
This journal is © The Royal Society of Chemistry 2022 Energy Environ. Sci., 2022, 15, 3503–3518 |  3503

Cite this: Energy Environ. Sci.,

2022, 15, 3503

Quantitative spatiotemporal mapping of thermal
runaway propagation rates in lithium-ion cells
using cross-correlated Gabor filtering†
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Abuse testing of lithium-ion batteries is widely performed in order to develop new safety standards and

strategies. However, testing methodologies are not standardised across the research community,

especially with failure mechanisms being inherently difficult to reproduce. High-speed X-ray radiography

is proven to be a valuable tool to capture events occurring during cell failure, but the observations made

remain largely qualitative. We have therefore developed a robust image processing toolbox that can

quantify, for the first time, the rate of propagation of battery failure mechanisms revealed by high-speed

X-ray radiography. Using Gabor filter, the toolbox selectively tracks the electrode structure at the onset

of failure. This facilitated the estimation of the displacement of electrodes undergoing abuse via nail

penetration, and also the tracking of objects, such as the nail, as it propagates through a cell. Further, by

cross-correlating the Gabor signals, we have produced practical, illustrative spatiotemporal maps of the

failure events. From these, we can quantify the propagation rates of electrode displacement prior to

the onset of thermal runaway. The highest recorded acceleration (E514 mm s�2) was when a nail

penetrated a cell radially (perpendicular to the electrodes) as opposed to axially (parallel to the

electrodes). The initiation of thermal runaway was also resolved in combination with electrode

displacement, which occurred at a lower acceleration (E108 mm s�2). Our assistive toolbox can also be

used to study other types of failure mechanisms, extracting otherwise unattainable kinetic data.

Ultimately, this tool can be used to not only validate existing theoretical mechanical models, but also

standardise battery failure testing procedures.

Introduction

Lithium-ion batteries offer a convenient power source for a
broad range of mobile technologies,1 as well as the potential to
reduce greenhouse gas emissions, particularly in transport
applications, if their life cycle is managed sustainably.2 They
are also finding increasing use in residential and grid energy

storage.3 However, their growing uptake poses a safety issue,
owing to the potential for highly energetic failure events to
occur. These can be triggered in a number of ways, such as
electrically (short-circuiting),4 thermally (overheating),5 or
mechanically (impact or penetration),6 and can ultimately lead
to explosions, fires, and the release of toxic and flammable
ejecta and gases.3,7 Although catastrophic failure is uncom-
mon, occurring in around 1 in 10 million units,1 tens of billions
of batteries enter the market each year, making the risk
significant.8 This is a particular concern for ‘mission critical’
applications, for example in communications, electric vehicles
and aerospace, in which the integration of lithium-ion batteries
is hampered by concerns with their safety and reliability.9

Therefore, to enable their continued uptake, it is crucial that
lithium-ion battery failure is better understood, such that safer
batteries may be engineered, with improved solutions and
mitigation strategies for failure.

X-ray radiography is a powerful tool for capturing the
degradation of individual lithium-ion cells operando, under
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both standard operation and abuse testing conditions.4,5,10–12

Real-time and high-speed (i.e., slow-motion) imaging offer a
valuable insight into the mechanisms of failure, through
directly observable changes to the cell structure. X-ray radio-
graphy can track three-dimensional structural information at
high speeds (i.e., 2000 Hz) offering unparalleled insights into
battery failure. Additionally, the efficacy of hazard mitigation
strategies, such as safety vents, separator shutdown and current
interruption, and positive temperature coefficient devices,
may also be investigated.4 However, most failure/safety testing
methods do not have accompanying high-speed X-ray radio-
graphy data, and the analysis and interpretation of any such
available data has remained largely qualitative. This is due to
the presence of multiple complex events, involving both gradual
and sudden shifts of the electrodes, and their decomposition,
as well as, in some cases, the movement of a large object such
as a nail. This poses a significant image-processing challenge, for
which there is currently no robust, quantitative analytical
approach. Typically, videos are examined by eye, with frames of
interest selected to produce a timeline of visible events. Although
informative, this is a very slow method, owing to the large amounts
of information present in a single video, and mechanisms are
typically postulated from qualitative observations. By extension, a
broad, statistically significant analysis of multiple videos using the
same approach is not only extremely time-consuming, but also
supremely challenging. Subtle yet key events may also not be
apparent to the eye, and such manual observations are likely to
be inconsistent between measurements (due to the stochastic
nature of these failure events) and between researchers under-
taking the data analysis.13 A robust analytical toolbox for quantify-
ing the kinetics of cell failure is therefore required in order to fully
exploit the information contained with existing and future X-ray
radiography data that are now being collated in open-access
databases (e.g., the Battery Failure Databank hosted by the National
Renewable Energy Laboratory14).

The internal structure of a lithium-ion cell is typically an
assembly of periodic electrode layers, current collectors and
separators. In X-ray radiography, this produces a distinct image
‘texture’, composed of bands of compositional contrast result-
ing from the different X-ray attenuation coefficients of each
material. While a variety of feature-detection and object-
classification algorithms are available, X-ray radiography of
lithium-ion cell failure poses a unique combination of chal-
lenges that hinder their applicability:

(i) Although the electrode texture is well-defined, it degrades
unevenly across the field of view, disappearing as failure occurs.
Frequency-domain analyses, such as fast Fourier transforms, that
can identify the initial texture based on spatial or temporal
frequencies,15 are unable to track the changes in phase and
orientation in the spatial domain as failure progresses.

(ii) High frequency noise is typically present, making the
identification of periodic or aperiodic features challenging.
Pixel-based region-labelling algorithms fail in accurately decon-
voluting the noise from the features of interest.

(iii) In some cases, for example during nail penetration
testing, large objects are present in the field of view. These

obscure objects introduce variations in the texture, leading to
analytical artefacts.

In this work, we apply Gabor filter banks and subsequent
post-processing algorithms to high-speed X-ray radiography
data of lithium-ion cells undergoing abuse via nail penetration
and ball compression testing. Gabor filter banks are commonly
used in visual processing, owing to their sensitivity to the
orientation (angle) and spacing (frequency) of edge features.16,17

They have been effective in the automated recognition of tex-
tures,18,19 structural variations in electron microscopy images,20–23

anatomical structures in X-ray computed tomograms,24,25 as well
as human faces26 and fingerprints.27 Texture may be detected
and quantified as a function of component feature size, orienta-
tion and distribution. The ability to control the frequency and
orientation of the Gabor filters enables the user to selectively
pick out the electrode texture and omit other objects. Further-
more, the filters can track changes in the spatial domain
(directional sensitivity) as failure progresses within a cell.
Ultimately, this approach produces frequency-sensitive spatial
information, while at the same time being noise-insensitive.
Thus, it addresses the challenges outlined above and is a
powerful and an appropriate technique for analysis of X-ray
radiography data.

We have developed an image processing toolbox outlined in
the following manner:

(i) We firstly objectively identify the internal cell structure
and nail as separate textures, representing them as Gabor-
filtered frames with features defined by distinct functions of
angle and frequency. While failure may be induced in any
direction, the electrodes present a highly ordered structure that
can be resolved based on its particular orientation.

(ii) The Gabor-filtered frames are then cross-correlated over
time, facilitating the tracking of the degradation and failure of
cells with a high spatiotemporal resolution and allowing us to
estimate the displacement of electrode layers before failure.

