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1 | INTRODUCTION

Temperate forests can be substantial reservoirs of carbon (Ciais et al.,
2008). They account for approximately 14% of global forest carbon (C)
stocks in their biomass and soil, 118.6 + 6.3 Pg C (Pan et al., 2011).
However, accurate estimates of forest carbon stocks and changes in
these stocks might be impeded by the current methods that are used
for these estimates (Contestabile, 2012).

Typically, estimates of biomass carbon stocks are derived from
tree biomass, simply multiplied by 0.5 - the carbon fraction of the
tree biomass (Matthews, 1993). Biomass is rarely directly measured
at a large scale: instead, allometric size-to-mass models are used to
calculate above-ground biomass (AGB) from more easily measurable
properties of stem diameter, D, and sometimes tree height, H. The allo-
metric models are calibrated from destructive measurements of AGB
(harvesting and weighing) along with D and H. However, direct har-
vest measurements are difficult and expensive, potentially impossible
in long-term plots and national parks and are therefore not regularly
done, if at all. As a result, there is a heavy dependence on sparse
datasets for generalization of large-scale AGB estimates (Vorster et al.,
2020). Remote sensing-based estimates of forest biomass rely on
these plot-based calculations of biomass for calibration and valida-
tion (Avitabile et al., 2016); hence any biases in plot-based estimates
propagate into biases in global forest biomass estimation. Moreover,
plot- or remote sensing-based estimates of forests are used to esti-
mate biomass carbon emissions or sinks from land use change, the
net effect of which is estimated to account for 14% of anthropogenic
carbon emissions (Friedlingstein et al., 2020).

Calibration datasets for the development of allometric models are
often biased towards smaller trees, which are easier to harvest, cut
and weigh and extrapolation through regression is employed for bigger
trees (Zianis et al., 2005). If the fundamental assumption of allometry
holds, that is that the widely assumed correlation between tree size
and mass is independent of tree size, then a bias towards smaller trees
in calibration should not matter (Smith, 1980). However, the combina-
tion of allometric models that appear effective, particularly on smaller
trees, and the arduous nature of harvest measurement, means that this
assumption is rarely if ever tested on large trees (Zhou et al., 2021).
Therefore, there is potentially a significant problem because models
are being applied very widely, beyond (often well beyond) the size and
geographical range of their calibration data.

through carbon sequestration. Forests currently act as a carbon sink in the UK.
However, the anticipated increase in forest disturbances makes the trajectory and
magnitude of this terrestrial carbon sink uncertain. We make recommendations for

prioritizing measurements with better characterized uncertainty to address this

three-dimensional modelling, allometry, biomass, carbon, climate, forests, laser scanning

Taking the island of Great Britain as an example of the links between
allometric models and national biomass carbon estimates, the total
carbon in temperate forests (above-ground and below-ground living
material of trees >7 cm D) in Great Britain is estimated to be 213 Mt C,
of which 48.8% is stored in broadleaved trees (Forestry Commission,
2014a), with approximately 71.5 Mt C carbon in above-ground tree
parts. However, these carbon stock estimates for many broadleaved
tree species depend almost exclusively on a single calibration dataset
generated in the 1960s by Bunce (1968), containing just over 200
destructively sampled trees across five different species (Acer pseudo-
platanus, Fraxinus excelsior, Quercus spp., Tilia cordata and Betula spp.)
felled at four localities (Meathop Wood, Roudsea Wood, Coniston,
Force Forge) in the English Lake District. Even though sampling by
Bunce was done across the full tree size range at those localities at
the time, the dataset does not cover anywhere near the size range in
other locations (Figure 1) nor does it reflect the present state of trees
that have experienced over half a century of growth under changing cli-
matic influences (Kirby et al., 2014). The models developed by Bunce
using these regionally specific (and size-limited) calibration data, have
been widely used across Great Britain and beyond (Supplementary
Table S1), an approach that is widespread for reasons we discuss below.
This includes at least 20 other studies, seven of which are outside the
UK, none of which are in similar forests. Furthermore, a synthesis of
607 allometric biomass models used across Europe (Zianis et al., 2005)
lists the Bunce allometric models as the only one available to derive
above-ground woody biomass for the widespread and abundant tree
species A. pseudoplatanus, Fraxinus excelsior and T. cordata.

