NPLE

National Physical Laboratory

NPL REPORT MS42

MODEL-BASED SYSTEMS ENGINEERING AT NPL: AN INITIAL
INVESTIGATION

ISSUED 1.0

KEITH LINES, DATA SCIENCE
HARISH KRISHNAMURTHY, INSTRUMENTS AND ENGINEERING

FEBRUARY 2023

NPL Report MS42

Model-based systems engineering at NPL:

An Initial Investigation

Keith Lines, Data Science

NPL Report MS42

Harish Krishnamurthy, Instruments and Engineering

ABSTRACT

Results are presented of an initial investigation into whether model-based systems

engineering (MBSE) [1] and the Systems Modelling Language (SysML) [2] could be of use in
the development of cyber-physical systems [3] at NPL. A case study of applying SysML to a
generic measurement system is included.

This document is not intended to serve as a detailed introduction to MBSE and SysML.
However, sufficient background information is provided to ensure readers unfamiliar with this
subject can follow the case study and the authors’ conclusions. References for further
reading are provided.

DOCUMENT HISTORY

Issue

Date

Author

Change(s)

Issued 1.0

01/02/2023

K Lines

Initial released version.

NPL Report MS42

© NPL Management Limited, 2023

ISSN 1754-2960

https://doi.org/10.47120/npl.MS42

National Physical Laboratory
Hampton Road, Teddington, Middlesex, TW11 OLW

Extracts from this report may be reproduced provided the source is acknowledged
and the extract is not taken out of context.

Approved on behalf of NPLML by
Liam Davies, Group Leader.

NPL Report MS42

CONTENTS

1. INTRODUCTION......iiiieceiei e e e e e e e e s sme e s e e s me e e e e s smn e e e e s smme e e e s esmneeesemneeesenneeeesannnenesan 1
2. MBSE AND SYSML....ooiiiiiiiiiiiaierreeaee e ersame e s ssssmse s s ssamr e s s assmseesassamneesasassessasennsesssssnneesasan 1
2.0 WHAT IS MBSE? ..ottt ettt e et e e e et e e e s st e e e e e nteeeeenneaeeeeanneeeeeannnenens 1
2.2 WHERE IS MBSE USED? ...ttt ettt et e e st e e e s st e e e s snneeeeeenneeas 3
2.3 THREE PILLARS OF MBSE oo 3
2.3.1 Modelling languUAagE.........coooeeeiii i 3
2.3.2 Modelling MEthOd ... 5
2.3.3 MOdelliNG t00L.. ..o 5

2.4 IMPLEMENTING MODEL-BASED SYSTEMS ENGINEERINGcccoioiiiiiiiiiceeens 6
2.5 SUMMARY ..ttt ettt ettt e e ettt e e ettt e e e e aeeee e e e eeeeaeanseeeeaaneeeeeeanneeeaeaaaeenn 6
3. REASONS MBSE COULD BE OF USE TO NPL.......oiiiieiceee e e 6
S 040 111 [0 LU K= [0 1 TSN 7
5. FURTHER CASE STUDIES.......oooiiciiriiccrer i sreessssse e s s sme e s ssssmse s s s ms e s ssssme e s ssssmsessassnnees 8
6. ACKNOWLEDGEMENTS.........ciiiiiiteriresmereessmeesssssee e ssssssne s sssssmn e s s s s smeessssmneeessssmnessansnns 9
7. REFERENGCES........o st s s s s s s s e 9
APPENDIX I: CASE STUDY: GENERIC CALIBRATION SYSTEMcccooniimrecrreeeeeenne 12
ALT INTRODUGCGTION ..ottt et et e et e e te e e aneeeaseeeaeeeeanneeaneeeanneeeanneeans 12
AL2 SYSML VERSION ...ttt et e ettt e et e e ssae e ateeesnneeeneeeanseeeanneeans 12
AL3 QUALITY MANAGEMENT PLAN ..ottt e e e ee e 12
ALZL THE MODELceiiiiteiee ettt ettt et e e e et e e e e mte e e e e e neeeeeannneeeeeanseeeeeanns 13
F g T O 1YY 1= RS 13

F B] 0 1 £ SRS 16
AL4.3 USEr reQUITEMENTSciiiieeiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e nnnneneeeeeeeeean 17
Al.4.4 Functional requirements and USE CASES.........ccuuuuiiiiiiiiiiiiiiiiii e 18
Al.4.5 Block definition diagramcoooiiiiiiiiiiiiie e 21
AlL4.6 Internal bIOCK diagramooeiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee et aaaeaaae 22
AL4.7 Further additionscooiii i 22
APPENDIX Il: THE COMPELETE BLOCK DEFINITION DIAGRAM.........coocoiireerecmeeeeenne 23
APPENDIX Ill: IMPORTING THE MODEL INTO PAPYRUS ... e 24
ALY INTRODUCTION ...ttt ettt e e e et e e e e e e e e e e anneeeeennneeeeeannneeeeanns 24
AlIL2 INSTALL PAPYRUS ...ttt ettt et e e see e s etae e e s sntae e s enteeeeennnneeeeanes 24
Alll.3 INSTALL ECLIPSE MARKETPLACEoooiiiiite et etee et eeee e snaee e e 24
AL INSTALL SYSML 1.4 .ttt e et e e e e et e e aeeeaeeeeanneeen 25

AllLLS UPLOAD THE ARCHIVE FILEcoiiiiiiii ettt 25

NPL Report MS42

NPL Report MS42

1. INTRODUCTION

This report summarises an initial investigation into whether model-based systems
engineering (MBSE) [1] and the related Systems Modelling Language (SysML) [2] could
help to specify, design, implement, verify, validate and, above all, document complex
cyber-physical systems developed at NPL.

SysML provides a formal language and tools to structure the understanding of complexity.
Understanding complex systems was identified as a key priority for metrology in the 2030s
by the technology and measurement foresighting exercise NPL carried out in 2020 [4].
Awareness and exploration of the latest systems engineering paradigms can only help with
that aim.

