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Keyword

Definition

Canny operator

Edge detection algorithm used to find the
edges in input images

Edge Image Image consisting of only the edges of the
shapes featured in the original image

Layer A bounded region found in the edge image

Max Pixel A pixel with maximum intensity value (255)

Min / Max image

An image with pixel intensities precisely 0 or
255.

Neighbouring Matrix

A 3x3 square of pixels taken around any
edge pixel P, which can then be analysed to
determine which layers pixel P belongs to
(Section 2.2.4)

Zero background

An image where the background has
intensity value of zero

Zero Pixel

A pixel with an intensity value of zero

Abbreviations

The following abbreviations are used in this document.

CDF — Cumulative Distribution Function

LHS — Latin Hypercube Sampling (Type of MCM)

MCM — Monte Carlo Method

N (4, o) — Normal distribution, with mean y and standard deviation o

U(x,y) — Uniform distribution between x and y
ROI — Region Of Interest

RS — Random Sampling (Type of MCM)
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1 INTRODUCTION

Uncertainty quantification in measurements is incredibly important in any scientific field and
allows for reliable comparisons and conclusions to be made about the acquired data. In
many areas of modern scientific research, images are typically the primary method of
scientific measurement; from nanoscale electron microscopy to astronomical images
captured by the James Webb Space Telescope. Uncertainties associated with images,
however, are commonly ignored or incorrectly calculated due to their highly complex nature.

Measurements in images are often used to make informed decisions about the experiment
but without associated uncertainties there can be no reliable comparison between
measurements, or comparisons made to a standard. This work was aimed at quantifying
some uncertainties associated with image processing and considered what effect this will
have on the conclusions of the image analysis. This report focuses on one aspect of image
processing commonly used in analysis: the Canny operator edge detection method [11].

An example which highlights the importance of robust Uncertainty Quantification (UQ) is in
medical imaging. When imaging tumours, the measured area of the tumour can be crucial to
determine treatment and patient lifespan. Quantifying the uncertainty of the area of this
tumour would improve the likelihood of using the correct treatment (e.g., use of lumpectomy
versus mastectomy [1]) and save money and lives in doing so [1].

The chosen method of UQ in this work is the propagation of uncertainties through a Monte
Carlo approach. Typically, image analysis can be computationally expensive due to high
resolution (large number of pixels) of modern images. Additional computational cost comes
from the Monte Carlo (MC) approach adopted here, which requires repeated calculations for
a given measurement model (in this work, the measurement model is the Canny operator
[11]). A solution to this is using a pseudo-random sampling method (rather than a
rudimentary random sampling method) such as Latin hypercube which allows for much fewer
calculations without the loss of output accuracy [3]. Fewer iterations means that computation
time is reduced, and hence larger images can be processed more easily.

This report is structured as follows: the methodology for quantifying uncertainties of areas of
features within images is given in Section 2 — describing the edge detection method and
uncertainty propagation process. Section 3 describes the uncertainty propagation process
and makes a comparison between the two sampling methods used here — Random Sampling
(RS) and Latin Hypercube Sampling (LHS). Section 4 provides some examples of the LHS
sampling method, which is the preferred sampling method due to its speed over larger
samples [3]. Section 5 outlines the limitations of the algorithm and methods of improvements
and Section 6 provides concluding remarks.

Page 1 of 27
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Figure 1: Flow chart demonstrating the method discussed in the report.
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2 METHODOLOGY

This work is centred on creating and testing an uncertainty-aware Canny operator edge
detection method. The proposed method is summarised in Figure 1, which shows the
workflow for the tool, which outlining the edge-detection method, metric calculation, and
uncertainty propagation approach employed here. In this section, a summary of each step in
the uncertainty aware Canny operator algorithm is given.

2.1 CANNY OPERATOR EDGE DETECTION

This work uses a Canny operator to detect edges in grayscale images due to its speed,
simplicity to implement, and commonality for general use. There are five steps in the Canny
operator edge detection algorithm: Gaussian blur, Sobel filters, non-maxima suppression,
thresholding, and hysteresis. The following sections describe each step in the Canny
operator.

2.1.1 Gaussian blur

This first step in the operator transforms the original image by introducing a Gaussian blur,
making the edges in the image less sharp, which is necessary to control detail and suppress
noise. This is implemented by first creating a transformation matrix G(x, y) calculated by

_X24y? 1)

2
e 205

Gx,y) =

)

2
2mog,

where o is the standard deviation of the Gaussian distribution, and x and y are matrices of
distances from the origin of the kernel. The transformation matrix is applied to the original
image, I, using a simple convolution

lg(xy) =1(xy) * Gxy), 2)

where I,(x,y) is the new Gaussian-blurred image. An example of this function can be seen in
Figure 2.

a ) b ) 175
150
125
100
75
50
25
0

Figure 2. Example of Gaussian Blur on an image (a) original image, (b) Gaussian blurred image
with kernel size 11 and standard deviation, a5 = 3.

2.1.2 Sobelfilters

After applying the G matrix transformation to the image, the tool then uses Sobel filters [9] to
track the changes in pixel intensity across the image. Sobel filters are commonly used in
edge detection, and they calculate the image gradient in the horizontal and vertical axes
through an image convolution. The approximate derivatives used in the Sobel filter are:

Page 3 of 27
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-1 0 1 -1 -2 -1
HX=<—2 0 Z)andHy=<0 0 0). 3
-1 0 1 1 2 1 )
In the uncertainty aware Canny operator algorithm proposed here, the matrices in equation
(3) are applied to the blurred imaged I(x,y) by

L&xy) = Ig(X' y) * Hy, (4)
Iy(X: Y) = Ig(Xr Y) * I_Iy- (5)

Equations 4 and 5 produce two gradient images and applying Sobel filters to Figure 2 results
in Figure 3.

i im

Figure 3: Sobel Filters applied to Figure 2 (a) I, — changes in intensity horizontally, (b) I, -
changes in intensity vertically.