Here we used terrestrial laser scanning (TLS, also terrestrial LIDAR)
methods and three-dimensional (3D) analysis to derive tree volume (V)
non-destructively and further convert this to AGB and carbon (Calders,
Newnham et al., 2015) in order to assess the reliability of allometry-
based estimates of biomass in a temperate forest. We then further test
underlying assumptions in allometric models more generally to investi-
gate and understand potential discrepancies in biomass estimates and
the wider implications of this study using UK temperate forest AGB as
an example. These outcomes are extremely important for ongoing and
forthcoming space missions aimed at reducing uncertainty in global
forest biomass and carbon that currently depend on allometric models
for calibration and validation (Duncanson et al., 2021). At more local
and regional scales, better and more certain baseline measurements

of carbon stocks are essential to quantify the impact of an anticipated
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FIGURE 1 Biastowards smaller trees in the calibration data of allometric models in UK temperate forests. Full diameter (D) distributions of
our study area of Wytham Woods (UK) according to the field inventory and TLS (terrestrial laser scanning) data in 2015 compared to the D
distribution of destructively sampled trees in the English Lake District that are used to construct allometric AGB models in Bunce (1968). Values
from Bunce (1968) were systematically digitized using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/) for A. pseudoplatanus, F. excelsior
and Quercus spp. Boxplot whiskers indicate 1.5 times the interquartile box plot range. Non-uniform allometric model calibration data are typical.
For example, a widely used pan-tropical allometric model (Chave et al., 2014) demonstrates an AGB range from 1 to 76,064 kg with the median and

mean values being 98 and 1134 kg (A. Burt et al., 2020).

increase in forest disturbances on the trajectory and magnitude of

carbon stocks.

2 | MATERIALS AND METHODS
2.1 | Study area and data collection

The 1.4-ha study area was located within Wytham Woods, Oxford, UK,
and is part of a larger 18-ha Smithsonian plot that is run by Oxford Uni-
versity  (https://www.forestgeo.si.edu/sites/europe/wytham-woods,
Supplementary Figure S1). The forest is dominated by Fraxinus excel-
sior, A. pseudoplatanus and Corylus avellana. The mean annual rainfall is
726 mm, the mean annual temperature is 10°C and the mean annual
radiation is 118 W m~2 (Butt et al., 2009). Wytham Woods is a typical
temperate forest site in southern Great Britain (Kirby et al., 2014;
Savill et al., 2011), and its D distribution (Figure 1) is representative for
broadleaved woodlands in Great Britain (Forestry Commission, 2013).

TLSis an active remote sensing technique that captures the environ-
ment in three dimensions by emitting millions of laser pulses (Calders
et al., 2020). A 3D point cloud is generated through analysis of the
elapsed time between emission and detection of laser pulses that are
reflected back to the TLS instrument. TLS data were collected in leaf-
off conditions throughout late November 2015, December 2015 and
January 2016. Windy days were avoided to ensure data quality. We
used a RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser Mea-
surement Systems GmbH). The instrument has a beam divergence of
0.35 mrad and operates in the infrared (wavelength 1550 nm) with a

range up to 350 m. The pulse repetition rate for each scan was 300 kHz,

the minimum range was 0.5 m and the angular sampling resolution was
0.04°. This resulted in 22,500,000 outgoing pulses for a single scan,
resulting in a beam diameter of 2.45 cm and beam spacing of 3.5 cm
at 50 m (for instance). The azimuth angle range was 0°-360°, and the
zenith angle range was 30°-130°. Therefore, an additional scan was
acquired at each scan location with the scanner tilted at 90° from the
vertical to complete sampling of the full hemisphere at each location.
Scans were donein alarger 6 ha area using an approximate 20 m x 20 m
grid to ensure the best possible data quality within our 1.4 ha study
area (Wilkes et al., 2017). Trees which had at least more than half of
their stem at tree diameter 1.3 m inside the boundaries of the study

area were included.