Complex combinations of hardware and software that interact with their physical
surroundings, including occasional input from human operators, i.e. cyber-physical
systems [3], underpin metrology as they do so for many aspects of the modern world. As will
be described in section 3, due to the 2019 redefinition of the Sl [5] it is more important than
ever for metrology that such systems can be understood, maintained, and further developed
independently of the original and subsequent developers. The investigation consisted of
the following activities:

e Consider some reasons why MBSE could be of use to NPL.

o Apply MBSE to a realistic, but not overly complex, metrology-based example.
o Draw some conclusions.

o |f the conclusions are positive, suggest some future case studies.

The report is largely structured as above, beginning with a brief overview of MBSE and
SysML.

Table 1 Glossary

Glossary
Term Definition
INCOSE | International Council on Systems Engineering
MBSE | Model-based systems engineering.
SysML | Systems Modelling Language.
UML Unified Modelling Language

2. MBSE AND SYSML

Some key concepts of model-based systems engineering and the related Systems Modelling
Language are introduced below, along with references for further reading.

2.1 WHAT IS MBSE?

As described by Delligatti [6], model-based systems engineering is best introduced by first
considering the more traditional document-based approach to systems engineering in which
the various stages in the development lifecycle are managed using a disjoint set of
spreadsheets, text documents, diagrams and presentations.

Page 1 of 27

NPL Report MS42

Assess Risk Level ﬁ
E—=

Gather user uqulr:mm

User Requirements Quality Plan
LDMlupi‘urmunilrnqmnmls
it ————
' / M“."dm“ —ﬁ
] Design document(s)
Functional Specification Verily software e |
g
' Yolins croubep o " Test plan / test results

Review(s) \ y 4

Final Review
Deliver
Release Plan User Manual
Use and maintain

Figure 1 Document-based lifecycle based on a series of non-integrated documents.

The contents of one document will often depend on the contents of another. However, there
is no automated connection between documents. The documents may even be subject to
different forms of version control.

With MBSEthe set of documents is replaced with a system model. The same stages in the
development lifecycle are followed and the same set of deliverables are produced, but as
Delligatti describes in section 1.1 of [6]:

“With the MBSE approach, the primary artefact of those activities is an integrated,
coherent and consistent system model, created by using a dedicated systems
modelling tool. All other artefacts are secondary — automatically generated from the
system model using the same modelling tool.”

Assessl?\\sk\.eve\ ‘
! 1

Gather user requirements e
Develop functional requirements ‘
Design and code [
' ~ = Generic_Calibration_System v1.0

. <Package Import> Libraries

b it % <Package Import> UML Primitive Types
& £3 01-User_Requirements
} E1 02-Functional_Requirements

£3 03-Design
B3 04-Verification
E3 05-Validation

Validate requirements

9

Final Review —— Standard development

Deliver |

Use and maintain |

Figure 2 Model-based lifecycle.

Page 2 of 27

NPL Report MS42

The International Council on Systems Engineering (INCOSE) [7] defines MBSE as:

“...the formalized application of modelling to support system requirements, design,
analysis, verification and validation activities beginning in the conceptual design
phase and continuing throughout development and later life cycle phases.”

INCOSE goes further to say “MBSE is expected to replace the document-centric approach
that has been practiced by systems engineers in the past”.

2.2 WHERE IS MBSE USED?

MBSE has been adopted for use in aerospace and transport projects. Case studies are
available from organisations such as NASA and Siemens [8, 9, 10].

2.3 THREE PILLARS OF MBSE

Delligatti refers to three pillars of MBSE: a modelling language, a modelling method and a
modelling tool. These pillars, and pillar-related choices made by the authors, are described
below.

2.3.1 Modelling language

A formal language (i.e., not a natural language such as English) is required to create models.
The Systems Modelling Language (SysML) [2] was chosen by the authors as the
modelling language for the case study. SysML is a general-purpose language designed to
model both hardware and software systems. Therefore, it was considered an appropriate
choice.

SysML is a dialect of the Unified Modelling Language, version 2 (UML 2) [11] that
customises the language, making it applicable to systems consisting of both hardware and
software. UML 2 could have been an appropriate choice for purely software-based systems.
Both SysML and UML2 are defined in ISO standards, ISO/IEC 19514:2017 [12] and ISO/IEC
19505-1:2012 [13] / ISO/IEC 19505-2:2012 [14] respectively.

SysML and UML 2 are graphical languages that diagrammatically represent the actors (e.g.,
system operators, system administrators), use cases, blocks, communication paths etc. of
which the system consists. These concepts, and how they are represented in SysML are
very briefly introduced using some simple examples.

Use case diagrams

Again, to quote Delligatti:
o Use cases are the subset of system behaviours that external actors can directly
invoke or participate in.
o An actor can be a person or external system that interfaces with your system.

SysML represents use cases as ovals placed within a rectangle that represents the system.
The usual convention is that human actors are represented using stick figures and external
systems are represented using rectangles. Consider the example below:

«Block»
& Calibration_System
«includes___.---~"7_©System self-diagnostics
o RS
Operator cextend> 2Inform operator of system failure

Figure 3 Example use case diagram.

Page 3 of 27

NPL Report MS42

The actor is the system operator and powering up is the system behaviour. The operator
initiates this behaviour, and an included use case represents the system performing internal
diagnostics. Included use cases represent behaviour that could be repeated elsewhere in the
system; they are initiated by other use cases, not by an actor.

Extend use cases represent behaviour, that in certain circumstances, is added to another
use case. The behaviour in the example is the system raising an error message.

Use cases and use case diagrams can be used to help specify and document functional
requirements. They do not directly contain any concept of timing or data flow. Timing can be
implied by the order in which use cases are listed in a user case diagram. The case study in
APPENDIX | presents use cases ordered in this way.

SysML provides activity diagrams, sequence diagrams and state machine diagrams that
directly model a system’s dynamic behaviour. These types of diagrams are beyond the
scope of this report

Block definition diagrams

Block definitions specify the types of entity of which the system will consist. Typically,
these entities will be physical items (e.g., computers, artefacts to be calibrated). It is
important to understand that block definitions do not represent specific instances of an
entity (e.g., a customer artefact with serial number XYZ359), they represent the type.