(iii) Finally, from the conversion to spatiotemporal informa-
tion we produce a single practical, and illustrative map of the
failure events occurring in an entire video, from which we
quantify the rate of propagation of failure both axially (parallel
to the electrodes) and radially (perpendicular to the electrodes).

Battery failure involves multiple complex events occurring in
all three dimensions. Using our technique, we have, for the first
time, tracked how the structure of electrodes changes over
time, as a direct result of the forces acting on it. Not only does
our approach introduce a means of quantifying failure pro-
cesses, but it may also facilitate the validation of existing
mechanistic models. Our spatiotemporal maps reveal that the
rate of electrode displacement (before the onset of failure) is
higher when a nail propagates radially rather than axially. We
also identify and track the onset of failure, which occurs at
slower velocities than the electrode displacement and exhibits
varied third-order kinetic behaviour. With the spatiotemporal
maps, we may accurately describe not only ‘where and when’
failure originates, but also ‘how’ it propagates over time. In the
long term, we are confident that this toolbox can further the
understanding of battery degradation mechanisms by coupling
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mechanical failure models28–30 with electrochemical thermal-
runaway models.31 Furthermore, our approach provides an
open-source analytical toolbox developed on Python that may
be readily implemented on video data from any instrumental
setup, including legacy data from archives (toolbox available
upon request). Furthermore, the toolbox has a user-friendly
interface to guide appropriate parameter selection. Not limited
to visual assessments, any user may thus gain new perspectives
on their data, from which they may readily distinguish inter-
esting behaviours for further characterisation. Analysing a
variety of datasets, each of which were clearly distinct from
one another in both input and output, we have evidenced that
our technique is an extremely robust, efficient, informative and
transferable means of analysing such dense datasets. Our
technique is therefore extremely promising in advancing and
strengthening the understanding of failure mechanisms of
lithium-ion cells.

Experimental
Failure testing setup

The nail penetration testing was performed as previously
described by Finegan et al. (2017)6 inside a commercial nail
penetration system (MTI Nail Penetration Tester, MSK-800-
TE9002, MTI, Richmond, CA, USA), modified to have X-ray
transparent 2 mm thick aluminium front and rear panels for
X-ray imaging. The lithium-ion cells were held in place by
hydraulic clamps that operated at 4 bar. The hydraulic piston
nail penetrator was connected to a 5 bar air supply. All tests
were carried out using the smart nail described by Finegan et al.
(2017)6 or a stainless steel ball of diameter 20 mm (see Table 1).
Briefly, the smart nail is a 60 mm long stainless steel tube with
an external diameter of 4 mm and an internal diameter of
2 mm.32 The nail contains a thermocouple and has a conical tip
that was sharpened using a lathe.

Collection of X-ray radiography data

X-ray radiography was carried out at beamline ID19 at the
European Synchrotron Radiation Facility (ESRF). A polychro-
matic beam was used with a LuAG:Ce (Lu3Al5O12:Ce) scintillator
and a high-speed PCO.Dimax camera (PCO AG, Germany).
Images were captured at 2000 fps with an exposure time of
457 ms and 10 mm pixel-size. The raw data were processed
where flat-field correction was applied using a bespoke
MATLAB code. The resulting videos are provided as Videos
(‘SI_Video_1’–‘SI_Video_4’, ESI†).

Processing of radiography data

The pre-processed radiography data were opened in a bespoke
analytical toolbox developed on Python 3,33 with the following
packages installed: imageio,34 numpy,35 scipy,36 scikit-image,37

matplotlib,38 and tkinter.39 An experimental dataset consis-
ting of a single AVI/MP4 video or Tiff stack, or a folder of
images, was loaded through the imageio package and pre-
sented on a graphical interface via tkinter, where the user can
select the region of interest (ROI) and the set of frames to be
analysed. For datasets, especially legacy data that have gone
through video compression software, where the number of
frames has been altered – either through the introduction of
duplicate frames or dropped frames, the original frame rate
of video capture cannot be used for temporal analysis. To this
end, the original timestamp embedded in the frames can be
analysed using Google’s optical character recognition engine,
Tesseract,40 via Pytesseract,41 a wrapper for Python. Any dupli-
cate frames were ignored from analysis based on the detected
timestamps.

For a set of frames loaded, we define t = 0 s as the first frame
selected for analysis, unless otherwise stated, for which the
electrode structure is assumed to be pristine and unaffected by
any abuse process. ti is defined as the time of the ith frame,
where i frames are included in the analysis. All spatial informa-
tion has been presented in the Cartesian coordinate system,
where x represents the position in the axial direction, along the
X axis (parallel to the electrodes), and y represents the position
in the radial direction, along the Y axis (perpendicular to the
electrodes). Unless otherwise stated, the origin, x = 0 mm,
y = 0 mm, is the top-left corner of the rectangular ROI selected
by the user.

Upon converting the frames to an 8-bit greyscale format, the
contrast range of each selected frame was normalised (lowest
pixel value set to 0 and highest pixel value set to 255) and a
morphological reconstruction step applied to smoothen
noise.42 Gabor filter banks were then applied as discrete
sinusoidal waves modulated by a Gaussian function. This
implementation consisted of a [9 � 9] pixel kernel, which scans
across a frame (Fig. 1). The user can choose the most appro-
priate Gabor filter parameters (angle and frequency), which are
then applied on all the selected frames of a dataset.

Following the Gabor filtering step as shown in Fig. 1, post-
processing analyses were performed on the filtered frames
(Fig. 1c), to estimate electrode displacements and build tem-
poral and spatiotemporal maps, enabling the extraction of cell
failure kinetics.

Table 1 The analytical toolbox was tested on four datasets that involved failure testing using mechanical objects incident with the cells at different
locations and orientations

Dataset name Test type Cell type
Incidence angle of object (with respect to the
central axis of the electrode structure)

Location of test (along the
length of the cell)

SI_Video_1.mp4 Nail penetration LG ICR18650S3 Perpendicular Middle
SI_Video_2.mp4 Nail penetration LG ICR18650S3 Perpendicular Middle
SI_Video_3.mp4 Nail penetration LG ICR18650S3 Parallel Bottom
SI_Video_4.mp4 Ball compression LG ICR18650B4 Perpendicular Middle
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Results and discussion

The cell types, the failure-testing modes, and the location of the
tests are shown in Table 1. ‘SI_Video_1’ and ‘SI_Video_2’ (ESI†)
involve radial penetration of the smart nail midway along the
cell. ‘SI_Video_3’ (ESI†) entails axial propagation of the nail,
where the nail penetrates through the base of the cell.
‘SI_Video_4’ (ESI†) involves compression of the electrodes by
a ball, incident midway along the cell.

Texture detection using Gabor filters

We firstly applied a Gabor filter bank to a video to determine
the efficacy of capturing the texture in each frame, representing
the electrodes. Fig. 1a shows an example video frame, for which
a pair of Gabor-filtered output images are shown in Fig. 1b.
In the foreground image, which has been filtered optimally
(filter applied parallel to the electrodes, with a frequency
similar to the electrode spacing), the electrode structure shows

up as a strong signal (red – positive peak representing Cu/Al,
blue – negative peaks denoting electrolyte or the graphite layer,
and whites that represent the separator material or the Cu-
anode/Al-cathode interface). On the other hand, in the back-
ground image, which has been filtered poorly (filter applied
perpendicular to the electrodes, with a low frequency), there are no
features detected, aside from an artefact at the left side of the
image. Taking a Y cross-section through the optimally filtered data,
as shown in Fig. 1c, produces a very clear representation of the
alternating electrode structure. So, by using an appropriate choice
of filtering conditions (orientation, y and frequency, f, for example
from those shown in Fig. 1d), we acquire output data which do not
contain the high-frequency noise present in the raw image, with an
electrode spacing and relative contrast that are extremely well-
defined between large positive and negative values (normalised
here, and in the rest of the manuscript, to �1).