[=]

The next step in the algorithm is to calculate the magnitude of the intensity change with a
hypotenuse calculation and edge direction calculation as follows

(6)
el y) = [(1F +1,°)
0(x,y) = arctan (;—X). (7)
y
Equations 6 and 7 return two output matrices: one of magnitudes (|/;|(x,y)) and the other
being the matrix of direction to edges (6(x,y)) at each given point. 6(x,y) is a gradient map,

highlighting the directions of greatest pixel intensity change. It calculates the elementwise
inverse tangent of I, and I, for each pixel, thereby finding the direction of intensity change in

two separate directions. 9 e —m, ). These are shown in Figure 4.

a ) 250
2
200
1
150
0
100 a
50 -2
| =
0
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Figure 4: Magnitude and edge direction matrices of Figure 2, after applying Sobel filters. (a) is
the magnitude image (|I;|(x,y)) and (b) is the convolution of Figure 3 for overall edge direction
matrix (0(x,y)).

2.1.3 Non-maxima suppression

The next step in the algorithm is to carry out a non-maximum suppression. Examining the
results in Figure 4 (a), the edges of the shape can be seen in yellow, with faded colour to
blue towards the edges. Non-maxima suppression is a method to suppress this faded region
and highlight only the most intense pixels. The algorithm assesses each pixel in |I;|(x,y),
detecting whether there is a more intense pixel in the direction of the edge given by 8(x,y). If
there is a more intense pixel in the direction of the edge, only the most intense pixel is kept
and the other pixels in this row are set to zero as shown in Figure 5.

250
200
150

100

200

Figure 5: (a) A demonstration of how non-maxima suppression works for a give pixel. A 3x3
region is selected around a pixel of interest (pixel p in this case). The pixel to the right of p is
the maximum in the horizontal axis (indicated by the arrow) and therefore the other pixels on
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the axis are set to zero. This step is repeated for each pixel in the image, resulting in (b), where
all other non-maximum pixels have been suppressed to zero.

Figure 5 demonstrates the non-maxima suppression process using the images shown in
Figures 2-4. Using pixel p in Figure 5 (a) as an example, the pixels surrounding p are
selected and the direction of the edge is shown by the arrow inset. The pixel to the right side
of pixel p on the arrow has maximal intensity in the arrow line, meaning that the left-hand
pixel and pixel p are both suppressed to zero. Upon using this process for the entire image,
the method returns Figure 5 (b), and as shown in the highlight of pixel p, the non-edge values
are given a value of zero.

2.1.4 Thresholding

Following non-maxima suppression, the algorithm then takes user inputs for thresholds to
define the intervals for ‘strong’ and ‘weak’ pixels. These thresholds are proportions of the
maximum intensity in the image. Maximum pixel intensity for greyscale images is set at 255
(standard maximum intensity for a computer-read image), hence a lower threshold of 0.1
would be the equivalent of a pixel of 25.5 intensity. For thresholding in the Canny operator,
two values are required: an upper, t,, and a lower, t;, value. There are three outcomes to the
thresholding of each pixel with respect to the upper and lower threshold values: pixel
intensities above the upper threshold are strong, i.e. I(x,y) > t,, pixel intensities between
thresholds are weak, t; < I(x,y) < t,, and pixels below the lower threshold are determined to
be non-edge pixels and are set to zero, I(x,y) < t; = I(x,y) = 0.

=l

Figure 6: Thresholding applied to Figure 5.

250

200

150

100

Figure 6 shows thresholding applied to Figure 5, with a lower threshold of 0.4 and upper
threshold of 0.95. The thresholds were chosen such that some pixels would be weak for
demonstration purposes (the darker pixels in the image). These pixels would be turned to
strong pixels in the hysteresis process.

2.1.5 Hysteresis

After thresholding has been applied to the image, the resulting image is then passed into a
hysteresis step. This is necessary to examine weak pixels and assess whether they should
be turned to strong pixels or whether they should be removed entirely. This is carried out by
examining neighbouring pixels to find strong pixels. If the weak pixel directly adjoins one
strong pixel, then it will be turned into a strong pixel, otherwise it will be removed. From
Figure 6, all weak pixels have a neighbour of a strong pixel, and hence all pixels will be
converted to strong pixels — resulting in the final edge image shown in Figure 7.

Page 6 of 27
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) b) 250
200
150
100
50

Figure 7: (a) initial image (Figure 2) (b) edge image returned after applying the canny operator
algorithm to (a)

o

Note the loss of detail in Figure 7 in comparison to Figure 2. This is accentuated due to the
small size of the image and is extreme for demonstration purposes. The loss of detail in
Figure 7 when compared to Figure 2 is predominantly due to the Gaussian blur, however this
loss of accuracy is also a disadvantage of the Canny operator [12]. This is discussed further
in Section 5.

2.1.6 Erosion and dilation

It is possible for hysteresis outputs to be mistakenly unbounded, which can occur if there are
spaces with two or more neighbouring weak edge pixels. To counteract this, the hysteresis
output is dilated and then eroded. Dilation and erosion are simple mathematical morphology
processes typically used in binary images, although they have successfully been applied to
greyscale images [10] (as is the case in this report). Dilation is the gradual enlargement of
the boundary image, offsetting the mistaken unbounded regions. Dilation is implemented by
iterating through each pixel, selecting a 3 x 3 grid around that pixel, and changing the central
pixel’s value to the maximum pixel intensity found in the 3 x 3 grid. Repeating this process for
N iterations, any previously unbounded edges with gaps at most 2N weak pixels across will
be bounded.