Readers familiar with object-oriented programming will recognise that a block is like a class
i.e., a template for creating objects. In fact, SysML blocks are an extension of UML classes.
Features such as ports have been added for specifying hardware as well as software.

Block definition diagrams (BDDs) illustrate how these blocks are connected. Consider the
following section of a BDD created for the case study:

«Block»
& Calibration_System
attributes

customerArtefact 0.1 |2 + controlComp: Control_Computer [1]
= + daq: DAQ_System [1]
<A + standardNPLArtefact: Artefact [1]
standardNPLAttefact 0.1 |= + customerArtefact: Artefact [1] et :
1 : 1 operations controlComp
«Block» 4 019 "
= Artefact daq 1
attributes ' +Blodcs L] «Rlocks L]
% + nomVal: Ar'tefactLlJmts [1] EDAQ System B Control_ Computer
=8 ma-nufacturr-_-'r: String [1] attributes e
S+ + serialNo: String [1] = + manufacturer: String [1] & + serialNo: String [1]
: = + userinterface: User_Interface [1] |-
operations operations
operations

Figure 4: Section of an example block definition diagram.

The block illustrated represents the whole calibration system. Links to other blocks are also
illustrated.

e The black diamond at the end of the link indicates a composite association. The
calibration system is composed of one or more data acquisition systems and control
computers. These are strong associations; an analogy is that a heart and lungs are in
a composite association with a body. Removing the data systems and control
computers would disassemble the system.

Page 4 of 27

NPL Report MS42

e The white diamond at the end of the link indicates an aggregation association.
These are weaker associations than composite. The artefacts have a separate
existence from the calibration system. Removing these artefacts would not
disassemble either the artefacts or the whole system. Returning to the body analogy
something in an aggregation association could be thought of as being like an item of
clothing or a pair of glasses.

Each link has a multiplicity of 0..1 indicated at the composite end (i.e. near the diamond),
where:

¢ 1 indicates that the calibration system shall contain at most 1 such entity
¢ 0O indicates the entity can be disconnected from the system.

The calibration system is composed of a customer artefact, an NPL standard artefact, a data
acquisition system and a control computer. The links for both artefacts point to the same
block because they are both of the same type.

The composition of the calibration system is also indicated in the attributes of the
Calibration_System block. These are values of the types provided by the composite
associations.

2.3.2 Modelling method

Perhaps surprisingly, MSBE does not mandate any particular systems development lifecycle.
Neither does MBSE state which aspects of the system need to be modelled. The
development team shall decide these matters and the purpose of the model (e.g.
requirements capture / systems design / documentation / all of these?) and how the model
will be developed.

For the case study NPL'’s software development procedure [15] was followed. This procedure
provided a good template on which to base the model. Figure 2 illustrates how the iterative
development lifecycle specified in [15] maps to an example of a model developed using
SysML.

2.3.3 Modelling tool

A variety of software packages for creating and maintaining system models using SysML are
available [16]. Some tools must be purchased, others are available free of charge. Some tools
are for generic use, and some are intended for a specific purpose such as developing robotic
systems [17].

The authors selected the Eclipse Papyrus™ modelling environment [18] for developing the

case study. Reasons for selection included:

o Papyrus is free of charge. The expense of purchasing a tool could not be justified for this
initial investigation.

o Despite being free, Papyrus is “industry ready” as illustrated by a variety of case-studies
on its website.

e |t supports the latest versions of SysML and UML.

e |tis used within academia for teaching. This aspect was considered appropriate for the
authors, who are in the process of becoming familiar with SysML themselves. A British
Computer Society colleague of one the authors used Papyrus for teaching undergraduate
courses in SysML.

Page 5 of 27

NPL Report MS42

2.4 IMPLEMENTING MODEL-BASED SYSTEMS ENGINEERING

Implementation of MBSE within an organisation is not achieved overnight and requires a
natural evolution. The evolution of MBSE within an organisation comprises of the following
stages as explained by Holt and Perry in [19]:

1.

Document-based: A document-based systems engineering process is in place, all the
artefacts produced are document based.

2. Document-centric: A document-based systems engineering process is in place, but
informal or minimal use of UML, SysML is employed.

3. Model-enhanced: Modelling is used as part of the overall system engineering process,
with an awareness of MBSE and consistent use of modelling languages such as SysML.
Documents and models co-exist in this stage.

4. Model-centric: MBSE is formalised and consistently applied in multiple projects within
the organisation. Most of the artefacts are model based.

5. Model-based: In this stage the approach is truly MBSE with mature processes in place.
All the artefacts in this stage are purely models.

2.5 SUMMARY

To summarise the above:

3.

MBSE uses a shared system model as the primary means of information exchange
between developers, rather than document-based information exchange. All disciplines,
from requirements capture to delivery and maintenance, view a consistent system model.

The complexity of cyber-physical systems, their surroundings and interdependencies are
increasing tremendously in this ever-more connected world. This complexity drives the
requirement for repeatable and demonstrable techniques to develop such systems.
MBSE offers such capabilities.

MBSE uses a formal, digital language to specify, design, analyse and verify a system.
Information is captured in a durable, evolvable format.

SysML is a general-purpose modelling language for systems engineering applications
which has emerged as a de facto choice for MBSE. SysML supports a broad range of
systems and systems-of-systems. These systems may include hardware, software,
information, processes, personnel, and facilities.

REASONS MBSE COULD BE OF USE TO NPL

The following list summarises the reasons the authors feel that the use of MBSE is worth
exploring further in the development of cyber-physical systems at NPL. This list also helped
with the conclusions. It is arguable that the first point is the most pressing:

Help knowledge capture and transfer: The 2019 revision of the Sl [5] underlined the
importance for national metrology institutes of ensuring complex cyber-physical systems
can be understood, maintained, and further developed independently of the original
developers.

The Kibble Balance [20] provides one of the most striking examples of such a system.
Prior to the Sl revision, the realisation of the kilogram was based on the care and
maintenance of a series of physical artefacts. That task was far more complicated and
demanding than most could ever appreciate [21]. However, the realisation of this

Page 6 of 27

4.