2.2 | TLS-derived structural metrics and carbon
stocks

Analysis of single trees from a co-registered point cloud required
tree segmentation. When a multi-stem tree splits into single stems
below 1.3 m, each stem was considered to be an individual tree
in the analysis. Tree segmentation used the open-source software
treeseg (A. Burt et al.,, 2018), followed by visual inspection to ensure
that every tree is segmented correctly. Treeseg is mainly data-driven
and uses few a priori assumptions about tree architecture. This
approach uses generic point cloud processing techniques, such as
principal component analysis, region-based segmentation, Euclidean
clustering, shape fitting and connectivity testing. Full details of each
step involved in the tree segmentation can be found in Calders
etal.(2018).
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2.2.1 | Structural metrics (JCGM, 2008) without the correlation terms:
N sy 2
Tree height, H, was calculated as the difference between the height of U? (Valitrees) = 2 <$> u? (Vj), (1)
i=1 i

the highest and lowest LiDAR point of a single tree point cloud. The
diameter at breast height, D, was calculated on a 0.06-m thick cross
section between 1.27 and 1.33 m above the lowest point through a
least squares circle fitting algorithm to account for potential occlusion
in the LiDAR data (Calders, Newnham et al., 2015). A quality check was
performed on this initial estimate of D. These quality criteria thresholds
removed obviously incorrect fits for those distorted by a few outlier
points, occluded regions or cross sections that were too far removed
from a perfect circular shape (Supplementary 52.2). A total of 661 trees
passed these D quality criteria, and for the 174 other trees D was
derived from the quantitative structure models (QSMs) stem cylinder
at 1.3 m. Alpha shapes (concave hull) were calculated using the shapely
package in python v3.7.6 (Python Software Foundation, n.d.). Crown
area (CA) is derived from the vertical projection of the full point cloud
using alpha shapes.

2.2.2 | Carbon stocks

3D measurements of trees through TLS methods were combined with
geometric modelling to estimate their volume (Calders, Newnham
et al,, 2015). Isolating individual trees from a forest point cloud fol-
lowed by enclosing points with geometric shapes results in a volume
estimate of the tree, which can be converted to mass using the wood
density. We collected leaf-off TLS data (i.e. in the winter in a deciduous
forest) to ensure capture of all woody components of the trees (stem,
branches) and minimize the impact of leaves on the point cloud (Boni
Vicari et al., 2019; Krishna Moorthy et al., 2020).

Individual leaf-off tree point clouds are enclosed with geomet-
ric shapes to create QSMs that allow volume calculations. Here, we
used the TreeQSM v2.0 workflow (https://github.com/InverseTampere/
TreeQSM) described in Calders, Newnham et al. (2015). This approach
builds on Raumonen et al. (2013) and fits cylinders to the branch
segmented point cloud data (Supplementary Figure S2). The most
important input parameter in QSM reconstruction is the cover patch
size, which defines the size of the building blocks to model the tree
branches from the base up. We optimized the patch size automati-
cally using a modified version of Calders, Burt et al. (2015) and we
refer to Calders et al. (2018) for a step-by-step description of this
approach. Once the optimal patch size has been determined, the mod-
elling procedure produces multiple QSM iterations for each tree with
this patch size to quantify the QSM model fitting uncertainty (as a
stochastic fitting process). From these multiple iterations of whole-tree
volume estimations (V), a standard deviation, which is representa-
tive of the QSM model fitting uncertainty, is produced. In order to
propagate this uncertainty from tree level i (V;) through to the plot
estimates (Vjitrees), We utilized the law of propagation of uncertainties

where u(Vyjiirees) is the uncertainty of the final estimate (Vyjtrees) for
the total number of trees (N), av;”% gives the sensitivity coefficients,
and u(V;) gives the uncertainty associated with the inputs (V;).

To scale this to per hectare (V,,;) estimates, we use

2

12 (Vig) = <&> 2(V), @)

0 Val Itrees

Vha > 1
where (| ———— ) = —.
< aValltrees 14

Model uncertainties were given with a coverage factor of 2, which is
equal to approximately 95% confidence level according to a Gaussian
distribution.

A conversion of QSM volume to mass was done using species-
specific wood density values. Tree species were identified by matching
TLS tree maps with field inventory coordinates of trees. Wood density
values were taken from McKay et al. (2003) for the three dominant
species A. pseudoplatanus, F. excelsior and Q. robur, and from the DRYAD
database (Zanne et al., 2009) for the other three species (Corylus avel-
lana, Crataegus monogyna, A. campestre). Seventy-one trees could not be
assigned a species as they were generally too small to be included in the
field inventory, and a weighted wood density was used for these trees
(Supplementary Table S2). Conversion of volume into AGB through
wood density adds uncertainties to AGB estimates, caused by high
inter-, intra-species and within-tree variability of wood density (Demol
etal.,, 2021). The carbon density of (dry) biomass is often approximated
at 50% for trees found in British and European forests (Matthews,
1993; Nabuurs et al., 2007). Here, we use species-specific values of car-
bon density derived in Wytham Woods (Butt et al., 2009; Fenn et al.,
2015). The overall mean carbon densities were 49.07% for Fraxinus
excelsior, 47.40% for Q. robur, 46.89% for A. pseudoplatanus and 47.79%
for the remaining species.