Following this dilation process, erosion is used to return the image to its original size. Erosion
is the gradual process of removing the edges of the boundary image — opposing the dilation
process without unbounding the features. Similar to the dilation process, erosion considers
each pixel, creating a 3 x 3 surrounding grid, and sets the pixel value to the minimum pixel
intensity in the grid. This is the inverse action of the dilation, but due to the wider lines from
the dilation process, any small gaps in the original edges are filled, provided the number of
iterations of erosion are less than or equal to the number of iterations of dilation. Further
details on these steps are beyond the scope of this report but can be found in reference [10].

2.2 AREA CALCULATION

After the edges have been found within an image, the tool then carries out a series of
processing steps to reduce the background, group non-edge pixels, unite regions, and
calculate the area for any found region. The area of a given shape was chosen as the metric
to examine the proposed uncertainty-aware Canny operator since the uncertainties in pixel
intensities will change the size of detected regions, allowing for easy quantification. The area
was chosen as it allows a Monte Carlo Method (MCM) algorithm to produce a single numeric
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value (the “measurand”) from the image processing, and the result of the MCM is a
distribution of that measurand [2].

2.2.1 Background reduction

After the edges in the image are found using the process presented in Section 2.1, the
algorithm then calculates the area contained in each region bounded by edges. The first step
in the area calculation algorithm is to reduce the image such that there is only one layer of
background pixels around the initial shape. This reduces unnecessary processing and thus
speeds up computation. Furthermore, an additional edge is artificially added to the right and
bottom of the image, ensuring the method in Section 2.2.2 selects all points.

2.2.2 Grouping non-edge pixels

The next step for the algorithm is identifying each bounded region. The algorithm iterates
through each zero pixel and takes 2 x 2 squares around these, placing the selected zero
pixel in the top left corner. It determines the intensity of pixels within the squares and tracks
to see whether the pixel in question is in a previous region. If so, it appends all new pixels to
the region and, if not, creates a new region for this pixel and its surrounding selected pixels.
This method is demonstrated with a simple example shown in Figure 8.

b)

Region 1: (0,0), (0,1), Region 1: (0,0), (0,1), (1,0)

(1,0)

Region 2: (1,2)

Region 1: (0,0), (0,1), (1,0)

Region 2: (1,2), (1,3),
(2,2),(2,3)

Region 1: (0,0), (0,1),
(1,0)
Region 2: (1,2)

Region 3: (2,1) Region 3: (2,1)

Region 1: (0,0), (0,1), O

(1.0) Region 1: (0,0), (0,1), (1,0)

Region 2: (1,2), (1,3), (2,2),
(2,3), (2,1), (3,1),(3,2),(3,3)

Region 2: (1,2), (1,3), 1
(2!2)1(2!3)] (2F1)l (3!1)!
(3.2) 2

Region 3: (2,1), (2,2), (3,1),

Region 3: (2,1), (22), 3 (3.2), (2.3), (3,3)

(3,1), (3,2)

01 2 3 012 3

Figure 8: Demonstration of grouping edges method describer in Section 2.2.2. Pixels are
referenced in (row, column) format.

Below is a step-by-step breakdown of method 2.2.2 using Figure 8:
e (a) demonstrates the first 2x2 square of pixels highlighted by the algorithm in 2.2.2.
(0,0) is the first zero pixel identified and examined. The pixels in the 2 x 2 square are
not separated by any strong pixel lines, and hence are in the same region.
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e (b) (0,1) is the next zero pixel horizontally. The 2 x 2 square drawn around that finds a
line separating (0,1) and (1,2), meaning these pixels are in separate regions. (0,1) is
already in region 1, meaning (1,2) must be in region 2.

o The next zero pixel is (0,3). A 2 x 2 square cannot be drawn around this pixel
because it is the right-most pixel on row 0. Hence, the next zero pixel is (1,0).

e (c) (1,0) is the next zero pixel. The 2 x 2 square contains a line. (1,0) is in region 1,
and (2,1) is not in region 2, hence it is in region 3.

e (d)(1,2) is the next zero pixel. There are no lines in this square, hence the pixels all
belong to the same region. (1,2) is in region 2, meaning all pixels are added to region
2.

o The next zero pixel is (1,3), which cannot be used since it is the right-most
pixel in row 1. The next zero pixel to examine is thus (2,1).

o (e)(2,1) is the next zero pixel. The 2 x 2 square contains no lines, meaning all pixels
belong to the same region. (2,1) is in region 3, meaning all pixels are added to region
3. However, (2,2), in the square, is already in region 2, meaning all pixels are also in
region 2, and hence added to region 2.

o () (2,2) is the next zero pixel. The 2 x 2 square contains no lines. (2,2) belongs to
both regions 2 and 3, and hence the pixels are added to both regions.

o The next zero pixel is (2,3), which cannot be used since it is the right-most
pixel of row 2.

o The next zero pixel is (3,0), which cannot be used since it is the bottom-most
pixel of column 0, meaning a 2 x 2 square cannot be drawn around it. This is
the same for all pixels in row 3, meaning all suitable pixels have been
examined.

Examining the output of Figure 8, the grouping method ignores some pixels (pixels (0,3) and
(3,0)) since 2 x 2 squares cannot be created on the outermost points. The algorithm
accounts for this issue by adding a border, with a pixel value of zero, to the right-hand side
and bottom of the image. These added pixels will not be assessed themselves but act as
placeholders so that all outermost pixels can be examined. In the case of the image in Figure
8, by applying this process, Figure 9 is returned.