NPL Report MS42

fundamental unit of measurement now requires an in-depth understanding of a highly
complex combination of hardware and software that is the result of many person-decades
of development.

Such systems must be maintained, and the next generation developed, without the
need to contact previous developers. MBSE could ease the task of ensuring key
information has been thoroughly captured and can be passed on to future generations of
developers / maintainers.

Reuse of designs: MBSE provides the ability to arrange institutional knowledge using a
formal language, allowing for reuse and broad exposure.

Keeping documentation thorough and consistent: Maintaining a comprehensive set
of quality plans, requirements documents, design documents, test plans etc. can be a
complicated, tedious, and error-prone task. Changes to one document (e.g., the addition
of a new user requirement), will almost certainly have to filter through to other documents
(e.g., new functional requirements, modifications to design documents and new test
cases).

A single, consistent, unambiguous system representation ensures integrity and
traceability throughout the development lifecycle and maintenance. MBSE provides an
alternative to a set of unlinked documents. Changes to one stage of system specification
or development can automatically filter through to other stages.

Focusing on information integration rather than document generation allows for detection
of inconsistency / staleness.

Gap analysis: “Retro-fitting” MBSE to existing systems is not ideal. However, it is the
experience of the authors that reverse engineering software quality management
documentation is always a worthwhile exercise in gap analysis (e.g., ensuring test plans
are sufficiently thorough). The authors wanted to explore whether the same could be said
of MBSE.

Greater engagement: Could MBSE be technically more interesting than traditional
document-based approach to systems engineering? Anything that would help engage
scientists / engineers with what might otherwise be considered burdensome bureaucracy
must be worth investigating.

CONCLUSIONS

The following are the conclusions of this work, in no order of priority:

Some features of MBSE and SysML are immediately applicable to NPL projects:
Referring to the stages of introducing MBSE, listed above, stage 2 document-centric,
could be the most realistically obtainable (or even desirable) stage of introducing MBSE
within NPL. Reasons include:

o MBSE and SysML is complex with a non-trivial learning curve. Publicly available case
studies and papers, such as those referred to in section 2.2, indicate that MBSE is
mainly applied to large-scale aerospace and defence projects. Therefore, MBSE
using SysML may appear to be overkill for most NPL’s projects.

Page 7 of 27

5.

NPL Report MS42

o However, there are features of MBSE and SysML that would be of practical benefit to
some projects. E.g., use cases and block definition diagrams provide a useful,
practical tool for requirements capture and systems design. SysML provides
formality and therefore consistency from one developer to another. The resulting
systems would be better designed and better documented.

The skills required for those features should be well within the grasp of any
competent coder and already second nature to any software or systems engineer.

Invest in a good-quality modelling tool: Following on from the above conclusion, NPL
would need to invest in a good-quality modelling tool. Software tools purely for drawing
diagrams, e.g. Microsoft Visio, would not be sufficient. It is essential that the tool enforces
the syntax / semantics of the language to ensure consistency.

Papyrus has done an excellent job for the case study. However, NPL would need
features that Papyrus does not provide, such as the ability to embed mathematical
equations in requirements which may mean purchasing a tool.

Useful for engaging with external partners: MBSE is used by industrial partners with
whom NPL collaborates (e.g., within the aerospace sector [22, 23]). A knowledge of
MBSE could help with communication with developers within these organisations.

Work closely with Instrumentation and Engineering: There is a major internal change
program within NPL’s Instrumentation and Engineering department. The aim is to
introduce formal systems engineering within NPL. Referring to section 2.4, NPL generally
is not even in stage 1 of the evolution of MBSE.

MBSE using SysML is fun. That’s something not to be underestimated: As was
anticipated in section 3, developing the case study was an engaging and enjoyable
exercise. Such an approach really does have the potential to make vital, but far too often
neglected, tasks more engaging. Experience of MBSE and SysML will boost the CVs of
early-career members of staff. Also, the opportunity for staff to develop in this area may
reduce attrition as well as encouraging a “quality first” mindset.

External support required: In the longer term it is recommended to seek external
support (which could prove very expensive) or train someone to gain MBSE expertise.

OVERALL CONCLUSION: MBSE is a discipline for understanding, managing and
“taming” complex systems that is being widely adopted within industry. Its application to
areas in which NPL are active (such as Industry 4.0 [24], digital twins [25] or
understanding complex systems as a priority for metrology in the 2030s [4]) implies that
at the very least NPL should have an awareness of MBSE. Judiciously applying MBSE
to NPL projects will aid that awareness.

FURTHER CASE STUDIES

This work can be progressed by applying SysML to further, more realistic, examples. NPL
provides numerous examples of cyber-physical systems for MBSE case studies. The most
practical approach would be to model selected aspects of a system rather than the whole
system. Beginning by developing use cases of operator interaction would be an excellent
and challenging starting point. The resulting documentation would aid understanding by
those new to the system. It may also help optimise design Possible examples include:

Cryogenic Current Comparator Bridge (CCC Bridge): CCC Bridges are used for the
calibration of standard resistors against Quantum Hall Resistance (QHR) standards [26].
The CCC Bridges were used as a basis for the Generic Calibration System presented in

Page 8 of 27

NPL Report MS42

APPENDIX I. Extending the case study presented in this report to include features of a
CCC Bridge could help create a more “realistic” model.

Business Systems: MBSE can help with the development of business, as well as
scientific, systems of which NPL provides numerous examples. In this case the Business
Process Model Notation (BPMN) [27] is used rather than SysML. However, BPMN is also
derived from UML and the shared origin with SysML means they complement each other.
For example, in [28] Cwikia et al. present an outline of a case study that combines
scientific and business aspects. Both SysML and BPMN are used to model a system that
collects and processes real-time data from the monitoring of a production system. This
data is then used for the purposes of company management.

BPMN has also been defined in an ISO standard, ISO/IEC 19510:2013 [29].

In [30] Hein et al. present an example of a detailed case study. An NPL equivalent of such a
case study would have great value for reasons described in the conclusion.

6.