TreeQSM has been benchmarked against other QSM methods
(Hackenberg et al., 2015), as well as destructive measurements of
smaller (A. P. Burt, 2017; Calders, Newnham et al., 2015) and larger
trees (A. Burt et al., 2021; de Tanago Menaca et al., 2018; Momo
Takoudjou et al.,, 2018). However, most of these studies used leaf-on
TLS data, reporting slight overestimations of TLS-derived AGB com-
pared to destructive measurements. Calders, Newnham et al. (2015)
reported a total AGB overestimation of 9.7% to the reference measure-
ment compared to an underestimation of 29.9-36.6% for allometric
models in native Eucalypt Open Forest (dry sclerophyll Box-Ironbark
forest) in Victoria, Australia. Momo Takoudjou et al. (2018) reported a
bias of 4.7% when comparing optimized QSM with destructive mea-
surements in Cameroon. Gonzalez de Tanago et al. (2018) reported

a small underestimation (bias —3.7%) when comparing QSMs against
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destructive harvesting for arange of tropical trees across Peru, Guyana
and Indonesia. A. Burt et al. (2021) demonstrated the importance of
using leaf-off (or removal of leaves in leaf-on) TLS data for estimat-
ing woody AGB (using the same RIEGL VZ-400 instrument used in this
study). Using destructive harvesting of trees in Brazil, A. Burt et al.
(2021) reported mean relative errors indicating a TLS AGB overestima-
tion of 42% for leaf-on QSMs and a 3% underestimation for the leaf-off
QSMs.

2.3 | Allometric tree volume model evaluation
using TLS data

Here we fitted new allometric models using the TLS estimates of tree
volume as calibration data: species-specific for A. pseudoplatanus and
a generic (non-species-specific) model. Structural characteristics of
these trees are described in Supplementary Table S3. We calculated a
species-specific model for A. pseudoplatanus due to its large sample size.

We used ordinary least squares (OLS; Im package in R version 3.6.3)

to fit the following models with the data:

Model 1(m1): In(V) = ag + a4 In(D) +¢,
Model 2 (m2): In(V) = by + b1 In(D) + by In(H) + ¢,

Model 3 (m3): In(V) = cg + ¢1 In(D) + ¢, In(H) + c3 In(CA) + .

Units are V (m3), D (m), H (m) and CA (m2). In is the natural loga-
rithm, and ¢ describes the random error of the model. Model m1 is
used to establish the Bunce allometric models. Similar to A. Burt et al.
(2020), multivariate models m2 and m3 add more complexity, given
the structural parameters that are derived from TLS. D, H and CA are
independent observations of individual trees and derived from the TLS
data. OLS was selected over more robust methods despite ‘outliers’
(see Supplementary Figures S4 and S5), because these are perfectly
reasonable observations of individual trees, and there is no justifi-
cation for their exclusion, which would otherwise artificially reduce
the variance observed in these forested ecosystems. The lack of large
(beyond + 2) outliers in our data means there should be minimal effect
of leverage. However, while in general heteroskedasticity and non-
normality do not bias OLS model parameters themselves (Hayashi,
2000; Olvera Astivia and Zumbo, 2019), but can potentially intro-
duce bias in the standard errors. Ideally, tests of heteroskedasticity
would be a routine part of fitting allometric models to tree size data.
But in the absence of this, care needs to be taken in interpreting
out-of-sample predictions and uncertainty (A. Burt et al., 2020). A fun-
damental assumption of our analysis is that both the expected error
in TLS-derived estimates of volume is zero and that individual errors
are uncorrelated with one another. If these assumptions do not hold
(e.g., the error in the TLS estimates is correlated with tree size), the
models are incorrectly specified, and the tests of size invariance are dif-
ficult to interpret. We believe this is a reasonable assumption because

of evidence accrued from validation studies comparing TLS estimates

(derived from the same instrument and processing chain) with direct
weighing measurements (Australia - Calders, Newnham et al., 2015;
Brazil - A. Burt et al., 2021). Conversion of these models in real-space
requires using the widely used Neyman correction factor (Neyman and
Scott, 1960), which is based on the OLS estimate of the standard devi-
ation of the error (equation 16 in A. Burt et al., 2020), that is Ag =
ege@z/2 ,Where gis the estimated standard deviation.