Once we had chosen optimal Gabor filter parameters for
a single frame of ‘SI_Video_1’ (ESI†), we applied the same

Fig. 1 Directional texture classification using the Gabor filter. (a) A typical X-ray radiography frame captured at 2000 fps showing the electrode layers.
The scale bar indicates 1 mm. (b) Images filtered using the Gabor kernel as shown in (d); the electrodes are filtered out when the filter (the sinusoidal
harmonic function) is applied perpendicular to the electrodes (radially, y = 01), whereas the electrode structure is captured when filter is applied parallel to
the electrode layers (axially, y = 901). (c) Y cross-section of the image filtered at y = 901, representing the output of the Gabor filter that is most sensitive to
the structure of the electrodes. (d) Gabor kernels with a sinusoidal wavelet (3D projections) applied at varying angles (y) and frequencies (f) on the inset
image shown in (a). y offers directional sensitivity to selectively filter ‘texture’ of the electrodes and the frequency (f) resolves the individual electrode
layers (optimal at f = 0.10 pixels�1). The output signal is maximised for y = 901 and f = 0.1, i.e., for the filter which best matches the orientation and spacing
of the electrodes (orange inset). For filters that do not match with the electrodes, the output signal is reduced, and the texture is not well-represented
(grey inset). For an appropriately filtered image, a Gabor signal of +1 represents the Cu/Al layers, �1 that of graphite/electrolyte and values around
0 represent the separator material or the Cu-anode interface/Al-cathode interface.
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process to each frame in the dataset and extracted the resulting
cross-sections for comparison. This allowed us to monitor the
condition of the cell over time. Fig. 2a, d and g show raw video
frames of a nail gradually penetrating a cell and disrupting the
electrodes. To the eye, there is a clear distinction between the
nail and the electrodes, but to precisely define their relative
arrangement is not trivial, particularly as the nail moves further
into the cell and the electrodes deform. However, by filtering
the images at y = 01 (radially) and y = 901 (axially), we were able
to selectively identify the electrodes independently and filter
out the nail. Fig. 2b, e, and h show the output frames filtered
parallel to the nail. The signal is initially just noisy throughout
the cell, i.e., the electrode texture is not picked out by the filter.
When the nail enters, we observe the appearance of a corres-
ponding texture perpendicular to the electrodes. Conversely,
when the filter is aligned with the electrodes, as in Fig. 2c, f,
and i, the signal is initially very pronounced. Its magnitude
then decreases in accordance with the texture changing as the
nail enters and causes a region of deformation to spread from
its entry point (see ‘SI_Video_5.avi’ (ESI†) for an animated
comparison of the Gabor filter ranging from y = 01 to 1801).
The outcomes of these contrasting outputs of the filters are

highlighted in the bottom row of Fig. 2, which shows single-
pixel-wide Y cross-sections from the centres of the filtered
images. So, the Gabor signal cross-sections allow us to compare
distinct features by tracking, over time, the textures that best
describe them. As the texture changes, such as the electrodes
losing structural integrity, the corresponding signal changes.

Tracking the nail velocity

To expand the functionality of our Gabor filtering approach, we
quantified the nail velocity using the video frames between
t = 0.2075 s and t = 0.5445 s from ‘SI_Video_1’ (ESI†) (where
t = 0 s refers to the first frame of analysis of the dataset shown
in Fig. 2a). Fig. 3a shows a raw video frame, with the ROI
cropped for nail tracking shown in Fig. 3a-(i). The corres-
ponding Gabor-filtered frame is shown in Fig. 3a-(ii), where
filter parameters of y = 1401 and f = 0.04 pixels�1 have been
used in order to align the filter with the edge of the conical tip
of the nail. The nail’s conical tip is clearly highlighted by the
filter, isolated from the rest of the ROI, and appears as a
distinctive peak in the Y cross-section, as shown in Fig. 3b
(blue circle marker) at a given frame. Applying the filter to each
cropped video frame and finding the position of this peak

Fig. 2 Selective Gabor kernel filtering of electrode ‘texture’ from the dataset ‘SI_Video_1’ (ESI†). The top row shows video frames at different times
during nail penetration. The second row shows the results of applying the Gabor filter at y = 01 to the video frames. The inner core of the smart nail is
detected, while the electrodes are not. The third row shows the results of applying the filter at y = 901 to the video frames. Here, the electrode texture is
captured. However, as the nail penetrates the electrodes, it is filtered out because the texture is no longer aligned with the filter. Plots in the bottom row
show the normalised Gabor signals of the electrode structure at y = 901 (black lines) and y = 01 (orange lines). As electrodes deform due to the nail (time =
0.437 s), the Gabor signal decreases accordingly due to reducing alignment of image features with the applied filter. The electrode signal in the central
region of frame, at time = 0.51 s, has disappeared as the electrodes have been entirely displaced by the nail. A Gabor map of the nail and the electrode
layers in frame, at time = 0.437 s, filtered from y = 01 to 1801 has been shown in the Video ‘SI_Video_5.avi’ (ESI†). The scale bar indicates 4 mm.
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(black markers) allowed us to calculate the displacement of the
nail tip over time, as shown in Fig. 3c. Thus, we may follow its
trajectory and determine its velocity (see Video ‘SI_Video_6.avi’,
ESI†). The nail pierces the cell casing and moves with a rather
constant velocity of around 2.22 mm s�1, balanced by the
mechanical resistance of the electrodes. The electrodes then
tear suddenly (t E 0.4645 s), allowing the nail to accelerate to a
peak velocity of 113 mm s�1 under continued application of its
driving force. It is worth noting that this is the first instance in
which quantification of such information characterising cell
failure has been reported. The understanding of safety testing
procedures may therefore be enhanced by applying our toolbox
to a range of failure scenarios. Such insight is likely to lead to
improved cell safety standards, and thus engineering solutions
for the production of safer cells.

Temporal cross-correlation of the Gabor signal

To quantify changes to the cell structure over time, we tracked
the Gabor signal at a single X cross-section over time, as shown
in the top plot of Fig. 4a. This location was chosen from the

dataset shown in Fig. 2, close to the surface of the nail
(x E 4.7 mm). Fig. 4a shows how the electrode structure in
close proximity to the nail shifts over time before finally failing
mechanically. We then compared the signal at time ti to the
initial signal at time t0 using cross-correlation, i.e., we calcu-
lated the similarity between the initial signal and signals from
each subsequent frame. This is shown in the bottom plot of
Fig. 4a, wherein the radial information (Y cross-section) at the
chosen X cross-section in each frame is collapsed into a single
value representing the ‘similarity’ with the first frame. When
the cross-correlation is large and positive, the texture at ti

resembles the initial texture at t0 (Fig. 4b, t1). When the value
is large and negative, the signal appears inverted (Fig. 4b, t3),
i.e., the electrodes have shifted a distance equal to half the
electrode thickness from its original position. When the value
is close to zero, there is either a complete misalignment
between the signals (Fig. 4b, t2) or the Gabor signal is low
at time ti, corresponding to the absence of electrode texture in
the images (Fig. 4b, t4). Until around 0.47 s in Fig. 4a, we can
see that the electrodes shift gradually and linearly due to the