ACKNOWLEDGEMENTS

This work was undertaken jointly by the National Physical Laboratory’s Data Science and
Instruments teams as part of Data Science’s Tools for Trustworthiness National
Measurement System (NMS) project 2021 — 2022 and 2022 — 2023.

Louise Wright provided helpful comments on an early draft of this report. Figures 1 and 2
incorporate a flowchart from [15], the authors thank the NPL Quality Assurance team for
permitting it to be used. Thanks also to Peter Harris and to lan Robinson and Rob Smith for

helpful comments.

7.
1.

REFERENCES

Model Based Systems Engineering (MBSE). Retrieved 05/12/2022 from International
Council on Systems Engineering (INCOSE):

https://www.incosewiki.info/Model Based Systems Engineering/index.php?title=MBSE
Definitions

Systems Modelling Language homepage. Retrieved 05/12/2022 from SysML.org:
https://sysml.org/

National Institute of Standards and Technology (NIST), Cyber-physical systems Topics.
Retrieved 05/12/2022 from NIST: https://www.nist.gov/cyberphysical-systems

Technology and Measurement Foresighting: A vision of the 2030s shaped by metrology.
Retrieved 05/12/2022 from NPL: https://www.npl.co.uk/foresighting

Sl redefinition. Retrieved 05/12/2022 from the International Bureau of Weights and
Measures (BIPM): https://www.bipm.org/en/measurement-units

Delligatti, L. SysML Distilled: A brief guide to the system modelling language, Published
by Pearson Educational, 2014, ISBN-13 978-0-321-92786-6

International Council on Systems Engineering (INCOSE). Retrieved 05/12/2022 from
INCOSE: https://www.incose.org

Bonanne, K H. Model-based systems engineering for capturing mission architecture
system processes with an application case study: Orion Flight Test 1. Retrieved
05/12/2022 from NASA: https://trs.jpl.nasa.gov/handle/2014/43714

Page 9 of 27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

NPL Report MS42

Model Based Systems Engineering (MBSE). Retrieved 05/12/2022 from Siemens:
https://www.plm.automation.siemens.com/qglobal/en/our-story/glossary/what-is-model-
based-systems-engineering/28573

Roodt, D; Nadeem, N; Vu, L. Model-Based Systems Engineering for complex rail
transport systems — A case study. Retrieved 05/12/2022 from Shoal Group:
https://www.shoalgroup.com/wp-content/uploads/2020/08/1S_2020 Papers_paper 151-
1.pdf-1.pdf

Unified Modelling Language (UML) homepage. Retrieved 05/12/2022 from OMG:
https://www.omg.org/spec/UML

ISO/IEC 19514:2017: Information technology — Object management group systems
modeling language (OMG SysML). Retrieved 05/12/2022 from ISO:
https://www.iso.org/standard/65231.html

ISO/IEC 19505-1:2012: Information technology — Object Management Group Unified
Modeling Language (OMG UML) — Part 1: Infrastructure. Retrieved 05/12/2022 from
ISO: https://www.iso.org/standard/32624.html

ISO/IEC 19505-2:2012: Information technology — Object Management Group Unified
Modeling Language (OMG UML) — Part 2: Superstructure. Retrieved 05/12/2022 from
ISO: https://www.iso.org/standard/52854.html

NPL internal quality procedure: QPNPL/M/013 NPL-Written Software

Free & Commercial SysML Tools for MBSE. Retrieved 05/12/2022 from SysML Tools
https://sysmltools.com/

RoboTool. Retrieved 05/12/2022 from the University of York.
https://robostar.cs.york.ac.uk/robotool/

Eclipse Papyrus Modelling environment. Retrieved 05/12/2022 from Eclipse:
https://www.eclipse.org/papyrus/

Holt, J; Perry, S. Implementing MBSE into your Business: The Trinity Approach,
Published by INCOSE UK Limited, ISBN 978-0-9934857-5-6

Robinson, I. The architecture of the NPL next generation Kibble balance. TO BE
PUBLISHED.

Reynolds, M. This is why physicists just completely redefined the kilogram. Retrieved -
05/12/2022 from Wired: https://www.wired.co.uk/article/how-many-grams-in-a-kilogram-
weight-change-planck-constant

TRUTHS satellite calibration mission. Retrieved 05/12/2022 from NPL:
https://www.npl.co.uk/earth-observation/truths

ESA awards contract to Airbus UK for TRUTHS predevelopment. Retrieved 05/12/2022
from the European Space Agency:
https://www.esa.int/Applications/Observing_the Earth/ESA awards_contract to_Airbus

UK for TRUTHS predevelopment

Digital Transformation Monitor Germany: Industrie 4.0. Downloaded 05/12/2022 from
Europa.eu https://ati.ec.europa.eu/sites/default/files/2020-
06/DTM_Industrie%204.0 DE.pdf

Wilking F, Sauer C, Schleich B, Wartzack S. Sysml 4 Digital Twins — Utilization of System
Models for the Design and Operation of Digital Twins. Retrieved 05/12/2022 from
Cambridge University Press: https://www.cambridge.org/core/journals/proceedings-of-

Page 10 of 27

26.

27.

28.

29.

30.

31.

32.

33.

NPL Report MS42

the-design-society/article/sysml-4-digital-twins-utilization-of-system-models-for-the-
design-and-operation-of-digital-twins/2B934D8367F74EA1E2CB6789096EA268

Kleinschmidt P, Williams J, Fletcher N, Janssen JT. Cryogenic Current Comparator for
Quantum Hall Resistance Ratio Measurements. Retrieved 09/10/2022 from NPL:
http://eprintspublications.npl.co.uk/2168/1/bemc2001-11.pdf

Object Management Group Business Process Model and Notation. Retrieved 05/12/2022
frombpmn.org: https://www.bpmn.org/

G Cwikta et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 227 012034. Analysis of the
possibility of SysML and BPMN application in formal data acquisition system description.
Retrieved 05/12/2022 from the Institute of Physics:
https://iopscience.iop.org/article/10.1088/1757-899X/227/1/012034