A W N — O

0 1 2 3 4

Figure 9: Example shape from Figure 8 with additional border width around the outside. The
white square represents the 2x2 matrix which can now be made so that (3,0) is assessed.

This addition means that all pixels in the original image can be assigned regions. Applying
the method to Figure 9 returns the following regions:

e Region 1: (0,0), (0,1), (1,0)
e Region 2: (0,3), (1,2), (1,3), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), (3,3)
e Region 3: (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), (3,3)

Page 9 of 27
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Other methods for feature extraction exist, such as the ‘bwboundaries’ function in MATLAB
for example, but a custom python area calculator was the preferred option in this work as it
allowed for the control over all parameters.

2.2.3 Uniting regions

Just as in the example shown in Section 2.2.2, there are cases where regions are not
mutually exclusive. In some cases, it is only clear to see that specific regions should be
combined once all pixels have been analysed. To resolve this issue, the algorithm loops
through regions and unites them if they have shared pixels. It will continue to iterate through
all regions until no new changes are made. The output from this is a refined list of ‘layers’,
which are defined as the closed bounded regions found in an edge image. For the example
in Section 2.2.2, this would result in regions 2 and 3 combining. Figure 10 shows the inputs
and outputs of the uniting process for the simple image example used in Section 2.1.

Figure 10: (a) shows an example edge image in the format obtained by the Canny operator. (b),
(c), and (d) show the separate “layers”, which are the separate closed, bounded regions
detected within this image by the algorithm.

Background cropping is a feature used within the tool to aid the processing speed of images.
In the background layer, there are many max pixels processed unnecessarily since the
background layer is not useful for further calculations. The only use for the background
image is to show where the other layers are within the edge-image, which means that the a
large portion of the background layer can be set to a pixel value of zero without affecting the
layer at all. Setting the unused background pixels to zero decreases the computational cost
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of the uniting regions step which is important in the usability of the uncertainty-aware Canny
operator tool.

The tool could crop the background from all directions, leaving only the outline of the shape.
However, due to the direction of pixel searching employed by Python (sweeping from left to
right along the horizontal direction), accessing the bottom and right-hand sides of the
background image is more difficult and requires additional processing time. Because of this,
the software only crops the top and left-hand sides of the background image. An example of
this is shown in Figure 10 (b), where the highlighted region is cropped out of the background
image, without affecting the outline of the shape.

2.2.4 Assigning edges to regions

Examining Figures 10 (c) and (d), the inside regions are mapped correctly but the edges of
the regions are not included in these layers. The next step is to add the edges to their
respective layers. In this stage of the tool, three images are considered: the edge-image, the
layer, and the combined image of the layer and edge-image. Every edge-pixel in the edge
image is examined, and for each pixel a 3 x 3 region (known as the ‘neighbouring matrix’) is
selected. The same region, centred on the same pixel, is selected in the combined image.
For demonstrative purposes, an example of this step is shown in Figure 11 where pixel P is
the pixel of interest — neighbouring matrices are given inset (the layer shown in Figure 10(d)
was used). If the neighbouring matrices differ between the images, it indicates that the
process of combining the edge image and the layer has caused the edge pixel to gain some
neighbouring pixels. This means that the edge pixel must be neighbouring the layer, hence
the pixel must be in the layer’s edge. In Figure 11, the neighbouring matrices surrounding
pixel P are different for the edge where the edge image (Figure 11(a)) and combined image
(Figure 11(b)) are given.

The result of finding this difference in the neighbouring matrices is that pixel P from the edge
image is added to the original layer image. If there are no differences in the neighbouring
matrices of the respective images, however, the centred pixel is not an edge pixel of this
layer and is ignored. This process is repeated for every non-zero value on the edge image
and is repeated for every layer extracted from the grouping process. Issues arise, however,
when the edge line is more than one pixel thick, then the algorithm will only take the first pixel
of that edge. In this iteration of the tool, this has not been addressed and will form part of
future development of the method.
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Figure 11: (a) The edge image initially used. (b) The edge image combined with layer (Figure 10
(d)).

Figure 12: Layer from Figure 10(d) with edges applied through process described in Section
2.2.4.
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2.2.5 Calculating area

Finally, the algorithm counts the number of max pixels in each layer and stores the area of
the selected region. In Figure 12, the area for the selected layer is 12 pixels. It is important to
note that edge lines are considered in both the area of the inside shapes and the area of the
background. This, combined with the background cropping for efficiency, means that the
background area is not likely to be accurate. The results of the area calculation are
determined in pixels; however this can easily be extended to a measurement of area in S
units (typically m?) if the pixel size is known.

2.3 UNCERTAINTY PROPAGATION IN IMAGE PROCESSING

Propagating uncertainties through a measurement model can be implemented through
several different methods [2] depending on the system being quantified. One such numerical
method is a Monte Carlo method (MCM), which involves calculating estimates of the model
outputs using an iterative process. MCM uses random sampling of input parameters from
known distributions, which are then passed through a measurement model, and results in an
output distribution for the measurand. The measurement model in this work is the image
processing detailed in Sections 2.1 and 2.2, and the output measurand is the area of a layer.
In this section, the sampling method was examined, where rudimentary random sampling is
compared to a more sophisticated method: Latin hypercube sampling.

