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Abstract: The colocation of elemental species with host biomolecules such as lipids and metabolites

may shed new light on the dysregulation of metabolic pathways and how these affect disease

pathogeneses. Alkali metals have been the subject of extensive research, are implicated in various

neurodegenerative and infectious diseases and are known to disrupt lipid metabolism. Desorption

electrospray ionisation (DESI) is a widely used approach for molecular imaging, but previous work

has shown that DESI delocalises ions such as potassium (K) and chlorine (Cl), precluding the

subsequent elemental analysis of the same section of tissue. The solvent typically used for the DESI

electrospray is a combination of methanol and water. Here we show that a novel solvent system, (50:50

(%v/v) MeOH:EtOH) does not delocalise elemental species and thus enables elemental mapping to be

performed on the same tissue section post-DESI. Benchmarking the MeOH:EtOH electrospray solvent

against the widely used MeOH:H2O electrospray solvent revealed that the MeOH:EtOH solvent

yielded increased signal-to-noise ratios for selected lipids. The developed multimodal imaging

workflow was applied to a lung tissue section containing a tuberculosis granuloma, showcasing its

applicability to elementally rich samples displaying defined structural information.

Keywords: multimodal imaging; correlative imaging; ion beam analysis; desorption electrospray

ionisation mass spectrometry; biological tissue analysis

1. Introduction

Our understanding of biological processes is being continuously pushed by advances
in multimodal imaging or spatial “omics”, which allows for the integration of structural,
molecular and elemental information [1]. Several recent reports in the literature have
explored the combination of mass spectrometry imaging (MSI) with elemental mapping
techniques for biological applications [2–7]. The integration of these imaging modalities
allows for spatial correlations of elements and their local molecular environments to be
performed, further enhancing our knowledge of disease status and progression. A better
understanding of pathogenesis at this level will enable the development of more efficient
treatments [8–12].

Elemental analysis can reveal elemental dysregulation, accumulation or depletion,
which are well described for many diseases such as Alzheimer’s disease [13], tuberculo-
sis [14] and cancer [15–17]. Alkali metals in particular have been the subject of extensive
research and are implicated in various neurodegenerative and infectious diseases as they
are also known to disrupt lipid metabolism and play a key role in cell homeostasis [16–19].
Understanding the colocation of alkali metals with host biomolecules such as lipids and
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metabolites at the tissue level may shed new light on disease pathogenesis. Alkali metals
and other trace elements can be imaged using elemental mapping techniques [7,20–22]
such as laser ablation inductively couple mass spectrometry (LA-ICP-MS) [23–29], X-ray
fluorescence (XRF) [30–35] and particle-induced X-ray emission (PIXE) [36–41], which have
been extensively applied to the analysis of biological samples.

There are a multitude of mass spectrometry imaging (MSI) techniques available [42–44]
for imaging biological samples, including the commercially available desorption elec-
trospray ionisation (DESI) [45–49], matrix-assisted laser desorption ionisation (MALDI)
[50–53] and secondary ion mass spectrometry (SIMS) [54–58]. These techniques can provide
images of the distribution of lipids, metabolites and (to a lesser extent) proteins [59,60].
Whilst these are primarily molecular analysis techniques, some reports in the literature
have described how a limited amount of elemental information can be extracted using these
techniques. SIMS can readily offer both molecular and elemental information, although the
level of molecular information is highly dependent on the primary ion [58]. Additionally,
the matrix effects preclude quantitative analysis [61,62]. MALDI is primarily used for
molecular mapping, but Liu et al. reported on a workflow to target lipids, small metabo-
lites and alkali ions (sodium and potassium) using this technique [63]. Most recently, a
variant of DESI—nanoDESI—was used to simultaneously monitor metal ions (sodium and
potassium) and metabolites [19]. Despite the seeming ability of these techniques to target
both elements and molecules, the range of elements readily detectable and the quantitative
capabilities are limited when compared to the primary elemental techniques listed above.