ISO/IEC 19510:2013: Information technology — Object Management Group Business
Process Model and Notation. Retrieved 05/12/2022 from ISO:
https://www.iso.org/standard/62652.html

Hein A, Karban R, Weilkiens T, Zamparelli M. Cookbook for MBSE with SysML.
Retrieved 05/12/2022 from ResearchGate:
https://www.researchgate.net/publication/268977905 Cookbook for MBSE_ with SysML

About the OMG system modeling language specification version 1.4. Retrieved
08/10/2022 from OMG: https://www.omg.org/spec/SysML/1.4/About-SysML

S| Brochure: The International System of Units (SI) version 9th edition 2019. Downloaded
05/12/2022 from BIPM: https://www.bipm.org/en/publications/si-brochure

[SysML] SI Units Library & Import (Is the library included and how to import it?)
Downloaded 05/12/2022 from Eclipse Community Forums:
https://www.eclipse.org/forums/index.php/t/261774/

Page 11 of 27

NPL Report MS42

APPENDIX I: CASE STUDY: GENERIC CALIBRATION SYSTEM
Al.1 INTRODUCTION

This appendix presents an overview of the case study undertaken as part of this initial
investigation. For access to the Papyrus files contact keith.lines@npl.co.uk. Alternatively, for
NPL staff these files can be found in the Model Based Systems Engineering Office 365
Team.

The original intention was to apply MBSE to a “real” example from NPL. It soon became clear
that such a complex case study would have been too ambitious at this initial stage.
Therefore, a less detailed generic calibration system was specified instead. The system
calibrates “customer artefacts” against “NPL standard artefacts” and does not specify the
details of the artefacts themselves (they could be resistors, masses, hydrophones, length
bars etc.). This case study draws on the authors’ experience of developing, maintaining,
documenting and project-managing cyber-physical systems at NPL. Therefore, although
generic, it is sufficiently realistic to make the exercise worthwhile.

The overview begins by summarising the quality management plan that provided the starting
point for developing the model. The elements of the model, which are structured according to
the quality management plan are then described. Those quality plan elements considered in

this case study are user requirements, functional requirements and system design.

Al.2 SYSML VERSION

SysML version 1.4 [31] was used for this case study. Newer versions of the language have
been defined. However, it was decided to use a slightly more mature version in the hope that
more tools, examples, background reading etc. would be available than for newer versions.

Details of the versions of the language can be found on the Systems Modelling Language
homepage [2].

AlL.3 QUALITY MANAGEMENT PLAN

NPL'’s software quality management system [15] was used as the basis for developing the
model. Therefore, work begun by generating a documented quality management plan
using an MS-Word template provided by the quality system. A summary of the plan is listed
below.

Table Al.1 Quality management plan

Brief description e A case study to help determine whether the Systems Modelling

Language (SysML, https://sysml.org/) would be of use at NPL
for developing hardware and software.

e The case study shall be sufficiently realistic and detailed to
draw some useful conclusions. However, it should not be so
detailed as to require previous experience with SysML.

¢ The specification shall contain components common to all
measurement systems; i.e.:

o A standard artefact against which other artefacts are
calibrated.

o The artefact to be calibrated.
o Data Acquisition (DAQ) hardware and software.

o A data storage system where measurement data will be
held.

Page 12 of 27

NPL Report MS42

o A control computer running software for managing the
calibration process.

User requirements Documented user requirements

Review by team

Review by suitably qualified independent person
Review by customer or proxy

Functional requirements Documented functional requirements

Traceable requirements

Review by team

Review by suitably qualified independent person

Design Clear and well-structured design

Tool support

Review by team

Review by suitably qualified independent person

Verification . .
Module testing as coding progresses
Effective testing of complete software against specification
Review by team

Validation

Documented testing against specification
Review by team
Review by suitably qualified independent person

Delivery, use and

s Version control on release
maintenance

Version control before release
Bug tracking / error logging
Traceability

User documentation

It may seem contradictory to begin a model-based case study using a document.
However, the plan provided excellent guidance for this case study as to what the
model should contain. It MBSE is adopted then perhaps a number of templates for
models could be an alternative to document-based quality plans.

Al.3.1 Reviews and customer approval using MBSE

An important point to consider is how would reviews be carried out, and recorded, using
an MBSE model rather than documents? Expertise in MBSE should not be necessary to
carry out reviews. Customer approval would also need to be addressed. A naive approach
would be that the user requirements can be grouped together into a “view” that could be
reviewed (that view could be a document).

Consultation with MBSE experts, perhaps via INCOSE [7], may be necessary to address this
point. It is likely that the tool used generate and update the model will provide review
facilities.

Al.4 THE MODEL

Al.4.1 Overview

The structure of the model follows the structure of the quality management plan. There is one
package for each of the plan requirements. A SysML package can be thought of as a folder,
used to group together model elements.

Page 13 of 27

Page 14 of 27

& Model Explorer % EEFRERSD §

w

£ «LPackage, Modellibrary» PrimitiveTypes
B «Modellibrary» EcorePrimitiveTypes
B3 «Modellibrary» Libraries
Generic_Calibration_System_v1.0
» 74 <Package Import> Libraries

% <Package Import> UML Primitive Types
» B3 01-User_Requirements
» B3 02-Functional_Requirements

£3 03-Design

31 04-Verification

F1 05-Validation

B3 06-Delivery_Use_and_Maintenance

£ SI_Units

Figure Al.1 Model structure.

NPL Report MS42

NPL Report MS42

The interface Papyrus provides for developing MBSE models allows the user to create and browse projects, models within the projects, the
packages within the models and the elements within the packages. Figure Al.2 provides an example screen dump showing block definitions.