2.3.1 Monte Carlo method with random sampling

Simple random sampling (RS) selects data from a defined distribution function of each input
parameter on each iteration. For RS considered here, a number of input parameters could be
sampled. Using an image as a base, a new image can be generated pixel-wise, based on the
distributions of each pixel, which can be specified by the user. The Gaussian blur o, and
Canny thresholds, t; and t,,, values can also be sampled — in this work, both were sampled
from a uniform distribution which is explored in section 4.1 After the relevant input
parameters have been sampled, methods described in Section 2.1 and 2.2 are applied to the
new image to return an area value for the iteration, as shown in the workflow shown in Figure
1. The MCM using RS process iterates 10° times as this gives a reliable estimate for 95 %
coverage intervals (to two significant figures) [2] and returns the calculated areas and the
calculated area distribution can be used to estimate an uncertainty on the measurand.

2.3.2 Monte Carlo method with Latin hypercube sampling

Latin hypercube sampling (LHS) uses pseudo-random sampling on the joint distribution of
the input parameters to yield a more reliable estimate of the cumulative distribution function
(CDF) of an output quantity for a smaller number of iterations than random sampling. The
approach partitions the CDF of each input into M intervals of equal probability, where M is
the number of iterations set by the user. The method samples a value of an input once within
each subdivision. For a model with n inputs, M groups of input values are created by
randomly assigning each sampled value of each input to exactly one of the groups. The
hypercube is the full set of M groups of points in n-dimensional space; the hypercube is Latin
because for each input there is exactly one value within the groups in each subdivision. LHS
results in a more evenly distributed sampling of the input space than random sampling.

To demonstrate the LHS method, a uniform (0,1) distribution for two inputs and five iterations
is considered. The range of each input is split into five even intervals ([0-0.2), [0.2-0.4), [0.4-
0.6), [0.6-0.8) and [0.8-1.0]). The LHS method then selects a random value within each
interval and carries out this sampling for both inputs. The hypercube points are then created
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by pairing up the sampled values randomly. For instance, if the sampled values of the first
input were [0.97, 0.16, 0.28, 0.65, 0.52] and those for the second input were [0.43, 0.89,
0.12, 0.76, 0.25] then one possible hypercube is plotted in figure 13. Note that there is
exactly one cross in each row and column: this is why the sample is known as “Latin”. The
same approach can be used in more dimensions and with other distributions, including
combining samples from different distributions.
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Figure 13: an example of Latin hypercube sampling with two distributions (uniform
distributions between 0 and 1) and five samples. Axes are partitioned into five intervals and
there is one point in each interval for each distribution respectively.
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Figure 14. Example of normal CDF graph with 5 partitions. (a) Demonstrates the partition of the
codomain and (b) demonstrates a random variable sampled from each of the intervals.

Figure 14 is an example using a Normal N(0,1) distribution with five samples. The samples of
probability [0.42, 0.34, 0.92, 0.13, 0.78] lead to sampled values of [-0.20, -0.41, 1.41, -1.13,
0.78]. These values could be combined with samples of other inputs to generate a
hypercube.

Figures 13 and 14 show this simple, yet highly effective, method of sampling for the Monte
Carlo approach used here. In the case of the uncertainty-aware Canny operator, the
algorithm generates a hypercube that treats each pixel in the image as an input, leading to a
randomly sampled version of the image that is then processed using the Canny operator.
The tool can also generate a Latin hypercube for the Gaussian blur o; the Canny threshold
limits t; And t,,.

3 COMPARING MONTE CARLO METHOD AND LATIN HYPERCUBE SAMPLING
Within the MCM used in this work, images are iteratively regenerated to measure the output
of the proposed uncertainty-aware Canny operator algorithm using area as the measurand.
When using RS, the typical number of trials (and the number of trials used here) is 10°
iterations, which can often be expected to reliably deliver a 95 % coverage interval (to two
significant figures) for the output quantity. [2], resulting in a quantitative response for area
uncertainty. However, the large number of images generated means that the RS method has
a significant computational time and cost. To ensure that the RS MCM approach computes
results in a reasonable time, image size has to be reduced (hence using a 57 x 57 pixel
image in the comparison method below), which is unrealistic in real-world scenarios where
smaller images result in a loss of detail and information due to the low resolution. LHS
provides a suitable alternative, yielding more reliable results for smaller sample sizes
(discussed in Section 3.3), so long as estimation of the extremes of the tails of the input
distributions are not required [3]. Fewer iterations are required for LHS to obtain more stable
results than RS [5]. Through testing and qualitative comparison, the LHS was set to 1000
iterations, which is shown in the following method to be comparable to 10° iterations of RS.
This takes significantly less time (see Section 3.3 for a quantitative comparison).
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3.1 INPUT DISTRIBUTIONS

Before the sampling methods are implemented, the input distributions must be defined. In
real-world applications of this method, the user will be able to assign appropriate, traceable
uncertainties to the input image. However, the work presented here is based on idealised
test images and the uncertainties are assigned for testing purposes only. The input
distributions used within the RS and LHS comparison were:

e Individual pixel intensities:

o N(u, 0,) where u is the pixel intensity from the original image, and g, is user
specified. For the following method, o,, is set to five since this yields some
variation around the edges of images without changing the main body of
shapes. This normal distribution is discretised and truncated to take integer
values between 0 and 255.

e Canny thresholds t; and t,:

o U(0,1) because thresholds are always between 0 and 1. For some images, as
demonstrated in Section 4, certain thresholds allow different areas of the
image to be selected, which can cause issues for analysis. It is required that
t; < t,, and so the uniform distribution is sampled twice from [0,1], with ¢; and
t, being set to the lower and upper of these values respectively.

e The Gaussian blur standard deviation o;;:

o fixed to a value of o; = 3 for Section 3.2, however it can be attributed a
uniform distribution, as demonstrated in Section 4.

o The kernel size is set to a size of 11.