Model 1 (m1): V = Ay D%
Model 2 (m2): V = By DP1HbP2

Model 3 (m3): V = Co D1H2 CAS.

Confidence intervals for these parameters were constructed using
a BCa bootstrap (95%, 10,000 iterations replicates in R using
set.seed(123), Supplementary Table S4). Note that D, H and CA are
derived from TLS measurements and that the use of other measure-
ment techniques will introduce inconsistent measurement error (as per
A.Burtetal., 2020).

A repeated (10 times) stratified 10-fold cross-validation was used
to assess model uncertainties: the median symmetric accuracy (i.e. per-
centage error) and the symmetric signed percentage bias (percentage
bias) were conducted (Supplementary Table S5).

3 | RESULTS
3.1 | TLS-derived carbon stocks

The total QSM-derived volume for all 815 live standing trees (Figure 2)
is 1039.6 + 5.4 m3, which equates to 742.6 + 3.9 m® ha~1. The rela-
tively low (<1%) model uncertainties are due to the high point cloud
quality, which can be mostly attributed to the leaf-off data acquisi-
tion conditions. Leaf-on TLS data will increase occlusion in the data
and requires an additional processing step to remove leaves using leaf-
wood separation algorithms (Béland et al., 2014; Boni Vicari et al.,
2019; Krishna Moorthy et al., 2020; Wang et al., 2020), which will
introduce additional uncertainty.

TLS-derived AGB was 573.8 tonnes in total for all live standing
trees, which equates to 409.9 t ha=! (Figure 3). This is significantly
more than the 231.9 t ha~! resulting from the Bunce allometric
models that are commonly used in these temperate forests (Bunce,
1968; Butt et al, 2009; Forestry Commission, 2014a, 2014b) and
that have been applied previously at this same site for biomass
estimation (Supplementary Table 1). The agreement between indi-
vidual tree AGB estimated through TLS data and allometric models
shows a concordance correlation coefficient (CCC) of 0.77 (Figure 3).
Overall, TLS-derived AGB is larger than estimates from allometric
models, even for trees that fall within the size range of the allomet-
ric calibration data. However, AGB residuals increase for trees with
larger diameters (Supplementary Figure S3). This is similar to pre-
vious findings (Calders, Newnham et al., 2015; de Tanago Menaca
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FIGURE 2 3D TLS data. (top) top-of-canopy view of 835 trees in the 1.4 ha study area coloured by species. (bottom) side view of individual
trees. A 3D view of these trees and their QSMs can be found in Supplementary Figure S2.

et al.,, 2018), but the magnitude of the residuals is much larger for our
dataset.

Further conversion of our TLS-derived AGB values using species-
specific carbon densities results in an estimate of 194 t ha=? of carbon.
This translates to 1.77 times more carbon when compared to car-
bon values derived through the allometric AGB models developed by
Bunce.

3.2 | Allometric tree volume model evaluation
using TLS data

As sessile organisms, trees have a significant ability to adjust their phe-
notype in response to different environmental conditions, that is their
so-called plasticity (Laitinen and Nikoloski, 2019; Loubota Panzou et al.,

2020). Even within our study area, trees of the same species express

extraordinary plasticity (Figure 4). Here, we explored the impact of
this plasticity on three different allometric model forms. We opti-
mized each model form for A. pseudoplatanus (n = 532) as well as a
generic model (all living trees, n = 815) that can be applied across
species. Model m3 performed better than the other model forms with
a reduction of at least 30% in mean uncertainty and 54% in mean bias
(Supplementary Table S5).

4 | DISCUSSION

4.1 | Understanding discrepancies in biomass:
Allometric model misuse

AGB allometric models are often constructed using calibration data

with certain assumed characteristics (e.g., heavily biased towards small
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2015). Letters D and E relate to the individual trees in Figure 2. CCC is the concordance correlation coefficient (together with its 95% confidence
interval) and demonstrates the degree of agreement of two methods and can range between 1 (perfect concordance) and —1 (perfect discordance).
The red shaded box indicates the range (1-1617 kg) of destructively measured AGB that underpins the Bunce allometric models.

trees, specific taxa and location), that are inconsistent with trees to
which they are applied. We argue that the underlying assumptions used
to predict carbon stocks for temperate broadleaved forests in Great
Britain, and to some extent across Europe, are likely not met currently
due to two key factors: (1) trees do not follow a size-invariant scal-
ing relationship, particularly at larger size; and (2) changes in forest
management have increased the abundance of larger trees since the
development of these allometric models in the 1960s.