7 papyrus - Generic_Calibration_System_v1.0/Generic_Calibration_System_v1.0.di - Papyrus

File Edit Navigate Search Papyrus Project Run Window Help

mi (@ ~E B DY &

% Project Explorer % 25 7|e § =0
@ Activities. JPG ~
@ Allocations.JPG
@ Blocks.JPG

@ ConstraintBlocks.JPG

@ ControlValues_Diagram.JPG

@ DeprecatedElements.JPG

@ Functional_Requirements_Derivation.JPG
@ Functional_Requirements_Diagram.JPG
@ Internal_Block_Diagram.JPG

A Lilrmrine

& Model Explorer 22

Minmenma 1IN0

= T @ls

B «Modellibrary» Libraries A
v B Generic_Calibration_System_v1.0
% <Package Import> Libraries
% <Package Import> UML Primitive Types
B3 01-User_Requirements
B3 02-Functional_Requirements
¥ B303-Design
« artefactvalue
58 Block_Definition_Diagram
£ Block_Definitions
« controlComp
+ customerArtefact
< daq v

&2 Qutline

— ¥ |

Figure Al.2 Papyrus Project Explorer.

Page 15 of 27

= X
[By Ry rysryVryi v o w B - 100% HYy Qv QR vis g~ - - - v e - - -
Q |2
“? Generic_Calibration_System_v1.0.di & =
; i E L A |55 Palette b
Generic Calibration System A control computer runs a data acquisition (DAQ) system that calibrates a custon [[7& a7 - @ -
] |against an NPL standard artefact. e —
Version: 1.0 Date: 12/10/2022 = |
.| Authors: Keith Lines, Harish Krishnamurthy, NPL o EliGeneral Stgictie
Developed with Papyrus Version: 2020-06 (4.16) «Block» i Viewpoint
B 7 7] i : 7 ?] = Calibration_System “ Blocks
T AT . e 1041 4 Ports and Flows @
customerArtefact 0.1 |= + controlComp: Control Computer [1] H
= + daq: DAQ System [1] FlowPort
= + standardNPLArtefact: Artefact [1] - FlowProperty
3 3 = : 0.1
standardNPLAefact 0,1 = * customerArtefact: Artefact [1] S ® FullPort
; :
1z Fa | operations Interface
= = InterfaceBlock
«Block» 0.1 % ltemFl
Generic artefact, could & Artefact daq 1 G
be resistor, mass, attributes G © Port
length bar etc 7 Val: ArtefactUnits [1 <Bloc: ghiod =
2 e A act.mts[! E DAQ System E Control G ProxyPort
ArtefactUnits is also = + manufacturer: String [1] b b
i Id be & + serialNo: String [1] bt iy
ginert:, e g : 9 = + manufacturer: String [1] E: + serialNo: String
ANRAIINES = + userlnterface: L
operations operations
operatic ¥
< > = Constraints
B Functional_Requir... B User_Requirements... & User Requirements... B Functional_Requir... & Functional_Requir... #& UseCase_Diagram ®& Block_Definition ... & | ™
M Properties 2 f Model Validation % References #/Error Log © Documentation EIREE
£103-Design
UML Name HOB—Design | 2
Comments |abel | |
= URI | | ~

NPL Report MS42

Al.4.2 S| Units

Before providing an overview of the model as a whole, the contents of the SI_Units package
is described. This package provides value types, units and quantity kinds defined as
closely as possible to the S| Brochure version 9 [31]. It is beyond the scope of this document
to describe concepts from [31] (e.g., base quantities, derived quantities, base units and
derived units) in detail.

SysML provides value types, in addition to the usual primitive types (Boolean, Integer, Real,
String and enumerated values), which allow values to be assigned types that more
accurately describe the system being developed than primitive types. E.g., in the diagram
below the nominal values of the mass artefacts are expressed in kilograms, rather than
Integer or Real.

MassArtefact Nominal value is of type kilogram.
attributes

5 + nomVal: kg [1]
= + manufacturer: String [1]
5 + serialNo: String [1]

(2]
«Blocks Example of non-generic artefact. T

operations

Figure Al.3 Example use of value type.

The kg value type is defined in the model as a specialization (i.e., a subclass) of the Real

value type. The arrow in the diagram below defines a generalization between kg and Real.
Generalization can be thought of as the inverse of specialization, with the arrow pointing in

the opposite direction.

«DataType» £
«ValueType»
I Real
«<ValueType=
quantityKind=null

unit=null
C\ «DataType»

«ValueType»
Bkg
<ValueType»
quantityKind=mass
unit=kilogram

attributes

operations

Figure Al.4 Example use of value type.

As illustrated, value type kg is assigned a quantity kind of mass and unit of kilogram. In
SysML quantity kinds are equivalent to the base and derived quantities defined in [31].
The seven base quantities are time, length, mass, electric current, thermodynamic
temperature, amount of substance and luminous intensity. Derived quantities include
absorbed dose, capacitance, electric potential difference and electric resistance.

Page 16 of 27

NPL Report MS42

The package SI — 02-Base Quantities contains quantity kinds for each of the base units.

& Model Explorer = E B &EIREE% § =0

Dl Properties & ¥ Model Validation © Documentation %’ References @/Error Log 1 &

~ F1 5| Units A g mass
= <Comment> The International Syste
£ 01-Defining Constants UML NarmE ‘ mass
v [102-Base Quantities Comments | abel ‘ mass
= amount of substance Profil
= electric current —— Nty HER
Advanced
= length Classifier

= luminous intensity

QuantityKind

v @ mass
%1 <Slot> definitionURI

%3 <Slot> symbol
= thermodynamic temperature
= time

™1 N2_-Raca | Initc

Figure AL.5 Quantity kinds defining base quantities.

The seven base Sl units are second, metre, kilogram, ampere, kelvin, mole and candela.
Derived quantities include gray, farad, volt and ohm.

The package SI_Units — 02-Base Units contains unit definitions for each of the base
units. This package also contains value type definitions for each of the base units. As
illustrated below, the value type kg has associated unit kilogram and quantity kind mass.

» B3 03-Base Units

* ® «ValueType» kg
® «ValueType» A

B «ValueType» cd SysML1.4 Name | kg

® «ValueType» K UML Is abstrad Otrue @) false Is leaf Otrue @ false
H «ValueType» kg Comments

Visibility public
«ValueType» m

M «ValueType» mol beofle Unit = kilogram = ® Quantity kind |= mass
Advanced

2 «ValueType» s

= ampere

= candela

= kelvin

= kilogram

= metre

= mole

= second

Figure Al.6 Base units and value types.