In most previous studies, sequential MSI and elemental mapping were performed
on sequential tissue sections. A limitation of this approach is that smaller features are not
accurately replicated in sequential sections, reducing the accuracy of feature colocation. It
is therefore desirable to perform the two measurements sequentially using the same tissue
sample. This is not trivial due to sample preparation incompatibility and modifications
incurred to the samples by the preceding analysis. For example, it is reasonable to expect
that elemental mapping using any of the techniques described above would modify the
chemistry of the sample due to localised heating, and indeed this has been previously
demonstrated in the case of PIXE [64,65]. It is therefore desirable to develop molecular
imaging strategies that do not delocalise elemental species. In previous work, it was
shown that DESI imaging, employing a MeOH:H2O electrospray solvent, preserved the
location and concentration of various elemental species in lung tissues, for example Fe and
S. However, elements such as Cl and K were delocalised by the DESI analysis and could
not be imaged.

DESI offers the prospect of analysis under ambient conditions, meaning that the
sample is analysed in its native state. It offers further advantages in terms of analyte
coverage for lipids and metabolites [66]. Here we report on a novel DESI electrospray
solvent system (MeOH: EtOH), which enables subsequent elemental mapping using the
same tissue section without the delocalisation of Cl and K and other detected trace elements.
This solvent combination was previously used by Lewis et al., who used direct analyte
probed nanoextraction (DAPNe) for the extraction and analysis of lipids from tissue sections
with no detrimental effect on the subsequent elemental imaging, but to our knowledge,
this has not been used before with DESI [67].

The ion beam analysis (IBA) techniques PIXE and Elastic Backscattering Spectrometry
(EBS) were used to monitor the delocalisation and loss of elements following DESI imaging.
To assess the performance of the MeOH:EtOH solvent system to image the molecular
species, a benchmarking experiment was performed to compare the new MeOH:EtOH to
the widely used MeOH:H2O solvent system [64,65]. This was carried out by comparing the
intensities and coverage of the lipid peaks observed in homogenised liver. The analytical
workflow was then applied to a lung tissue section containing a tuberculosis lesion, enabling
an integrated analysis of alkali ions, transition metals, halogens and lipids.
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2. Materials and Methods

2.1. Sample Preparation

2.1.1. Homogenized Tissue

Rat liver homogenates were prepared as described by Swales et al. [68] The liver tissue
was homogenised and pipetted into moulds (2 mL bottom end of Pasteur pipette bulb).
The homogenates were snap frozen in propanol and then iso-pentane and were stored in
−80 ◦C. Three homogenates were sectioned sequentially at 10 µm thickness using a Thermo
NX70 Cryostar (Thermo Fisher Scientific, Bremen, Germany) and were thaw mounted onto
a 1.4 µm thick polyethylene (PET) substrate (Leica, Wetzlar, Germany). The slides were
analysed sequentially using DESI and PIXE/EBS in the areas highlighted in Figure S1.
All animals and tissue were managed in accordance with the UK Home Office Animals
(Scientific Procedures) Act 1986. The organs used within this study were within the 3Rs
principles as they comprised a control material surplus to the original study for which they
were intended.

2.1.2. Snap-Frozen Lung Tissue

Rabbit infection and sample collection were performed in Biosafety Level 3 (BSL3)
facilities and approved by the Institutional Animal Care and Use Committee of the National
Institute of Allergy and Infection Disease, NIH, Bethesda, MD, USA (Protocol number
LCIM-3). All studies followed the guidelines and basic principles stated in the United States
Public Health Service Policy on Humane Care and Use of Laboratory Animals. All samples
collected from Mycobacterium tuberculosis-infected animals were handled and processed in
the BSL3 in compliance with protocols approved by the Institutional Biosafety Committee
of the National Institute of Allergy and Infection Disease, NIH, and Hackensack Meridian
Health, NJ, USA.

Female New Zealand White (NZW) rabbits weighing 2.2–2.6 kg were maintained
under specific pathogen-free conditions and fed water and chow ad libitum. The NZW
rabbit ID 713 was infected with M. tuberculosis HN878 using a nose-only aerosol exposure
system as described [69]. At 14 weeks postinfection, once mature cellular and necrotic lung
lesions had developed, lung lesions embedded in the surrounding tissue were collected
for imaging and were snap frozen (unprocessed) in liquid nitrogen vapor as described
previously [70,71]. To sterilize the samples and inactivate all viable M. tuberculosis bacilli,
samples were γ-irradiated in a Co-60 irradiator until exposure reached 3 Mrad (validated
as a sufficient exposure to kill all viable M. tuberculosis bacteria present in lung lesions).
Dry ice was resupplied as required to keep the samples always frozen. The frozen rabbit
lesions were sectioned at a 10 µm thickness using a CM1860 UV cryostat (Leica, Wetzlar,
Germany) at −20 ◦C. The sections were thaw mounted onto 1.4 µm thick poly(ethylene
terephthalate) (PET) membrane slides (Leica, Wetzlar, Germany), shipped on dry ice and
stored at −80 ◦C.