411 | Size versus volume dependency in allometric
models

There is a lack of large trees in the data underpinning the Bunce AGB
allometry compared to 2015 field inventory and TLS data that cap-
ture all trees within our study area, irrespective of size (Figure 1). The
median D from Bunce (1968) is 8.4 cm, where this is 15.9 cm for the
TLS data and 19.8 cm for the field inventory. The difference between
TLS and field inventory is due to the presence of extra (smaller) trees in
the TLS data that are not recorded in the field inventory. The median D
for TLS shifts to 19.2 cm when not accounting for these smaller trees.
Larger trees are generally underrepresented due to the impractical-
ity and expense of collecting destructively sampled calibration data,
even for allometric models that are applied widely (A. Burt et al., 2020).
Most allometric models assume that the relation between size (or
some specific, measurable aspect of size such as trunk diameter) and

mass is invariant and therefore can be specified using constant model

parameters across tree size. However, assessing the validity of this fun-
damental assumption is difficult because of the aforementioned lack
of data from large trees (A. Burt et al., 2020). Systematic error in allo-
metric models has been identified previously in tropical forests (A. Burt
et al.,, 2020; Picard et al., 2015; Ploton et al., 2016) and through global
synthesis (Poorter et al., 2015). Inclusion of crown area in allometric
models results in lower uncertainties and biases and smaller residu-
als for larger trees. This supports earlier work on the importance of
including crown area in allometric models (Jucker et al., 2017). Our
data suggest that, overall, trees with small D will first grow in H, before
expanding their CA (Supplementary Figure S6). Recent destructive har-
vest work combined with TLS has shown that large tropical trees can
have 60% of their total mass in their crowns, much more than predicted
by allometry calibrated on much smaller trees (A. Burt et al., 2021).
Figure 5 shows the impact of iteratively removing the 10% small-
est trees in terms of V for model m1 (i.e. the same model form as used
for the Bunce allometric models), followed by refitting the model, and
non-parametric calculation of parameter confidence intervals via boot-
strapping. When we refit the model, the population also changes by
removal of the trees, which can result in slightly different variances
between model fits. Confidence intervals for parameters ag and a4 are
not in agreement across the whole range (i.e. they do not intersect
with every other sample size). There are multiple plausible explana-
tions for this, such as systematic error in the TLS-derived estimates of
V. However, a growing body of literature is demonstrating that these
estimates can be highly accurate. Therefore, a strong candidate for

explaining this is that these trees do not follow a size-invariant scaling
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FIGURE 4 Plasticity expressed by the 835 trees of our study area in Wytham Woods. Data (xz section) from 3D TLS, trees or
decreasing height.

relationship between D and V. Similar results are observed for model reason,
m2 (Supplementary Figure S7) and m3 (Supplementary Figure S8) with
clear trends across
implication of this is that predictions from allometric models assu
ing size-invariance
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iteratively removed and model m1 was refitted. Bootstrapped 95% confidence intervals (N = 10,000) are shown for each model parameter. The
size of the confidence intervals increases as the sample size decreases, but it can be seen in multiple instances that intervals do not intersect with

one another.

(Smith, 1980), but are often ignored. Zhou et al. (2021) present a the-
oretical framework to characterize allometric models using a dynamic
allometric scaling relationship and account for the issue of scaling in

different-sized trees; TLS data are likely well-suited to this approach.

41.2 | Increased frequency of large trees

Trees compete for light and other resources, and combined with for-
est management practices and other pressures such as grazing, this
determines the overall tree structure in forest stands. The majority
of primary (ancient) woodlands were managed under different types
of coppice and coppice with standards, with patterns related to local
history and conditions with many different structures. Coppice stems
were widely used for building material and for making charcoal for iron
smelting from the Weald of Kent to the Lake District and to Western
Scotland. The majority of these woods have not been managed since
the decline of the charcoal industry towards the end of the nineteenth
century and are thus usually mixtures of overgrown coppice stools and
singled standards. Local felling for timber and firewood, especially in
the two World Wars, was a subsequent source of local variation. TLS
data collection for this study was in an area of Wytham Woods cate-
gorized as ‘disturbed ancient woodland’, which was formerly managed as
coppice with standards but converted to high forest during the twenti-
eth century (Butt et al., 2009). Very little management has taken place
after the 1960s in the area where TLS data were collected in 2015, and

the current D distribution is representative for broadleaved species in
Great Britain (Figure 1 and Forestry Commission, 2013)

