴𝐴 (𝑥𝑥) and 𝐴𝐴 𝐴𝐴(𝑦𝑦) have 
associated uncertainty and at the point of comparison, there is also the representation uncertainty, identified with the uncertainty on 𝐴𝐴 𝐴𝐴 at the comparison interface. The 
details of the representation uncertainty are specific to a given comparison, and may arise from (a) comparison of an observation to a geophysical model equivalent, 
(b) comparison of an observation to a coarser resolution dataset, (c) comparison of two realizations of the same physical quantity or (d) a definitional difference 
(which could be a comparison of a measured or modeled dataset to a conceptual, more complete dataset or the difference between what users would like and what data 
producers can provide). The schematics within each box provide just a single example of the possible comparisons.
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both by the choice of interpolation method (Dodd et al., 2015) and by the extent to which the available data 
represent areas that are not observed. This is commonly referred to as sampling uncertainty, but falls under the 
umbrella term of representation uncertainty. Work presented at the workshop highlighted the challenges for data 
producers in providing an uncertainty budget where the appropriate representation uncertainty has a dependence 
on how the user wants to use the data: point measurements, spatial or temporal averages, anomalies or trends.

In remote sensing data, representation uncertainty can occur as a result of instrument sampling (“d”), and grid-
ding data (“d” or “b”). For some data streams, a sub-sample of the full resolution satellite data is passed to the 
ground receiving station introducing sampling uncertainties in the Level 1 (radiance) data (Belward et al., 1994). 
Representation uncertainty is also common at Level 3 (gridded products) when regularly gridding clear-sky 
only data; these products will include a sampling uncertainty when compared to all-sky observations (Bulgin 
et al., 2016). Further sources of representation uncertainty are associated with Level 4 products involving data 
composites from different instruments with different satellite overpass times (“c”) (Good et al., 2020).

2.3.2.  Data Assimilation

Data assimilation is the process by which observations are combined with model data, weighted by their respec-
tive uncertainties and accounting for physical constraints, in order to provide an optimized estimate of the 
modeled state. Often the observations represent different variables from those modeled, so the model space 
must be mapped into observation space using an observation operator. There are two main comparison interfaces 
where representation uncertainty may arise: comparison of an observation with its model counterpart (“a”), and, 
if a processed form of an observation (e.g., a retrieval, super observation, or wind derived from cloud motion) 
is assimilated, the comparison of this processed observation to the conceptual perfectly processed observation 
(“d”). Note that the value of the conceptual perfectly processed observation is unlikely to be known since this 
would require the processing chain, for example, the calculation of a retrieval, to be perfectly known and to intro-
duce no additional uncertainty (Janjić et al., 2018).

There are two main contributors to representation uncertainty at the observation-model interface (“a”). First is the 
error due to unresolved scales and processes, which arises when the observations represent different spatial and 
temporal scales than those of the assimilating model. Second is the observation operator error arising when the 
observation operator is approximated either to reduce computational complexity and cost or because of unknown 
parameters and processes. At the interface between the observation and its processed form (“d”), representation 
uncertainty will arise due to the errors introduced and propagated through the processing chain. Observations 
may also be subject to quality control procedures; inaccuracy or occasional failure of these can be an additional 
source of uncertainty.

Representation uncertainty is most commonly accounted for in DA through including the representation error 
covariance matrix, F, along with instrument error covariance matrix, E, in the observation error covariance 
matrix, R = E + F. For this reason, methods to estimate the full R matrix, where the measurement error covari-
ance matrix is known, have been commonly used to isolate representation uncertainty (Desroziers et al. (2005); 
Hollingsworth and Lönnberg (1986)). Alternatively, individual sources of representation uncertainty can be esti-
mated from the error statistics of a comparison between two values: for example, either two representations 
of a variable or using two observation operators with differing levels of approximation (Saunders et al., 2018; 
Schutgens et al., 2016; Waller et al., 2021). Although it is most common for the representation uncertainty to be 
included in R, work presented at the workshop showed that other methods exist that account for uncertainties 
via updates in small-scale background uncertainties and model uncertainties (e.g., Bell et al., 2020; Janjić and 
Cohn,  2006). These approaches highlight the difficulty in separating representation uncertainties from other 
types of uncertainty inherent in the DA process.

2.3.3.  Forecast Verification and Post-Processing

Forecast post-processing attempts to correct, combine and exploit the information contained within existing fore-
casts to produce optimal products for dissemination to the public and other customers. The related field of fore-
cast verification quantifies the success of a forecast by comparing its predictions to observations independent of 
those predictions. Both of these fields rely on the comparison of quantities at different spatial and temporal scales, 
and hence will have representation uncertainties associated with various steps in the processing chain. In addi-
tion, post-processing must often provide outputs at different scales depending on the user requirements (“d”). We 
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note that there are many similarities between the representation uncertainty that arises in DA and FVPP, though 
they may require different treatment since the two fields have different purposes.