2.2. DESI Imaging

DESI was used to image small molecules in the tissue homogenates prior to the ion
beam analysis. A prototype DESI source with a recessed capillary (Waters, Wilmslow, UK)
was coupled to a Xevo G2-XS (Waters, Wilmslow, UK) mass spectrometer. A 95:5 (%v/v)
methanol (MeOH)/water (H2O) or 50:50 (%v/v) MeOH/ethanol (EtOH) spray solvent
was delivered at a rate of 2 µL/min using an Ultimate 3000 UHPLC system (Thermo
Fisher Scientific, Bremen, Germany) with an electrospray voltage of 0.6 kV and ion block
temperature set to 100 ◦C. Prior to acquisition, mass calibration in positive ion mode was
performed using a polylactic acid (PLA) sublimed slide made in house with a collision
energy of 35 V. Data were acquired in positive ion “sensitivity” mode, with a mass range of
m/z 100–1200 at a calculated mass resolving power of 15,000 at m/z 200. The tissue region
for imaging was selected using High-Definition Imaging (Waters, Wilmslow, UK) software.
The nominal pixel size was 75 × 75 µm using a stage speed of 150 µm/s, acquiring the data
at 2 pixels/s.
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Data Analysis—DESI

Waters RAW data files were converted into imzML files through a two-step conversion.
The first was the conversion to mzML using Proteowizard [72], then to an imzML using the
imzML converter [73]. The imzML data were analysed using Spectral Analysis [74] (version
1.4.0) and run using MATLAB (version 2018b). Prior to generating a mean spectrum, the
data were preprocessed using a rebinning method (bin size of 0.001) to generate the mean
spectra, and then they were normalised to the total ion intensity when generating the
datacube.

A lipid peak list (top 50 most intense peaks assigned as lipids) was generated through
the tentative assignment of m/z peaks detected in the liver homogenates (see Table S2)
using in-house MATLAB scripts which matched the data against the Human Metabolome
Database (HMDB) [75]. The peak assignment was achieved using a +/−15 ppm mass match
and through the inspection of the DESI ion images to ensure that the signals originated from
the sample and not the background. Peak assignments were further checked against criteria
such as abundance in mammalian tissue, likelihood of adduct formation and likelihood of
ion formation in positive ion mode.

2.3. Ion Beam Analysis

After DESI, the samples were simultaneously analysed by proton induced X-ray emis-
sion (PIXE) and elastic backscattered spectrometry (EBS) using a 2 MV Tandem accelerator
(High Voltage Engineering, Amersfoort, The Netherlands). The samples were placed in a
vacuum chamber pumped to 10−6 mBar and irradiated using 2.5 MeV protons with beam
currents ranging from 300–600 pA. The beam was focused to approximately 2 × 2 µm
(measured using a 75 × 75 µm 1000 copper grid). The scan size was 1 × 1 mm with a
pixel dwell time set at 0.3 ms. X-rays were detected using a silicon drift detector (SDD)
fitted with a 130 µm Be filter, mounted at an angle of 135◦ to the beam direction in the
horizontal plane. Backscattered particles were simultaneously collected and detected using
a PIPS detector with an active area of 150 mm2, placed 52.5 mm away from the sample and
mounted at a 25◦ exit angle.

The liver homogenate samples were analysed until a charge of 2000 nC was collected
in the areas highlighted in Figure S1. Three sequential rabbit lesion sections were analysed
in mosaic scan mode (2 × 2 squares of 1 × 1 mm each), with each square being analysed
until 4000 nC of charge were collected.