3.2 CANNY OPERATOR ON SIMPLE IMAGE

To test the proposed method, a simple 57x57 pixel image of a zero background with a high
intensity (pixel values = 255) 38x30 pixel rectangle and expected area of 1140 pixels was
created, shown in Figure 15. A gradient was added to the top and bottom boundary of the
rectangle to allow for some uncertainty in the edges. The test image and the resulting Canny
operator output is shown in Figure 15(b). In Figure 15(b), the corners have not been
identified accurately by the Canny operator. This is likely due to the Gaussian blur and
deficiencies in the Canny operator which are further described in Section 5.2.

Figure 15: (a) Simple rectangular geometry with gradient to boundary on the top and bottom.
(b) Shape returned after applying Canny operator to it with distributions as described in
Section 3.1.

The region within the shape is then filled with maximum pixels and the area is calculated
and stored, resulting in Figure 16. Following this, both RS and LHS are applied to the image,
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resulting in Figures 17 and 18 respectively (which are discussed in Section 3.3). The
expected and measured areas (for both RS and LHS) for the simple rectangle are not an
exact match for several reasons. Firstly, the Gaussian blurred top and bottom edges have
increased the size of the shape, which will inevitably increase the measured area. Secondly,
the corners of the edges found by the Canny operator are chamfered which, again, will alter
the measured area of the rectangle with respect to the expected area. However, these issues
are common in most edge-detection image processing method — this tool aims at addressing
the need for uncertainty quantification in image processing rather than perfecting the Canny
operator. Other edge-detection methods could solve this problem and including them into the
tool is the basis of future work.

Figure 16: Filled image of Figure 15 (b).
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Figure 17: Histogram of areas generated from 10° iterations of RS, based on Figure 15.

Page 17 of 27



NPL Report MS 49

350 g LJ LI T

300

250t

200

Density

150 |

100 |

50

[ E—

1245 1250 1255 1260
Area (pixels)

Figure 18: Histogram of areas generated by 10° iterations of LHS, based on Figure 15.

3.3 COMPARISONS BETWEEN RS AND LHS RESULTS

The distributions of the calculated area for the simple rectangle image, using the MCM with
RS and MCM with LHS methods, are given in Figures 17 and 18 respectively. The general
shape is shared across RS and LHS with a wider range in the RS graph. Both distributions
have the same mean of 1249, with RS ¢ = 1.525 and LHS o = 1.471. Using a two-sampled
Z test on the data, the z-score value is -0.09 with p value of 0.93, meaning we accept the null
hypothesis. The null hypothesis of a two-sample z-test is that both datasets come from the
same normal distribution, meaning there is not enough evidence to suggest the data comes
from different distributions. This, therefore, provides evidence that LHS with 10% samples
could be an accurate replacement for RS with 108 samples.

The difference in range is to be expected because LHS returns a more symmetric distribution
and is less reliable to assess the extreme points of the input distributions [3]. Other sampling
methods, such as importance sampling [3], could provide a better alternative for reliably
sampling from the extrema, however this was beyond the scope of this project and could
form part of future work. It is important to note that some images lose ‘closedness’ when
running the uncertainty methods, meaning when generating random variables for pixels from
the distributions, multiple consecutive edge pixels are generated as non-edge pixels, leaving
a gap in the detected edge. This gap means that the image would be layered differently to
expected, since if an edge is not closed, it is not shown as a layer. For example, suppose
that Figure 15 was generated such that the edge was left open, the only layer found would
be the background, which would consist of the whole image. This background would be the
zeroth layer, meaning if the algorithm was measuring the 1% layer, a ‘zero area’ would be
returned. This is because the 1% layer would not exist on this iteration. These zero areas are
not included in the histograms but is important to note as a comparison. In LHS, 68 out of
1000 images had zero areas and in RS, 73253 results were zero and hence omitted
(1073253 iterations were carried out so that the software returned 10° values). In both cases,
approximately 7% of results are zero areas and hence discounted. This issue can be
minimised by specifying Canny threshold ranges and standard deviations such that edges
are more easily found. However, this issue could be more severe if the algorithm was run on
images where the number of closed regions is unknown. Note that the threshold and pixel
intensity were sampled together, as it was assumed that both uncertainties would be present
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in this edge detection algorithm. Separating them and carrying out a sensitivity analysis was
beyond the scope of this project, but could form part of future studies.

4 RESULTS

In the following section, two example images will be evaluated to demonstrate the breadth of
use for the algorithm. In Section 4.1, a small 116 x 58 pixel image with overlapping layers is
used to demonstrate the layering functionality. Section 4.1 is further used to demonstrate
boundaries on thresholding — since specific boundaries mean specific regions are selected
due to edges not closing (as mentioned in Section 3.3.1). In Section 4.2, a realistic

1130 x 806 pixel image was used. Due to the size of this image, a rebinning process was
applied which scaled the image down to make it smaller and faster to process. This rebinning
process is described in more detail in Section 4.2.

4.1 SMALL LAYERED IMAGE

In this section, a 116 x 58 pixel image is used with multiple layers of overlapping simple
shapes; the raw image is shown in Figure 19. This image is made up of four simple
geometries (circles and ellipses), with some overlapping shapes to increase the complexity —
done so to test the tool’s ability to distinguish them. It is expected that the tool will be able to
extract five layers from the image, including the background, which are labelled in Figure 19.
The expected area for the shapes corresponding to (b) to (e) were: 1533 pixels, 1610 pixels,
531 pixels and 126 pixels respectively (calculated by knowing the radii and major and minor
semi-axes of the respective shapes). Differences in measured and expected areas were
anticipated as the image must go through numerous processing steps (Gaussian blurring,
non-maximum suppression, dilation, and erosion, etc.) before the area is calculated which
can slightly change where the edges are and, therefore, how big the shapes are.

a bcde

Figure 19: Small layered image with 5 expected layers (including the background layer).