Fig. 3 Tracking the velocity of a nail puncturing a cell. (a) A video frame was cropped around the nail (i) and a filter at y = 1401 and f = 0.04 pixels�1

applied (ii), to select one-half of the conical tip of the nail in the dataset ‘SI_Video_1’ (ESI†). (b) Y cross-section of the normalised Gabor signal from (a) (ii),
where the peak represents the position of the edge of the nail. The blue circle marker denotes the peak at the current frame, whereas the small black
circle markers denote the peak positions in the preceding frames (i.e., the path taken by the nail edge from t = 0.2075 s). (c) Displacement profile of the
nail determined from the relative positions of the tip-edge peak. The vertical dotted line denotes the timestamp of the frame shown in (a and b).
A temporal map of the nail and its displacement determination are available in the Video ‘SI_Video_6.avi’ (ESI†). A peak nail velocity of 113 mm s�1 was
estimated at t = 0.4645 s, i.e., the point when the electrodes fractured and the nail accelerated, leading to the steepest change in displacement. The scale
bar indicates 4 mm.
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mechanical force from the nail. From the temporal cross-
correlation, this corresponds to the electrodes moving out of
alignment and then realigning with neighbouring layers, giving
a total shift of around 1.5 electrode layers (i.e., 1.5 full
‘oscillations’ are present in the shifting signal). When, at ti,
the Gabor peak of an electrode layer aligns with the t0 position
of a neighbouring layer, the cross-correlation value is large and
positive, corresponding to one complete ‘electrode shift’, seen
as the second maxima in the cross-correlation plot. The temporal
cross-correlation also accurately indicates the time at which the
electrode structure completely failed (i.e., when the correlation
becomes a flat line around zero) at t E 0.461 s. Although these
processes may be observed in the raw video, they are challenging to
quantify by eye, especially when thousands of frames must be
examined. Instead, our toolbox can direct the user to the time-point
corresponding to the failure event, as well as quantify the preceding
behaviour as a function of time.

Estimation of electrode displacement

We extended our temporal cross-correlation to multiple X
positions, which enabled us to observe the displacement of
the electrodes along the length of the cell over time. We initially
tried to identify and track individual peaks in the Gabor signal,
but this proved problematic due to the disorderly nature of the
failure; as electrode layers degraded, their corresponding peaks
were lost, while new peaks were introduced by the cell casing
entering the ROI due to the force of the nail. These issues
produced mismatches in the peak tracking, rendering such
algorithms impractical.

Instead, we estimated the electrode displacement using the
temporal cross-correlation. This methodology was developed
using ‘SI_Video_4’ (ESI†) as an ideal test case, involving com-
pression of the electrodes by a ball (see Table 1), without
subsequent mechanical failure or thermal runaway. Fig. 5a shows
the raw video frames at t0 and ti = 0.5 s, where the electrodes
demonstrate a clear, symmetric shifting and bending under the
incident ball. Fig. 5b shows three temporal cross-correlations at
different X positions. At x2, corresponding to the centre of the ball,
more electrode shifts (full oscillations in the cross-correlation)
are present in comparison to x1 and x3, at the edges of the ball.
We estimated the electrode displacement by multiplying the
number of shifts by the distance between electrodes, 66 �
17 mm, which we calculated from the average distance between
adjacent Gabor peaks in the ‘pristine’ structure, i.e., at t0.

Fig. 5c, shows the resulting electrode displacement across
the video frame at six time-points between t0 and ti = 0.5 s.
Directly below the centre of the ball, the displacement was the
greatest, around 0.44 mm at 0.5 s. This drops off symmetrically
in both x directions, to a minimum of around 0.08 mm at a
distance of around 3.5 mm from the centre of the ball. We also
note, from the broader colour bands in the centre of the plot
(around x = 3.5 mm), that the displacement had a larger
acceleration directly below the ball. We applied a similar
approach to the nail penetration dataset ‘SI_Video_1’ (ESI†).
Fig. 5d shows the displacement of the electrodes, wherein
the nail (radius = 2 mm) is incident at the right side of the
ROI (x = 6.7 mm). Here, the entire structure shifts homogeneously
by around 0.1 mm over 0.36 s, before the displacement at the nail

Fig. 4 Temporal cross-correlation of the electrode texture from the dataset ‘SI_Video_1’ (ESI†). (a) Top plot – 2D map showing the temporal evolution
of the normalised Gabor signal at a fixed X position, and bottom plot – corresponding normalised temporal cross-correlation, where the Gabor signals at
time ti is cross-correlated with that of time t0 (undisturbed electrode structure). (b) Comparison of Gabor signals at different times, ti (orange lines), with
that of t0 (black lines). When the electrode texture has a high similarity with the undisturbed texture (t0), the correlation value is large and positive
(normalised to +1), e.g., at t1 where t1 � t0 = 5 ms. When the electrode is displaced and so appears inverted compared with the initial texture at t0, the
correlation is large and negative (normalised to �1), e.g., at t3 where t3 � t0 = 126 ms. When there is little or no similarity between the textures at ti and t0,
the correlation value is close or equal to zero. This happens in two scenarios – when the electrode texture is displaced slightly but not inverted (e.g., at t2

where t2 � t0 = 43.5 ms) or when the electrodes are completely delaminated or expelled from the field-of-view (e.g., at t4 where t4 � t0 = 620 ms).
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location becomes much more pronounced, and then stops at
around 0.22 mm, when the Gabor signals were lost. This is an
interesting contrast with the ball compression, which instead
produced a continuous bending. The initial homogenous shifting
of the electrodes in the nail penetration dataset resulted from the
overall displacement of the cell as the nail made contact, followed
by displacement of the electrodes as the nail pierced through. We
note that this is in the plastic flow regime, where the volumetric
stress withstood by the electrodes is a property of their tensile
strength and Poisson ratio, as discussed by Wierzbicki and
Sahraei, 2013.43 Subsequently, as discussed above, the mechanical
resistance of the electrodes suddenly yields as their structure
fractures, leading to an abrupt acceleration of the nail (to a
maximum of 113 mm s�1 as shown in Fig. 3c).

Constructing spatiotemporal failure maps

We expanded our analysis by mapping the evolution of the cell
structure in the ROI for the whole video in order to visualise the

entire failure on a single spatiotemporal map. Fig. 6 shows the
progression from cross-correlation information to mapping,
using the dataset ‘SI_Video_1’ (ESI†). Fig. 6a shows the tem-
poral cross-correlation plots at four X positions. Separately,
these do not provide information on the failure propagation in
the axial direction. However, to overcome this, we may plot the
cross-correlation at every X cross-section as a surface plot to
yield a spatiotemporal map, as shown in Fig. 6b. Such a map
may be directly compared to the raw video frames, with time
passing (positive vertical direction) as events develop across the
X axis, (which is aligned with the width of the frames analysed).
It is important to note that representing the data in this way
captures the y information at each t as a single cross-correlation
value. Regions of high similarity to the initial electrode texture
appear red, and regions of inverted alignment appear blue.
Regions of complete misalignment or disappearance of the
texture from the ROI are intermediate and appear green. The
map may then be interpreted as follows:

Fig. 5 Estimation of electrode displacement. (a) X-ray frames of a ball compressing the cell at t = 0 s (top) and 0.5 s (bottom) from dataset ‘SI_Video_4’
(ESI†). (b) The normalised temporal cross-correlation signals of the electrode structure at three positions, x1, x2, and x3 (vertical dotted lines in (a)), where
each positive peak indicates one complete shift of the electrodes into alignment with the initial position of their neighbouring electrode layer. At t = 0.5 s,
the electrodes at x2 have traversed 6.73 ‘electrode shifts’ from their original position. From the Gabor signal profiles at t = 0 s, the distance between
electrode layers was estimated to be 66 � 17 mm, so at t = 0.5 s, the electrode structure at x2 is displaced by an estimated 444 � 115 mm from its original
position. (c) Electrode displacement at various X positions for the dataset ‘SI_Video_4’ (ESI†). (d) Electrode displacement at various X positions for the nail
penetration dataset ‘SI_Video_1’ (ESI†), where the distance between electrode layers was estimated to be 111 � 10 mm. Analysis was cropped at t = 0.6 s,
when the electrode layers fractured. At x = 6.7 mm (near the surface of the nail), the electrode displacement is estimated to be 221 � 21 mm, above which
the Gabor signals were lost. Error bars denote �1 standard deviation in the distance between electrode layers.
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(i) Inspect the map for distinct features, such as continuous
regions of a consistent colour (e.g., Event (1) in Fig. 6b), or
abrupt axial discontinuities (e.g., Event (4) in Fig. 6b).

(ii) Continuous regions of colour characterise the behaviour
of the electrodes across the length of the cell. Linear or non-
linear changes to such regions of a colour indicate changes to
the electrode structure propagating across the X cross-section
over time. For example, the dark blue region near the bottom of
Fig. 6b suggests that the electrodes are becoming misaligned
with their initial structure, and that it propagates in the
negative X direction, where the origin is the top left of the
frames (x = 0, y = 0) and the nail enters at the right-edge of
the ROI. On the other hand, areas of a constant colour indicate
that the electrode structure is not changing. For example, the
green region at the top right of Fig. 6b suggests the electrode
structure has disappeared and no further change takes place

(this corresponds to the presence of the nail in the cell once it
has stopped moving).

(iii) Axial discontinuities characterise events that take place
simultaneously across the distance corresponding to the width
of the feature in X; at a single point in time, the colour changes
homogeneously. For example, if the electrodes in a region
delaminate altogether, the map would show an abrupt transi-
tion to green, as we observe at around 0.42 s in Fig. 6b.

Using the map in Fig. 6b, we have identified four different
events occurring in the electrode structure. These events over-
lap one another in time; a timeline of raw frames is shown in
Fig. 6c. Firstly, the map highlights the point of entry of the nail
(right edge of the cropped ROI, x E 6.7 mm) at t E 0.04 s,
where the electrodes shift from the right edge to the left edge.
Event (1), a region of inverted electrode alignment, represents
the rate at which the nail pierces the cell casing and displaces

Fig. 6 Various events captured by the spatiotemporal cross-correlation map in the dataset ‘SI_Video_1’ (ESI†). (a) Normalised cross-correlation plots at
four X cross-sections, x1–4 (vertical dotted lines in (b) showing varying effects experienced by the electrodes due to the nail. (b) The 2D spatiotemporal
map plotted by calculating the normalised cross-correlation values at every X position (shown in Fig. 7a). (c) Timeline of frames capturing various events
picked out from the spatiotemporal map, namely: (1) nail pierces cell casing and starts pushing the electrodes; (2) the top 3–4 electrode layers are
mechanically sheared with the onset of failure propagation, while the rest of the electrode structure continue to be displaced. The apparent non-linearity
is potentially due to the combination of the mechanical force from the nail and the failure propagation of the top 3–4 electrode layers from the nail (right
edge) towards the left edge of the frames; (3) nail fully pierces the electrode layers, which completely fracture, leading to the localised delamination (4) of
the bottom 4–5 electrode layers, captured between x = 0 and 4 mm, and t = 0.45 and 0.62 s.
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the electrodes, although they have not failed structurally at this
point. Event (2) highlights the onset of failure, where the top
3–4 electrode layers are sheared by the nail, with the rest of the
electrodes continuing to be displaced. This combination of
failure-onset and electrode-displacement propagates non-
linearly between t = 0.19 s and t = 0.42 s. This also indicates
the onset of Joule heating originating from the sheared top
3–4 electrode layers, marking the increase in the internal cell
temperature as reported by Finegan et al. (2017).6 The region
of inverted cross-correlation marked as Event (3) represents
the point at which the electrodes fail structurally by fractur-
ing, leading to localised delamination, shown as Event (4).
This occurs very rapidly; the colour transition in the map-
ping appears horizontal, indicating that the delamination
occurred almost homogeneously over 4 mm along the X
cross-section. This indicates the need to analyse the Gabor
signals in the radial direction (as discussed in the sections
below).

Fig. 6 demonstrates the strength of spatiotemporal mapping
of X-ray radiography data. We can now assess an entire dataset
of thousands of video frames, and thus an entire failure
experiment with multiple sub-events, in a single picture. From
this, we can observe, directly, how each process propagates
along the cell, without needing to scroll through the video
manually, further validating our analytical technique. The map-
ping also reveals and resolves processes that may be missed by
manual interrogation, such as the distinction between the
electrodes shifting, as in Event (1), and the onset of failure,
as in Event (2) in Fig. 6b.

We produced spatiotemporal maps using multiple datasets
of nail penetration, as well as the ball compression test, to
unravel the events occurring in each experiment (Fig. 7). The
maps are interpreted as follows:

(a) Radial nail penetration. Fig. 7a and b show the spatio-
temporal map of the datasets ‘SI_Video_1’ (ESI†) (also shown
in Fig. 6b) and ‘SI_Video_2’ (ESI†), respectively, where the nail

Fig. 7 2D spatiotemporal cross-correlation mapping as a quantitative technique to track failure propagation. (a) Spatiotemporal map for the same
dataset as in Fig. 6b, that of ‘SI_Video_1’ (ESI†). The map shows the nail entering at the right edge (x = 6.7 mm), causing a more pronounced displacement
of the electrodes (Fig. 5d). The map also shows multiple events that are distinct from the electrode displacement, such as failure propagation and
localised delamination. (b) Spatiotemporal map of dataset ‘SI_Video_2’ (ESI†), where the nail enters the left edge of the analysed X-ray frames (x = 0 mm)
at t E 0.1 s. (c) Spatiotemporal map of dataset ‘SI_Video_3’ (ESI†), where the nail traverses in the axial direction, piercing the bottom of the cell. The
electrode structure is located between x = 0 and E2 mm. At t = 0.34 s, the core (mandrel) detaches from the bottom of the cell as the nail pierces
through the cell, displacing the electrodes. (d) Spatiotemporal map of the dataset ‘SI_Video_4’ (ESI†), where a ball compresses the electrode structure.
The map indicates that the centre of the ball, x E 3.45 mm, starts displacing the electrodes from t E 0.04 s, where the extent of displacement reduces
radially due to the circular profile of the ball.
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enters the cell in the radial direction. It has been previously
reported that the tip of the nail can reach 820 1C under these
conditions,6 with such tests expected to result in hard-shorting
that gradually relaxes due to the large surface area of the nail.
Here, we chose the ROI such that the nail centre was at the right
edge in Fig. 7a (‘SI_Video_1’, ESI†) and at the left edge in Fig. 7b
(‘SI_Video_2’, ESI†). The spatiotemporal maps illustrate similar
electrode displacements processes. In Fig. 7b the nail enters the
ROI at t E 0.1 s. The gradual shift in the electrodes, similar to
Event (1) in Fig. 6b and c (‘SI_Video_1’, ESI†), is apparent from
the regions of transition from yellow to green between 0.1 s and
0.17 s. This has not previously been resolved quantitatively in
the literature. After the nail penetrates the cell casing, the top
electrode layers are pierced, and the onset of failure is captured
between t = 0.17 s and 0.38 s. This non-linear region is similar
to Events (2) and (3) in Fig. 6b and c (‘SI_Video_1’, ESI†),
potentially due to the combined effect of failure of the top
2–3 electrode layers and the displacement of the rest of the
layers. It has been reported that the onset of this hard-shorting
effect is marked by the increase in internal temperature due to
Joule heating,6 which has been captured by our technique as
the rapid non-linear trends in Fig. 7a and b – Events (2) and (3).
At t = 0.38 s in Fig. 7b, there is a horizontal shift in cross-
correlation from x = 1 mm to the right edge of the frame,
representing a rapid failure of the electrode structure (fracture
of electrode layers). This dataset, however, did not exhibit
localised delamination, in contrast to our observation of Event
(4) in the dataset Fig. 6b and c.