Forest structure has undergone significant changes in Great Britain
compared to when the Bunce allometric models were established in
1968 based on data collected in actively coppiced woodlands. There
has been a general increase in basal area (Kirby et al., 2005) that more
than doubled in Wytham Woods in 40 years from 1974 (Kirby et al.,
2014). Furthermore, the modal diameter class in Wytham Woods has
shifted from 11-20 cm in 1974 to 30-40 cm in 2012 (Kirby et al.,
2014), indicating an increased frequency of larger trees in the popu-
lation, typical of abandoned coppice forest (Rackham, 2015). Analysis
of all trees in our study area demonstrates the importance of larger
trees in carbon accounting (Figure 6). Less than 2% of the trees account
for 25% of the plot-level AGB and less than 7% of trees represent half
of the AGB, all larger than those used to calibrate the Bunce allomet-
ric model. This complements findings in the tropics that large trees
contribute disproportionately to above-ground carbon stocks (Poulsen
etal, 2020).

4.2 | Perspective on forest climate mitigation
contribution

The trajectory of growth at Wytham Woods strongly reflects the
upheavals in management over the past century, most recently dur-
ing the Second World War (Kirby et al., 2014). This results in a net
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carbon sink of approximately 1 t ha=! year~! ha (unpublished data)
using the traditional allometric models from Bunce (1968). Revisiting
this estimate based on our 3D analysis results in a net carbon sink
of approximately 1.77 t ha~1 year~1 ha, but this sink may not be sus-
tainable. Ash dieback, caused by the fungal pathogen Hymenoscyphus
fraxineus, was first observed in the UK in 2012 (Mitchell et al., 2014)
and eventually reached Wytham Woods in 2017 (Kirby, 2020). Ash
contributed to approximately 13.2% of the biomass carbon in our study
area, but its overall presence is close to 34% in a larger 18-ha long-
term monitoring plot of which this study area is a part. The impact of
ash dieback is expected to be significant since the abundance of ash
in regeneration (number of seedlings) increased from 34% in 1974 to
75% in 2012 (Kirby et al., 2014) over the whole of Wytham Woods.
Wytham Woods, and in extension a significant amount of European
temperate deciduous forests, are likely to have become (or will soon
become) a substantial carbon source in the next few years due to ash
dieback (Needham et al., 2016).

The global terrestrial carbon sink has increased in the past decades
(Ciais et al., 2019). Recent work suggests that the tropical terres-
trial carbon sink is declining (Hubau et al., 2020), which highlights the
importance of non-tropical forests, particularly in the Northern Hemi-
sphere, for climate mitigation through carbon sequestration. Predicted
changes in climate will likely increase forest disturbances (Seidl et al.,
2017). These disturbances have a significant impact on the carbon bud-
get; for example, the 2010 Amazon drought event led to 2.2 Pg C
committed emissions due to increased tree mortality, as well as subse-
quent impacts on forest composition and resilience (Lewis et al., 2011).

Furthermore, if allometric models underestimate current stocks, as our

results here suggest, the magnitude of this carbon source is likely to
be substantially larger than anticipated. Reducing uncertainty in forest
carbon estimates is vital, given that land use, and forest protection and
restoration, in particular, constitutes one quarter of countries’ current
commitments to their Paris Agreement targets (Grassi et al., 2017).
These targets need to take into account the trajectory and magnitude
of current carbon stocks in a changing climate (Anderegg et al., 2020).
The urgency of thisis illustrated by the fact that the UK’s biomass stock
reporting to the FAO (FAO, 2020; Forestry Commission, 2014b) is still
based on Bunce’s allometric models for deciduous forest (McKay et al.,
2003), almost certainly resulting in significant under-reporting. The
three dominant species in our Wytham Woods site contribute to more
than 26% of the broadleaved tree AGB and carbon in Great Britain
(Forestry Commission, 2014a, 2014b). This problem is almost certainly
more widespread; significant allometric underestimates of the biomass
of large trees particularly have been reported for Sequoia sempervirens
(Disney et al., 2020), Eucalyptus spp. (Calders, Newnham et al., 2015)
and tropical trees in Peru, Indonesia and Guyana (de Tanago Menaca
etal, 2018).