After the image has been processed in the steps defined in Sections 2.1 and 2.2 (i.e., the
Canny operator and Area calculation but before the MCM), the resulting extracted layers
were generated and shown in Figure 20 with each calculated area is given for the
corresponding shapes. Qualitatively, one can see that the number of extracted layers
matches the number of layers in Figure 19 but as mentioned above, there are differences in
the measures and expected areas. The results presented in Figure 20 were generated using
fixed Canny lower and upper threshold values of t; = 0.1 and t,, = 0.3 respectively.
However, when these threshold values are changed, the Canny operator closes certain
shapes and leaves others open.
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The lower and upper Canny threshold limits were set to t; = 0.3 and t,, = 0.6 respectively,
and the generated images of the extracted shapes is given in Figure 21. As can be seen in
Figure 21, the Canny operator produced only three shapes, including the background, by
combining the shapes of b and d in Figure 19, and completely discarding shape e. This is
due to the lack of strong pixels during thresholding, which causes hysteresis to reject too
many edge pixels, thus leaving edges open and not bounding layers (see Section 2.1). The
three extracted shapes do not reflect the expected number of extracted shapes in the original
image (Figure 19) and this outcome stresses the need for care to be taken when setting the
threshold limits — as is the case for any application of the Canny operator.

s b)

Area = 2509 pixels Area = 1622 pixels

d)

Area = 1687 pixels Area = 594 pixels

e)

Area = 133 pixels

Figure 20: Layers of Figure 19, calculated by the method described in Section 2. Layers are
highlighted in yellow with their measured areas given below
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Area = 2509 pixels
c)

Area = 2105 pixels

Area = 1607 pixels

Figure 21: Example of processing Figure 19 with non-optimal thresholds (0.3 and 0.6), causing
aloss of layers.

To explore the Canny thresholding sensitivity argument more, the input Canny threshold
values were assigned a distribution and the image was processed through the full
uncertainty-aware Canny operator tool, as described above. The Gaussian blur and pixel
intensity inputs were fixed in order to examine the output of the tool given a varying set of
threshold values. The target shape is (b) in Figure 19. The Canny threshold values were
drawn from a uniform distribution U(0,1), and the resulting area distribution is given in Figure
22.
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Figure 22: Histogram of the area distribution acquired from sampling Figure 19 (b), with
thresholds selected using a U(0,1). Figures (a) and (b) are subplots from the single area
distribution carried out with the LHS MCM. Subplot (a) shows the resulting area distribution
corresponding to the layer in Figure 20 (b). (b) shows the resulting area distribution
corresponding to the layer in Figure 21 (b).
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Figures 22 (a) and (b) depict two sub-histograms from the same source area distribution plot.
Each subplot has a distinct peak in its respective area domain. The use of a U(0,1) on the
threshold distribution means that both layer breakdowns (Figures 20 and 21) can occur in
different iterations of the same LHS method. This results in the tool analysing area
distributions for both Figure 20 (b) and Figure 21 (b) in the same overall area distribution (for
Figure 19 (b)), creating two distinct area distributions in the output plot (shown in Figure 22).

The tool’s inability to extract the expected number of shapes in this simple image stresses
the importance of selecting appropriate threshold values, prior to the application of the LHS
MCM process. From here on in, suitable threshold values were chosen and set as fixed
values — in the case of Figure 19, they were t; =0.1 and t, = 0.3. These thresholds enable
a consistent layer breakdown in the format of Figure 20.

To further test the tool, the Gaussian blur o; was assigned a uniform distribution U(1,2) and
the LHS MCM was applied. Figure 23 shows the result of considering both the threshold and
Gaussian blur o uncertainties for the extracted shape shown in Figure 20 (b). As one can
see, the calculated area distribution becomes slightly skewed and narrower in comparison to
Figure 22(a), and the mean area calculated of Figure 20 (b) is 1619 pixels, with a standard
uncertainty of 1.76 pixels.
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Figure 23: LHS of layer depicted in Figure 20 (b), with the following parameters for each plot.
(a) Thresholds U(0.1,0.3), Gaussian blur kernel size 23, Gaussian blur o = 2, pixel distribution
6, = 5. (b) Thresholds U(0.1,0.3), Gaussian blur kernel size 23, Gaussian blur o = U(1,2), pixel
6, = 5. 65 was set with uniform distribution in b) to test the effects of changing the Gaussian
blur standard deviation on the areas calculated.

4.2 LARGE LAYERED IMAGE

Image processing using the uncertainty-aware Canny operator tool takes a significant
amount of time due to the vast number of calculations, image generation, and process steps
undertaken by the algorithm. When the image size is increased, the computational time also
increases, however, to alleviate this issue, the image can be pre-processed by rebinning.
Rebinning is a method which involves finding means of clusters of pixels and using those in a
new, smaller image. This reduces processing time but also reduces precision in the image.
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This technique is often used in fields that generate a large amount of data which can be
reduced without loss of information, for example in positron-emission tomography [13].

Figure 24: Layered image 1130 x 806 pixels.

Figure 24 is an example of a large image which takes inconveniently long to process with a
LHS (approximately 51 minutes for one iteration) but, by rebinning the image, it can be
processed into a useful output significantly faster. Figure 24 was reduced to a 1104 x 800
pixel image by cropping the outer edges of the image which meant that image can be
rebinned by a factor of eight. The resulting rebinned image is shown in Figure 25.