Data Analysis—Ion Beam Analysis

The X-ray and backscattered particle spectra were calibrated using a BCR-126A lead
glass standard. The data were acquired and analysed using OMDAQ-3 software (Oxford
Microbeams, Ltd., Oxfordshire, UK) [76].

3. Results

3.1. Homogenized Tissue

As highlighted in Figure S1, selected regions of three sequential liver homogenate sec-
tions were analysed by DESI using two different solvent systems: 95:5 (%v/v) MeOH/H2O
or 50:50 (%v/v) MeOH/EtOH. Each section was then imaged by PIXE/EBS with an ROI
encompassing the interface of the areas sampled by DESI to observe delocalisation.

A sequential PIXE analysis at the interface of the areas previously analysed by DESI
clearly demonstrated that the MeOH:H2O solvent caused a visible loss of mobile ions such
as chlorine and potassium as well as phosphorus, as shown in Figure 1A. Conversely, the
MeOH:EtOH solvent caused no measurable loss or delocalisation of any elements measured
by PIXE (Figure 1B). This was further supported by Figure S2, showing the overlay of the
PIXE spectra taken from regions of interest derived from areas with/without prior DESI
analysis, and by Figure 1C, which shows the signal loss for several elements after DESI
analysis. Statistical tests (t-tests) showed that the differences observed in the PIXE peak
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area ratios measured between the two solvents were statistically significant for all elements
monitored (see Table S1).

 

 

Figure 1. PIXE maps taken post-DESI from 3 sequential liver homogenate sections using an ROI

scanned over the edge of the DESI ROI using (A) 95:5 (%v/v) MeOH:H2O and (B) 50:50 (%v/v)

MeOH:EtOH. The DESI (dotted line) and PIXE ROIs (solid line) are indicated on the far-left image.

(C) Average ratio (n = 3) of the elemental peak areas measured by PIXE from ROIs with/without

prior DESI. See Figure S1 for further information on the analysis locations for each technique.
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Figure S3 shows example DESI spectra taken with each solvent system from the
background (PET substrate) and shows that the MeOH/EtOH mixture generated less
intense peaks from the PET background. Figure 2 compares the mean spectra collected
from tissue ROIs corresponding to analysis via the two solvent mixtures. The spectra were
broadly similar, with the 50:50 (%v/v) MeOH:EtOH solvent producing slightly higher
TIC-normalised peak intensities than MeOH:H2O, especially in the higher m/z ranges,
possibly due to the higher solubility of lipids in the purely organic solvent.

Figure 2. Spectra taken from regions of interest capturing tissue-only areas acquired with DESI using

the two solvent systems—95:5 (%v/v) methanol/water (blue) or 50:50 (%v/v) methanol/ethanol

(green).

The top 50 most intense lipid peaks were selected, and a list of measured m/z and
peak assignments are listed in Table S2. The breakdown per assigned lipid class (Figure 3A)
and per m/z range (Figure S4) were compared for each spray solvent. The intensities of
the 10 most intense peaks for each solvent were compared in Figure 3B,C. As expected,
these were comprised predominantly of peaks assigned to phosphocholines (PC), due to
their prevalence in cell membranes. The two datasets shared 9 out of the 10 lipid peaks
(marked by the asterisks) and these were detected with statistically significant higher peak
intensities (p < 0.05; see Table S3) when the MeOH:EtOH solvent was used. Ion images
were generated for each of the 10 peaks, and all were shown to originate from the tissue
homogenate rather than the background (Figure S5). Figure S6 shows the peak intensity
measured for the remaining 40 top lipid peaks for each solvent. These observations, as well
as Figure 3, demonstrate that the two solvents did not preferentially target lipids in one
particular m/z region of the mass spectrum.

A brief study of the adducts formed using the two solvent systems showed that
MeOH:EtOH produced more [M+K]+ adducts in the top 50 lipids than MeOH:H2O (see
Figure S7). This is interesting as the PIXE data showed that MeOH:EtOH did not cause a loss
or delocalization of potassium, offering a possible explanation for the increased proportion
of intense lipid peaks appearing as [M+K]+. In contrast, the ratio [M+H]+/[M+K]+ for
a selection of PC lipids was found not to change significantly between the two solvent
systems (see Figure S7). Future work could explore whether the addition (and preservation)
of K in biological samples can be used to enhance lipid coverage.
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The data shown above demonstrate that using 50:50 (%v/v) MeOH:EtOH as a DESI
electrospray solvent can be advantageous for increasing the sensitivity to lipids. Addition-
ally, the data showed that the new solvent did not cause the removal or delocalisation of
mobile ions as measured by PIXE. To confirm this observation, and to demonstrate the
ability of MeOH:EtOH to provide images, these two solvent systems were used to analyse
the snap-frozen lung tissue sections.