(b) Axial nail penetration. Fig. 7c shows the spatiotemporal
map for the dataset ‘SI_Video_3’ (ESI†) in which the nail enters
in the axial direction, piercing the bottom of the cell.
In previous work it was shown that this orientation leads to
the highest internal cell temperature during testing (4900 1C),
and indeed the cell fails similarly to that of a thermal abuse
condition.6 This dataset demonstrates the functionality of our
analytical approach, irrespective of the direction of incidence of
mechanical objects with respect to the electrode structure.
Here, the red area in the bottom left corresponds to the bottom
of the cell (x = 0 mm to 2.3 mm), with high similarity due to the
negligible electrode shifting, as the nail pierces only the cell
casing until around 0.13 s. The blue area between x = 2.5 mm
and 3.2 mm is outside the cell (and the cross-correlation is
appropriately close to 0 as the Gabor signals are E0). The entry
of the nail causes a gradual shift of the electrodes, so the
correlation values reduce, shown as a transition from red to
green between 0.13 s and 0.34 s. This is in agreement with
the observations of Finegan et al. (2017)6 that there was no
electrode fracturing due to the minimal tensile strain on the
electrode with the parallel propagation of the nail.

At around 0.34 s, the decrease in cross-correlation speeds
up, with a transition from green to blue as the nail begins
pushing the electrodes. A sudden shift (seen from the hori-
zontal dark blue line) indicates the mandrel detaching from
the bottom of the cell, though thermal runaway has still not
initiated. This is followed by another region of decreasing
cross-correlation close to 0.39 s, where the onset of thermal

runaway has been captured with the mandrel starting to
disintegrate.

It is worth noting that the slope of this region represents the
rate of propagation of thermal runaway for this dataset between
0.39 s and 0.8 s. Subsequently, there was a release of gas into
the base of the cell, leading to the bulging of the base plate that
then escaped through the vent.

(c) Radial ball compression. For the ball compression test
in Fig. 7d, we observe a clear symmetrical electrode displace-
ment centred on the incident location of the ball, x = 3.5 mm.
There is a widening pattern of alternating positive (green) and
negative (blue) correlation with time. This characterises the
shifting of the electrodes under the ball, directly proportional
to the distance from the centre of the ball, as previously
discussed in Fig. 5a–c. It is interesting to note that this testing
condition did not result in thermal runaway, probably due to
the relatively large surface area of the ball that distributed the
tensile strain axially along the cell. The experimental condition
may also not have reached the maximum load-bearing capacity
of the cell, as discussed by Wierzbicki and Sahraei (2013).43

Comparing the three nail penetration and ball compression
datasets, we observed reproducible spatiotemporal cross-
correlation patterns (especially in the radial direction), which
may be distinguished as electrode shifting, failure propagation,
and rapid delamination, among others. This methodology
emphasises the distinct effects that mechanical objects, such
as a nail, have on each region of a cell, along with the axial
intra-cell effects leading to the propagation of failure within the
electrodes. This toolbox, therefore, has the potential to extract
and elucidate multiple failure mechanisms that may initiate
under abuse testing.

Quantifying the kinetics of failure

Qualitative assessment of failure has been well-documented in
literature and has advised several preventative and mitigative
safety considerations for the use of lithium-ion cells. We have
demonstrated that, via spatiotemporal mapping of the cross-
correlation values, the user obtains a greatly enhanced map of
events to produce a more robust understanding of failure. In
this section, we realise the true potential of such maps by
tracing the trends of multiple events identified in Fig. 6 and 7
for the three nail-penetration test conditions described in
Table 1, to advance our mechanistic understanding of the onset
of cell failure. From the spatiotemporal maps, we extracted the
(x, t) coordinates of each distinctive event described by either a
negative cross-correlation region, a positive cross-correlation
region, or a sloping region (Fig. 8). We performed third order
polynomial regression, equivalent to the Newtonian equations
of motion, on these coordinates, to extract the initial jerk (3rd
order coefficient), initial acceleration (2nd order coefficient),
initial velocity (1st order coefficient) and origin of each event
(x intercept). Since the propagation of failure occurs due to the
combination of the force imparted by the nail and the initiation
of exothermic thermal runaway,1,44–48 to capture the changing
forces/stresses we assume that the rate of propagation of failure
can be characterised under a time-dependent acceleration
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condition, such that:

j tð Þ ¼ da

dt
¼ j0 (1)

where, a is the acceleration with time, t, and the rate of change of
acceleration is jerk, j, assumed to be constant. Further, this can
be extended to a well-known form:

da

dt
¼ d2v

dt2
¼ d3x

dt3
(2)

where v is the velocity and x is the position. In polynomial terms,
we can therefore express the change in position over time as:

xðtÞ ¼ x0 þ v0tþ a0
t2

2
þ j0

t3

6
(3)

change in velocity over time as:

vðtÞ ¼ v0 þ a0tþ j0
t2

2
(4)

and change in acceleration over time as:

a(t) = a0 + j0t (5)

We used three methods to determine the coordinates of each
trend, depending on whether we were tracing peaks or valleys.
The 2D maps in Fig. 8a–c are the spatiotemporal maps that
have been transposed to display time in the horizontal axis and

X position on the vertical axis. Our primary approach was to
find the peaks (or troughs) of the cross-correlations along x for
each point in time. Alternatively, we found the peaks (or
troughs) of the correlations along time for each X position.
This resulted in multiple X positions for a given time, where
multiple x values at each t were averaged and the standard
deviation, sexp, in x was applied as experimental uncertainty of
the data. Our final method, in the case that we needed to trace a
gradual shift in the correlation values as opposed to a sudden
shift (used for trend (iv) in Fig. 8), was to threshold the colour
scale to the correlation values associated with the trend. This
isolated a 2D shape containing the trend data, from which we
could find the mid-point at each X position. Multiple x values at
each t were also averaged and the experimental uncertainty,
sexp, in x estimated, as in the case above. The bottom row of
Fig. 8 shows the resulting data points with the 3rd order
polynomial fits. The coefficients of the fits are shown in
Table 2.