As discussed in the workshop, the representation uncertainty related to the difference between observations based 
on different sampling (“a”) is an important topic in FVPP; scale mismatch uncertainties can occur due to sub-grid 
variability that is not modeled. A new probabilistic post-processing system incorporating verification, the Inte-
grated Model post-PROcessing and VERification (Met Office, 2019), considers this representation uncertainty. 
Roberts et al. (pers. comm.) have demonstrated the importance of accounting for local topography when produc-
ing forecasts. Topography may not be well represented in a relatively coarse model, but accounting for this in the 
post-processing step can improve forecast skill. Adjusting the rate of change of temperature with height can also 
provide better agreement between locally observed and regionally averaged (modeled) values especially in areas 
with high relief. Ben Bouallegue et al., 2020 used a statistical parameterization to quantify the representation 
uncertainty related to the difference between locally observed and regionally averaged values. The results can be 
used in ensemble verification and to represent sub-grid variability that is not present in the model.

A further example of representation uncertainty in FVPP relates to differences in the spatial position between 
observations of local weather phenomena and the forecast equivalent. This is in distinction to scale mismatch 
uncertainties; a meteorological feature (e.g., a cloud) could be modeled to extremely high precision but be located 
in the incorrect position (“c”, as these are two different realizations of the same physical quantity). This is miti-
gated in FVPP by using neighborhood methods and forecast ensembles.

2.4.  Existing Collaborations Between Disciplines

The Earth sciences are multidisciplinary, with one community's output often being another community's input. 
While different communities perform their own uncertainty analysis (to differing levels of formality), uncertain-
ties may not be fully transferred and representation uncertainty generated at a comparison interface, may not be 
fully considered. Projects such as GAIA-CLIM have attempted to address these gaps by bringing the EO, DA 
and metrology communities together. Some of the residual-based methods commonly used in DA have begun 
to be used by the EO community. For example, Merchant et al.  (2020) applied the diagnostics of Desroziers 
et al. (2005), along with additional bias correction, to estimate error covariance parameters for SST retrievals.

Another example is the combination of several EO products (remote sensing and/or in-situ) to quantify uncer-
tainties in the Earth's energy and water cycles with inverse modeling methods (L’Ecuyer et al., 2015; Rodell 
et al., 2015; Thomas et al., 2020). The outputs of the inverse modeling procedure can potentially be used to eval-
uate the accuracy of Global Climate Model products, providing an opportunity to collaborate with the modeling 
community. For this evaluation to be effective, the uncertainties, including any representation uncertainties, must 
be accurately determined.

3.  Future Opportunities for Collaboration and Community Requirements
One barrier to effective collaboration on uncertainty in the Earth sciences is communication, particularly where 
similar words take different meanings in different groups. Integrating metrologists into this multidisciplinary 
community can help to bridge this gap, clarifying vocabulary and the distinction between terms such as “error” 
and “uncertainty” (Mittaz et al., 2019). Regular communication on the definition, sources, quantification and 
mitigation of representation uncertainty will lead to more efficient transfer of information, better inventory 
of uncertainty (by considering other perspectives) and more traceability. Ideally the various communities will 
formulate a common language that can be used consistently in published papers. We can draw parallels with the 
adoption of the notation in Ide et al., 1997 by the DA community.

It was identified in the workshop that collaboration between the DA and FVPP communities could be beneficial, 
using statistical methods such as the Desroziers et al. (2005) diagnostics to account for temporal uncertainties in 
FVPP. These uncertainties are important given the serial correlation present in many atmospheric and oceanic 
phenomena. Furthermore, the acquisition of crowdsourced data (or in-situ measurement) to provide a “ground 
truth” for forecast verification was discussed. Such data are also of interest to the DA community but in order to 
properly estimate their uncertainty and use these data effectively, extensive quality control and validation would 
be required. Another example is the use of dynamical-model-dependent propagation of uncertainties for daily 
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satellite products. The ability to apply different methods to a single scenario would provide multiple estimates of 
representation uncertainty and could help provide confidence in those estimates.

The workshop has begun information dissemination between the participants, who represented several Earth 
science disciplines, and future workshops could benefit from inclusion of model developers/validators, instru-
ment manufacturers, and space agencies. Model developers understand which scales and processes are poorly 
represented by models and may be able to aid quantification of representation uncertainties that are large during 
DA. Instrument manufacturers could also create common methods for documenting instrument calibration and 
data processing procedures to optimize data use including uncertainties, where commercial sensitivities allow.

4.  Recommendations
We encourage all the communities represented at the workshop to continue to work toward a mutually agreed 
understanding of representation uncertainty, starting with the definition presented in this paper, and acknowl-
edging in many cases more specialized terms will be used to characterize the individual component source(s) 
of uncertainty. Many of the discussions in the workshop highlighted the need to continue this conversation in a 
multidisciplinary format, perhaps facilitated by regular workshops, expanded to include other relevant commu-
nities. In continuing this conversation, the development of a consistent vocabulary on uncertainties that is rele-
vant to the Earth science community is essential. Such a vocabulary would be supported by metrologists to aid 
communication and underpin future discussions and collaborations. A cross-community paper developing the 
ideas outlined in this white paper could be the first target for such future collaboration and could define both a 
formal vocabulary and make specific recommendations for collaborative research. As funding is often a barrier to 
inter-disciplinary research, the establishment of a community awareness of projects where representation uncer-
tainty issues may be addressed would be beneficial and “sandpit events” (where scientists work together in a 
focused way to answer a specific challenge) may also be useful to foster in-depth consideration of inter-discipli-
nary knowledge transfer on representation uncertainty.
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