5 | OUTLOOK

There are several actions that could be taken to address potential
biases in biomass carbon estimates and drastically improve estimates
of forest biomass. These actions are

(i) Generate a much greater sample of nondestructive estimates of

AGB with TLS, together with a better understanding of wood density
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(Demol et al., 2021). These estimates can provide increased sample
sizes, with more large trees (A. Burt et al., 2020; Vorster et al., 2020)
and, critically, allow for properly testing the fundamental assumption of
size dependency in allometric models (A. Burt et al., 2020). Importantly,
TLS can be used to capture the full-size distribution of trees within sam-
ple plots, rather than having to select a few individuals for destructive
harvest.

(ii) Develop empirical models of AGB that do not assume size invari-
ance. This requires potentially moving away from the assumption that a
single form will work across all size ranges (Zhou et al., 2021), based on
looking at size-biased samples of harvested trees. Models should sam-
ple trees across the full-size range and quantify the resulting prediction
uncertainty. This implies more destructive harvesting, particularly bal-
anced datasets that cover large size ranges and/or more TLS sampling,
but ideally both.

(iii) Establish a biomass reference network of permanent sample
plots that are specifically designed for estimating and assessing AGB.
This is particularly important given the rapid expansion of satellite-
derived biomass estimates, which are likely to become the de facto
standard for assessing state and change of forest AGB at large
scales. Spaceborne estimates all rely on allometric approaches to some
degree, but there is almost nothing in the way of ground-based mea-
surements to calibrate or validate these estimates. GEO-TREES has
been proposed as a solution to this (https://earthobservations.org/
documents/gwp20_22/GEO-TREES.pdf). The aim is to build on and
supplement existing long-term ecological plot networks, but includ-
ing TLS, airborne laser scanning and other ancillary data (including
harvest measurements) to specifically allow for upscaling of AGB and
development of new empirical models.

(iv) Ensure much better traceability in the use of allometric models.
As we show in this work, due to the challenges of destructive har-
vest and the apparent but untested size-invariant nature of allometric
model fits, allometric models are very often applied at one or even sev-
eral removes from their original data. Where possible, studies that use
published allometric models should clearly identify where the under-
pinning data were collected and when, the number and size range of
trees from which models were derived, and note any assumptions made
regarding environmental conditions, wood density etc. This informa-
tion is needed to allow researchers to reproduce the original model
fit and to properly assess how well it ought to work in their partic-
ular case. This may mean accepting that models are less likely to be
suited for wide general use, but will also highlight where work should
be focused to improve models and reduce uncertainty. Database ini-
tiatives such as GlobAllomeTree (http://www.globallometree.org/) can

help in achieving better traceability.
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Supplementary table S1: Overview of studies and reports that apply
the Bunce allometric AGB models.
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Supplementary table S2: Species-specific wood density values used for
conversion of QSM volume to woody biomass

Supplementary figure S1: Location of the 1.4 ha study area in Wytham
Woods (grey box).

Supplementary figure S2: Examples of extracted individual trees and
their reconstructed QSMs using TreeQSM.

Supplementary figure S3: AGB residuals for individual tree AGB for
Wytham Woods: allometric AGB using Bunce allometric models minus
TLS-derived AGB

Supplementary table S3: Structural characteristics of A. pseudopla-
tanus and all trees within the Wytham Woods study area
Supplementary table S4: Model parameters and bootstrapped 95%
confidence intervals for the 3 model forms for A. pseudoplatanus and all
trees within the Wytham Woods study area. sis the estimated standard
deviation

Supplementary table S5: Uncertainty and bias from these models fol-
lowing a repeated (10 times) stratified 10-fold cross-validation are
calculated using median symmetric accuracy (MSA) and the symmetric
signed percentage bias (SSPB)

Supplementary figure S4: Regression diagnostics for the 3 model fits

for Acer pseudoplatanus

Supplementary figure S5: Regression diagnostics for the 3 model fits
for all trees

Supplementary figure Sé6: Tree diameter (D), tree height (H) and verti-
cal projected crown area (CA) for 815 living trees in Wytham Woods
derived from TLS data

Supplementary figure S7: The 10 percent smallest trees in terms of
volume were iteratively removed and the multivariate model m2 was
refitted

Supplementary figure S8: The 10 percent smallest trees in terms of
volume were iteratively removed and the multivariate model m3 was
refitted
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