Figure 25: Rebinned Figure 25 to 138 x 100 pixels.
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Comparing Figure 24 and Figure 25, the edge lines are more blurred in Figure 25, as
expected. However, the general features are still distinguishable, and the edge detection
process time is significantly faster (LHS with 1000 iterations takes 11 minutes). If an image
contained small features, rebinning could potentially remove any detail of the feature or
completely remove it from the rebinned image (this depends on the size of the image relative
to the rebinned pixel size).

A specific region of interest was selected (chosen for its size and consistent detection
through thresholding) for demonstration and is shown in Figure 26. The MCM using LHS on
this resulted in the distribution given in Figure 27.

Figure 26: Region of interest from Figure 25. This is a combination of the outer green and
middle yellow layers. The reason this region is used is because the parameters to separate
these layers could not be found. This will be elaborated on in Section 5.2.
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Figure 27: Area results from applying the LHS MCM to the image shown in Figure 26, with
parameters: kernel size 23, oz = 2, lower and upper thresholds of 0.05 and 0.1 respectively.
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Following the rebinning process, the area and uncertainty must be scaled by a factor of the
rebinning process as the image was scaled down in order to process it in a timely manner. If
the pixel size is known (for instance, in Sl units of m), then rescaling is not required as the
new pixel size is defined by the rebinning — for example, suppose the pixel size of Figure 24
is 1 mm x 1 mm. The rebinned image, Figure 25, has a pixel size of 8 mm x 8 mm. The
rescaling of the final area would therefore not be required. However, since the pixel size is
not known in Figures 25, 26, and 27, the measured area must be rescaled in order to
accurately describe the area of the original image. From Figure 27, a suitable area estimate
might be mean of 2311 pixels with standard deviation of 2.659 pixels, which translates to
18488 pixels with standard deviation 21.27 pixels in terms of the original image.

5 LIMITATIONS OF THE ALGORITHM

5.1 IMAGE SIZE AND PROCESSING TIME

One major limit of this work is the time to run iterations, which is caused by the size of
images. Real-world applications of imaging as a scientific measurement typically result in
large images, or large datasets consisting of a lot of images. However, calculation time using
these larger image datasets can be inconvenient and unusable. One simple solution is the
rebinning approach shown in Section 4.3. This process decreases the image size by finding
the mean of adjacent pixel intensities and using those in a new smaller image. This
decreases resolution of the image and changes shapes however, if only used on large
features (with respect to the image size), these differences are not likely to impact the edges
detected or areas calculated. Further improvements to the algorithm could be made which
would enable the image processing to be carried out on a High-Performance Computing
(HPC) hardware, or to be processed in parallel on multiple CPU (or possibly GPU) threads.
Another method to reduce this problem is to segment the original image into regions of
interest or sub-images. The onus, however, is on the user to select the right sub-image
(automatic segmentation is an area which will be explored in future projects).

5.2 LIMITATIONS OF THE CANNY OPERATOR

A further limit of our study is the use of the Canny operator. Despite its widespread use, the
Canny operator can fall short on edge detecting without appropriate image pre-processing,
especially for real-life grayscale images. This is due to the natural changes in intensity not at
edges and due to lighting/shadows. An example of this is shown in Figure 28.

Figure 28: Canny operator applied to a colour photograph of an apple. Complexity in the image
results in an edge-image which would be unusable for the uncertainty-aware Canny operator.
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When applying the Canny operator to a colour photograph of an apple, textures in the image
are shown as edges and regions in the image are removed which shouldn’t be. For example,
the bottom left corner of Figure 28 is lost due to the angle of lighting on the apple, which
creates an unwanted gradient to the background.

This is similar to the issue in Section 4.2, where the Canny operator parameters could not be
found such that the area layers could be separated. There is no guarantee that the Canny
operator is able find all closed edges accurately, which could set-back the tool’s general
utility. Furthermore, in applying Gaussian blur to the image, precision and accuracy can be
lost, as demonstrated in Section 2.1. In larger images, this is usually covered by the
uncertainty bounds, yet in smaller images, this could be a crucial element.

In future iterations of the software, using a more sophisticated edge detection method could
alleviate these issues and improve the tool’s real-world application. The choices of edge
detection algorithm would largely depend on the specific use-case for the software. For
example, a wavelet transformation method could be used as an alternative method [6] e.g., if
medical images were the chosen application. Furthermore, the wavelet transform could be
combined with the Canny operator to aid the processing of images [7]. Alternatively, an
Adaptive Neuro-Fuzzy Inference System (ANFIS) could be a useful edge detection method
for medical images or facial recognition [8], especially when paired with an algorithm that
could join the edges detected together when appropriate. Other edge detection methods
available can be found within the literature review [4] and comparison of these methods in
real-world applications could be a useful future area of study.

6 CONCLUDING REMARKS

This report presents an overview for the software tool designed to account for uncertainty in
image edge detection using a Monte Carlo approach. The Canny edge detection operator
was used to detect edges on several example figures, and two different sampling methods
were examined for the propagation of uncertainties through the model — LHS is the
recommended method due to it being much faster than the rudimentary RS method. The
areas for a number of input images were calculated using a custom area calculation process,
and the tool was able to successfully extract multiple shapes (overlapping and separate) in
images when the input parameters were correctly set. The outcome of the uncertainty-aware
Canny operator presented here is the area distribution — which can be used to appropriately
assign uncertainties to the measured area which would previously be assigned through some
educated guesswork.

This tool was created to be a generalised framework to quantify uncertainties associated with
edge detection, however a user can tailor the tool to their needs. If the uncertainties for a
specific image are known (acquisition uncertainties leading to pixel-by-pixel uncertainty in the
image, for instance), the tool can be changed to accommodate them. For future work,
different, more sophisticated edge-detection methods can be implemented, allowing the user
to have multiple choices of methods to apply.
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