A non-linear least-squares fitting method was used to fit
eqn (3) to the averaged x data (regression performed using
Python 3, with a convergence tolerance = 1 � 10�8). The fitting
coefficients were constrained such that v0 is positive, i.e., we
define that the events progress in the positive x direction due to
the expected unidirectional movement from the nail surface
propagating away from the nail. x0 was constrained 0 � 2 mm,
i.e., events begin within the region defined by the diameter of the

Fig. 8 Quantification of the kinetics of events in three nail penetration datasets. The 2D spatiotemporal maps have been transposed such that time is on
the horizontal axis and X cross-section is on the vertical axis. (a) The regions of low and high cross-correlation values of three events (described in Fig. 6)
in the dataset ‘SI_Video_1’ (ESI†), traced using a simple yet robust maxima/minima finding algorithm and their corresponding 3rd order polynomial fits
shown in the bottom panel (trends i–iii). (b) Two events relating to electrode shifting and propagation of failure in the dataset ‘SI_Video_2’ (ESI†),
identified and traced. The bottom panel shows the 3rd order polynomial fits of these traces (trends iv and v). (c) The rates of electrode shifting in the
dataset ‘SI_Video_3’ (ESI†), where the nail traverses along the axial direction of the electrodes, have been quantified as shown in the bottom panel (trends
vi and vii). The results of the 3rd order polynomial fitting, corresponding to Newton’s equations of motion, are shown in Table 2. Note that (vi) is
composed of two smaller sections, due to difficulty in reliable peak-tracing.
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nail. For each fit, the model uncertainty (�1 standard deviation)
was calculated from the square root of the diagonal of the
covariance matrix. The corresponding R2 of the fits was also
estimated.

Trends (i) and (iv) represent the shifting of the electrodes
prior to structural failure for nail penetration in the radial
direction. Trend (i) has j0 = 0, i.e., there is no jerk present and
the acceleration is constant, whereas trend (iv) has an initial
jerk of 2570 mm s�3. Trend (i) has an initial velocity of
91.7 mm s�1 but decelerates at 578 mm s�2. We note that this
deceleration term has quite a large error of �29 mm s�2, which
might result from the noise in the data. Conversely, trend (iv)
has an initial velocity of zero, but accelerates rapidly at
515 mm s�2 resulting in v(t0.31) E 250 mm s�1 at t = 0.31 s.
This highlights the intrinsic variation between the mechanical
processes occurring during nail penetration tests carried under
the same conditions.

Trends (ii), (iii) and (v) correspond to the combined effects
of failure propagation and electrode shifting. There are also
distinct differences in the acceleration and initial velocity
of these processes. Trends (ii) and (iii) have accelerations of
108 mm s�2 and �282 mm s�2, and initial velocities of
22.7 mm s�1 and 24.6 mm s�1, respectively. They accelerate
to a velocity of v(t0.42) E 62 mm s�1 and v(t0.45) E 135 mm s�1.
Trend (v) appears to be much slower, with an initial velocity of
9.5 mm s�1 decelerating at �34.5 mm s�2. This again empha-
sises the broad range of cell failure kinetics that result from
nail penetration tests, although inspection of the videos might
lead one to conclude that the processes leading up to full
electrode destruction are quite similar.

Trend (iii) has a large initial jerk of 3210 mm s�3, although
(ii) and (v) have j0 = 0. Trend (iii) has a high jerk potentially due
to the rapid delamination of the bottom 3–4 electrode layers
captured in the video, leading to a sudden inflexion in the x
data. We note that fitting higher order polynomials is sensitive
to input data, which in our case are peak traces from spatio-
temporal maps extracted from legacy data. This may be over-
come with acquisition of higher resolution images at higher
frame rates, improving the quality of the peak traces.

We also observe abrupt transitions at 0.42 s in Fig. 8a and
0.37 s in Fig. 8b as the cells fail across their length, which

effectively ends trends (iii) and (v). From the spatiotemporal
maps the shape of the trends appears to diverge at these points.
This end point corresponds to the nail reaching the middle of
the cell as the electrodes fracture, so the spreading in the colour
map likely indicates a rapid final shift of the electrodes away
from the nail before they are destroyed.

Trends (vi) and (vii) characterise the electrode response for
the case in which the nail entered the cell in the axial direction,
causing reduced tensile strain on the electrodes in comparison
to entering in the radial direction. a0 and j0 are relatively low
in comparison to those for the nail entering in the radial
direction. Trend (vi) has j0 = 0 mm s�3, while trend (vii) has
j0 = 872 mm s�3. They have accelerations of 4.9 mm s�2 and
�92.4 mm s�2, and initial velocities of 2.5 mm s�1 and
7.5 mm s�1, respectively. We also do not observe a near-
homogeneous electrode shift across the cell. We suspect that
this contrast in behaviours is due to the difference in mechanical
resistance of the electrode layers in each case. It is interesting to
compare this behaviour to the ball compression in ‘SI_Video_4’
(ESI†), wherein the electrodes do not fracture and there is no
thermal runaway. Likewise, axial penetration of the nail does not
stress the electrodes into fracturing, thus it is likely that when
thermal runaway occurs it results from internal shorting caused
by the nail.

From our quantification of the failure kinetics, we note that
the propagation of structural damage (i.e., at the onset of
catastrophic failure or uncontrolled thermal runaway) is slower
than previously believed. Ignoring the abrupt and total cell
failure, and if a certain specific trend propagation were to travel
the entire length of a cell (in our case 65 mm), we may
extrapolate the model to estimate the velocities to which the
failures would accelerate. In the case of trend (iv), the electro-
des would be displaced at a maximum velocity of 396 mm s�1

(v0 = 0 mm s�1) by t = 0.578 s, traversing the entire length of
an 18 650 cell, whereas, a failure trend involving a delamination
event, e.g., trend (iii), would traverse the entire length of
an 18 650 cell by t = 0.7 s, reaching a maximum velocity of
163 mm s�1 (v0 = 24.6 mm s�1). This reinforces the view
previously put forward by the authors that, counter-intuitively,
failure due to nail penetration may not be as severe a mode of
failure/abuse as has been reported in the literature.

Table 2 Results from the 3rd order polynomial fits of the seven trends shown in Fig. 8 from three different nail penetration datasets. The 3rd order
polynomial was of the form xðtÞ ¼ x0 þ v0tþ a0

t2

2
þ j0

t3

6
, where v0 is the initial velocity term, a0 is the initial acceleration, j0 is the jerk and x0 is the x-

intercept representing the origin of the event

Dataset SI_Video_1 (ESI) SI_Video_2 (ESI) SI_Video_3 (ESI)

Trends i ii iii iv v vi vii

Type of eventa (1) (2–3) (2–3) (1) (2–3) (1) (1)

Jerk [mm s�3] 0.0 0.0 3209.2 � 102.8 2572.43 � 23.25 0.0 0.0 871.69 � 4.74
Acceleration [mm s�2] �578.0 � 29.3 108.43 � 10.01 �281.48 � 8.31 514.46 � 1.41 �34.51 � 0.71 4.91 � 0.17 �92.39 � 0.45
Initial velocity [mm s�1] 91.66 � 0.53 22.72 � 0.38 24.58 � 0.28 0.0 � 0.04 9.46 � 0.03 2.49 � 0.01 7.49 � 0.02
Origin of event along
x [mm]

0.13 � 0.01 0.64 � 0.01 0.64 � 0.01 0.61 � 0.01 0.07 � 0.01 1.75 � 0.01 1.28 � 0.01

R2 0.82 0.98 0.93 0.98 0.94 0.99 0.99

a The type of the event refers to the ones described in Fig. 6. Event (1) denotes electrode displacement before onset of failure, Events (2–3) denote
the onset of failure propagation and further electrode displacement leading to fracture or delamination
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Tracking the radial propagation of failure processes

So far, we have quantified the propagation of failure and the
intra-cell effects in the axial direction. However, it is clear from
the spatiotemporal maps that some events happen abruptly,
homogeneously across the X cross-section. In these cases,
we cannot track the shape of a cross-correlation trend because
it describes a process occurring in the radial direction; the
transformation from Gabor signals to cross-correlation col-
lapses the information in the y direction into single values at
each x position. Thus, events that appear instantaneous on the
(x, t) cross-correlation maps can only be quantified by accessing
the y coordinate system.