 

Figure 3. (A) Number of lipid features (out of the top 50) detected per lipid classes for MeOH:H2O

and MeOH:EtOH spray solvents, respectively; (B,C) Top 10 most abundant peaks and their respective

intensities (normalised to the total ion count) for (B) MeOH:H2O and (C) MeOH:EtOH. * refers to

peaks detected using both solvents in liver homogenates.

3.2. Snap-Frozen Lung Tissue from Rabbits

The optical images taken before the DESI analysis of the of snap-frozen rabbit lung
tissues containing a caseous granuloma (a lesion caused by tuberculosis) is shown in Figure
S8. Two of the sections were first analysed using the two DESI solvents and a third were
left untouched to be used as a control for ion beam elemental mapping. The regions were
chosen to include three regions of the granuloma—the caseum or necrotic centre, cellular
rim and uninvolved lung.
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Figure 4 shows the red, green and blue (RGB) overlay of m/z 953 (TG (58:8) [M+Na]+),
m/z 832 (PC (38:4) [M+K]+) and m/z 780 (PC(36:5) [M+H]+) obtained using DESI and two
spray solvents—95:5 (%v/v) MeOH:H2O and 50:50 (%v/v) MeOH:EtOH. These peaks were
chosen because they very clearly show the different pathology regions of the granuloma
tissue. In both overlays, the different regions of the granulomas were visible, as presented
in Figure S8. Figure 4 demonstrates that the MeOH:EtOH spray solvent could produce
images of comparable quality to the more widely used MeOH:H2O.

Figure 4. Red, green and blue (RGB) overlay of m/z 953 (TG (58:8) [M+Na]+), m/z 832 (PC (38:4)

[M+K]+) and m/z 780 (PC(36:5) [M+H]+) obtained using DESI and two spray solvents—(A) 95:5

(%v/v) MeOH:H2O and (B) 50:50 (%v/v) MeOH:EtOH.

The chlorine (Cl) and potassium (K) elemental maps from a sequential PIXE analysis of
the three tissue sections are shown in Figure 5. As shown in the maps in Figure 5, there was
a loss of Cl and K when MeOH:H2O was used as a spray solvent (p > 0.05; see Table S4), but
Fe remained unchanged. Figure S9 shows the remaining elemental maps for phosphorus
(P), sulphur (S) and the total EBS map.

As each of the lung sections were analysed in mosaic scan mode (four squares arranged
in a 2 × 2 array, each square of dimensions 1 × 1 mm), there were four analysis regions per
sample. Figure S10 shows the overlay of the X-ray spectra for one of the squares—the one in
each sample which captured the caseum. There is a clear loss of K and Cl when MeOH:H2O
was used, in agreement with the elemental maps shown in Figure 5. As observed with the
tissue homogenate sections, there was a small loss of P when the MeOH:H2O solvent was
used, confirmed by t-test (p < 0.05, see Table S4). On the other hand, the difference in P
peak area between the control sample and the sample analysed using MeOH:EtOH was
not statistically different (p > 0.05). This confirmed that MeOH:EtOH could preserve the
elemental integrity of the sample.
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Figure 5. Chlorine (Cl), potassium (K) and iron (Fe) PIXE maps taken from snap-frozen lung tissue

sections after DESI analysis using 95:5 (%v/v) MeOH:H2O or 50:50 (%v/v) MeOH:EtOH. A third

section (control) was also analysed—no DESI measurements were taken on this sample. Optical

images taken before analysis highlighting the PIXE/EBS analysis areas (red squares) on each tissue.

4. Discussion

The data presented here demonstrates that elemental mapping can be carried out
following DESI imaging using a 50:50 (%v/v) MeOH:EtOH spray solvent. To our knowl-
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edge, this is the first time that this solvent system has been reported for use in a DESI
system, although it is noteworthy that MeOH:EtOH has been used previously by Lewis
et al. for liquid extraction surface analysis to enable the extraction of lipids from tissue
sections [67]. Our data showed that this novel solvent system can produce images of
similar quality (Figure 4) to the more conventional MeOH:H2O solvent system, with similar
coverage across the mass spectrum (Figure S6) and enhanced an signal-to-noise ratio for
selected peaks (Figure 3). The increased sensitivity towards lipids using this alcohol-based
spray solvent may be related to the known effect of alcohols on lipid bilayer properties.
Alcohols, and in particular ethanol and methanol, are known to change the structural
properties of membranes, increasing their permeability. In this instance, it is expected
that the employment of these solvents for DESI analysis would increase the sensitivity
towards lipids [77]. Furthermore, no delocalisation or loss of elements was observed using
PIXE/EBS. This is presumably because mobile ions such as potassium and chlorine are
highly water soluble and so delocalise in the conventional MeOH:H2O solvent system, but
not in the aqueous-free novel solvent mixture.

We have therefore demonstrated the successful multimodal imaging of molecular and
elemental markers on a single tissue section, overcoming issues such as changes incurred
to the samples by preceding measurements. In this work we have shown that IBA can be
carried out following DESI analysis, but this observation is also relevant to other elemental
imaging techniques such as XRF, SEM and LA-ICP-MS, for example.

A limitation of the current approach is that the image resolution of commercial DESI
instrumentation (typically 50–100 microns) is inferior to many elemental imaging modali-
ties, which can be submicron, depending on the technique. Elemental mapping techniques
can resolve single cells, whereas most DESI systems currently cannot. Being able to resolve
single cells would improve the certainty of correlation between molecular and elemental
images. Recent developments in DESI source technology should drive substantial im-
provements to image resolution and enable imaging at comparable pixel sizes in the near
future [78].

Future work should investigate different ratios of methanol to ethanol and whether this
changes the sensitivity/coverage of the DESI analysis and/or the elemental composition of
a sample. Additionally, it would be useful to use PIXE to establish whether the absence of
potassium caused by the MeOH:H2O solvent prevents [M+K]+ adduct formation, thereby
reducing sensitivity to certain lipids. The preservation (or even addition) of K in biological
samples may be useful to enhance lipid coverage.

5. Conclusions

This work has demonstrated that the novel DESI spray solvent 50:50 (%v/v) methanol:
ethanol enables sequential elemental mapping out on the same tissue section. This is
desirable to allow the accurate correlation of elemental and molecular features since regions
of interest are not always accurately reproduced in sequential sections. In this work, the
new solvent system produced similar, if not better, lipid coverage and sensitivity in positive
ion mode when compared to the conventional methanol:water solvent. This work therefore
demonstrates the successful multimodal imaging of molecular and elemental markers
on a single tissue section, overcoming issues such as changes incurred to the samples by
preceding measurements.

Supplementary Materials: The following supporting information can be downloaded at https:

//www.mdpi.com/article/10.3390/metabo13020262/s1: Figure S1: Additional analysis information;

Figure S2: X-ray spectra overlay of areas analysed with DESI on areas not analysed with DESI; Table

S1: T-tests results for elemental concentrations measured from liver homogenates; Figure S3: Overlay

of DESI spectra taken from the background using the two different solvents; Table S2: Top 50 lipid

features detected in the liver homogenates; Figure S4: Histogram showing the top 50 lipid distribution

per m/z range; Table S3: T-test results for the top 10 lipids detected using both solvents; Figure S5:

DESI maps obtained from liver homogenates using the two solvents; Figure S6: Peak intensities for

the remaining top 40 lipid features detected in liver homogenates using DESI; Figure S7: Optical

https://www.mdpi.com/article/10.3390/metabo13020262/s1
https://www.mdpi.com/article/10.3390/metabo13020262/s1
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and H&E images of snap-frozen rabbit lung; Table S4: T-test results for elemental concentrations

measured with PIXE rabbit lung section; Figure S8: PIXE maps for P, S and EBS map taken from the

rabbit lung section; Figure S9: Overlay of X-ray spectra taken after DESI imaging using each solvent.
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