Fig. 9a shows the temporal Gabor signal from the ‘SI_Vi-
deo_1’ (ESI†) dataset (nail travelling in the radial direction),
3.7 mm from the nail surface (x E 1 mm); similar to that of
Fig. 4a which represents the temporal map at the nail surface
(x E 4.7 mm). Until around 0.5 s, the electrode structure
remains intact with just a gradual shift due to the nail.
However, there is then a sudden shift and loss in magnitude
in the lower electrode layers, from y = 2.75 mm to 6 mm, which
indicates the localised delamination captured in this dataset
(Fig. 6b, Event (4)). In order to extract the kinetics of this event,

which was very abrupt on the (x, t) spatiotemporal maps, we
tracked the net shift of each Gabor peak in the temporal Gabor
map (along the y axis).

Fig. 9b shows data manually cropped from Fig. 9a, corres-
ponding to the delamination. This region appears disordered,
with electrodes shifting in the positive y direction at different
rates. In order to characterise how this failure propagates,
we studied the distribution of electrode-shift velocities by
capitalising on the power of Gabor filter banks again. We
applied a further Gabor filter bank (y = 1001 to 1601) on the
temporal Gabor signal data, with a fixed frequency equivalent
to the electrode width. For each orientation we obtained an
output image highlighting the most prominent trajectory taken
by each electrode over time (see ‘SI_Video_7.avi’, ESI†). Fig. 9b
shows the segments picked out at three angles, where we can
observe a range of trajectories taken by each electrode layer.
However, the filter produced some signal even for features that
are slightly misaligned with the orientation. The output signals
were therefore binarized in order to convert the trajectories into
single-pixel-wide skeletal lines, on which a linear regression
was performed to extract the velocities. By summing all the
pixels of the Gabor-filtered trajectory images for every angle, we

Fig. 9 Estimation of rate of failure/delamination in the radial direction from the dataset ‘SI_Video_1’ (ESI†). (a) 2D temporal Gabor map showing the
evolution of the electrode structure over time (normalised) E3.7 mm away from the nail surface (x E 1 mm), similar to that of Fig. 4a (at the nail surface).
The point of delamination has been shown in the inset box, which was cropped to extract radial propagation velocities, as shown in (b). (b) The radial shift
in electrodes over time was extracted by tracing the Gabor signals over a range of Gabor angles 1001–1651 (see ‘SI_Video_7.avi’, ESI†). The most
prominent Gabor traces were skeletonised to single-pixel wide lines that denote the rate of delamination. (c) The delamination velocity of each electrode
layer was calculated by performing linear regression on the skeletonised lines at every Gabor angle and the distribution plotted.
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also obtain a signal intensity (Fig. 9c, top panel), wherein a
higher signal indicates a greater presence of structure aligned with
the filter. For a range of velocities of the electrodes per orientation,
as shown in Fig. 9c bottom panel, we may use the signal intensity to
guide the user to obtain the velocity distribution for angles that
produce high signal intensities. Fig. 9c shows the signal intensity
plot and associated velocity distribution.

Interestingly, there were two distinct peaks in the intensity,
at y = 1101 and 1551. At y = 1001 we captured the top electrode
layers at the onset of delamination with a velocity of around
4 mm s�1, while at y = 162.51 we captured the bottom-most
electrodes that delaminated the fastest, at a velocity of 140 mm s�1

leading on to delamination. Above y = 162.51, the extracted Gabor
lines were that of the noise from the filter and not representative of
the temporal electrode shifts. The orientation at y = 1301 was
representative of the delamination velocities of most of the electro-
des in the cropped ROI, with an average velocity of 13 mm s�1.
We suggest that this delamination velocity acts as a point of
transition between the electrode shifting due to the force from
the nail, and a fully uncontrolled thermal runaway process.

Conclusions

We have demonstrated for the first time that the texture-
sensitivity of Gabor filtering is very well-suited to quantifying
X-ray radiography data of lithium-ion cell failure tests. We have
built an assistive toolbox for the rapid and reproducible analy-
sis of both legacy X-ray synchrotron radiography data and
future data, where the user is guided to the exact location
and time-point at which interesting events occur. Using the
directional sensitivity of the Gabor filter, we were able to not
only selectively filter the electrodes, but also select and study
other objects, such as estimating the penetration velocity of a
nail. Further, upon estimating the displacement profiles of
electrodes before failure, we have established a platform that
extensively analyses and resolves multiple failure events occur-
ring concurrently. These events have been spatiotemporally
mapped on a quantitative scale, where an entire failure testing
dataset has been condensed and projected onto a single 2D
map with distinguishable events.

The true novelty of this analytical technique is the amount of
kinetic information that may now be extracted, relating to the
events propagating axially and radially in these datasets.
Through proof-of-concept validation of our method via the
analysis of distinct battery failure datasets, we observed that
the nail penetration event occurs more slowly than previously
supposed, indicating that the slower onset of electrode failure
might render them less dangerous than instantaneous short-
circuiting events or thermally induced degradation events.

With an automated, user-friendly toolbox that helps to
reduce human-induced error, several X-ray radiography data-
sets are currently being processed to elucidate the mechanisms
and rates of failure induced by a range of thermal, electrical
and mechanical sources. It is worth noting that unique events
such as mechanical delamination, gas generation and

gas-induced electrode shifting can now be robustly identified
and their propagation rates quantified. The toolbox can be
applied to existing data available from databanks, such as the
one hosted by the National Renewable Energy Laboratory,
which can help standardise abuse testing procedures. As a first
step, the toolbox directly outputs empirical data describing the
mechanics of failure, presenting an opportunity for these data
to be applied to mechanical as well as thermal runaway multi-
physics models of Li-ion batteries. Our toolbox also has the
potential to analyse high-resolution, low frame rate images
captured using X-ray CT instruments, highlighting that our
technique may not be limited to synchrotron radiography data.

Furthermore, this toolbox will be powerful in helping
to couple mechanical models with electrochemical thermal
runaway models, when used in conjunction with other electro-
chemical techniques, such as fractional thermal runaway
calorimetry (FTRC).49 Despite the lower sampling resolution
of FTRC compared to high-speed imaging, with advances in
calorimetry measurements, it may be possible for high-resolution
FTRC data to be used in conjunction with our toolbox to advance
understanding of battery degradation.

In the future, the many advantages of this technique can be
further exploited by incorporating the ability to analyse data
presented radially, i.e., investigating the failure mechanisms
across the ‘jelly-roll’. One possible feature addition to our toolbox
would be to apply ‘virtual unrolling’ of the jelly-roll before
performing Gabor filtering,50 thereby facilitating the analysis of
batteries with any form-factor, interrogated in any direction, to
truly capture the complex nature of thermal runaway.
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