The Sl_Units package contains definitions for S| quantities and units and the constants that
as from 2019 define the SI [5].

Pre-built packages containing Sl units are available for the various SysML modelling tools
[32]. However, developing this SI_Units package was a useful exercise in learning SysML. It
is also unlikely that any pre-built packages will have yet taken the 2019 redefinition into

account.
Al.4.3 User requirements

As few and as high-level user requirements as possible were specified. Four user
requirements were defined. In the Papyrus model explorer, expanding package
01-User_Requrements displays these requirements as individual objects within the model.

Page 17 of 27

NPL Report MS42

“r <Package Import> UML Primitive Type
v B 01-User_Requirements

«Requirement» UR1
«Requirement» UR2
«Requirement» UR3
«Requirement» UR4
& User_Requirements_Diagram
& User_Requirements_Tree_Table

& 02-Functional_Requirements

&1 03-Design

& 04-Verification

£ 05-Validation

£ 06-Delivery_Use_and_Maintenance

£ SI_Units

Figure Al.7 User requirements package.
The user requirements diagram brings them together:

«Requirement»
UR1

id=UR1
text=The system shall calibrate a customer artefact against an NPL standard artefact.

«Requirement»
= UR2

id=UR2

text=The system shall generate a certificate of calibration for each customer artefact it calibrates.

«Requirement»
UR3

id=UR3
text=The calibrated value of an artefact shall be expressed as the difference from a nominal value in
parts per million with an associated uncertainty.

«Requirement»
UR4

id=UR4
text=The system shall ensure calibration data is backed up using an NPL-wide service. This data shall

be available for a minimum of 10 years in a format that can be read and understood easily using
NPL-standard tools.

Figure Al.8 User requirements diagram.

Al.4.4 Functional requirements and use cases

Having determined the user requirements, the next stage (according to the quality procedure
being followed [15]) is to map them to functional requirements. Functional requirements will
determine what is to be implemented not how. They should be understandable by someone
who cares about how the system works but is not a coder or systems developer.

Page 18 of 27

NPL Report MS42

The package 02-Functional_Requirements contains the functional requirements, mappings
from the user requirements and a package containing the use cases. As use cases help
define the functionality of the system, it was decided appropriate to include use cases as a
sub-package within the functional requirements:

£1 01-User_Requirements
~ 1 02-Functional_Requirements
A «DeriveReqt» <Abstraction> Derive_FR1
A «DeriveReqt» <Abstraction> Derive FR2

«DeriveReqt» <Abstraction> Derive_FR3

B

«Requirement» FR1

&

«Requirement» FR2

IE

«Requirement» FR3
Functional_Requirements_Derivation
B Functional_Requirements_Diagram
& Functional_Requirements_Tree Table
B3 Use_Cases
£3 03-Design v

[JAa

Figure Al.9 Functional requirements package.

The following section of the functional requirements diagram list the first three requirements.

«Requirement»
EFR1

id=FR1

text=The system shall make a number of measurements of the customer artefact, against a NPL-
standard artefact. The system shall provide a means of grouping these measurements together to
allow calibration values to be calculated.

«Requirement»
I FR2

id=FR2
text=The system shall allow an operator to reject customer artefact measurements. The operator
must enter a reason for rejection.

«Requirement»
= FR3

id=FR3
text=The system shall calculate the calibration value of a customer artefact from a series of
grouped-together measurements that have not been rejected.

Figure Al.10 Section of functional requirements diagram.

The Functional_Requirements_Derivation diagram illustrates the traceablity between user
and functional requirements. The following section of the diagram, illustrates how functional

requirements FR1 to FR3 are tracable to user requirement UR1. This traceablity is essential
to validating that the user requirements have been met.

Page 19 of 27

NPL Report MS42

e
«Requwemenblz'

UR1
L% W I
el «abstraction, Deriveliéqm\ Derive FR3
«abstraction; DeriveReqt» ,z"' : ; i Detive FR2 \ : : f " :
e ' S «abstraction, DeriveReqt»
Derive FR1 .+ ;
«Requirement» «Requirement» ' ' : «Requirements|
FR1 FR2 FR3

Figure Al.11 Requirements traceability.

The use cases are now considered, they are summarised using the diagram provided below.

«Block»
Calibration_System

= System self-diagnostics

SPoweron ... __

<extend» SlInform operator of system failure

2 Place user artefact and NPL standard artefact in position

«includex - - 7~ Verify username and password

©log into contral PC

«extend» _ - ;
)Q\ 2Inform operator of verification failure

Operd Z Commence measurement
& Accept measuremen
<77 «extend»
= Monitor measurements
----------------- = Reject measuremen

«extend»
= Power off

Figure Al.12 Use case diagram.

The operator, represented using a stick figure, is the one external actor modelled with this
system. The use cases defined for this system are obviously very high-level, e.g.

“Commence measurements” encapsulates a lot of detail that would need to be made explicit
in a more realistic case study.

Use cases contain no explicit details of timing. The sequence in which the operator’s actions
take place is inferred by the ordering of the use cases in the diagram. Within the Use_Cases

Page 20 of 27

NPL Report MS42

package the use cases are organised into “phases”. It should also be noted how use cases
can be traced to functional requirements:

% Model Explorer 2 ERHEEBEES § 0O
~ [Use_Cases A
% Operator

23 Operator_UseCase_Links

<

B3 Phase_1: Power on
- <Dependency> FR1
v © Inform operator of system failure
7 <Extend> Power on
© Power on
© System self-diagnostics
£ Phase_2: Configure system
£ Phase_3: Log in
£ Phase_4: Commence measurements
£3 Phase_5: Measurement monitoring
£ Phase_6: Post process
£3 Phase_7: Power off
38 UseCase_Diagram v
< >

Figure Al.13 Use_Cases package.

Al.4.5 Block definition diagram

The block definition diagram is the heart of the SysML model. These blocks represent the
types of elements from which the system will ultimately be constructed. An example section
of the block definition diagram of the generic measurement system is provided below:

7777777777777777777777777777777 against an NPL standard artefact
Version: 1.0 Date: 12/10/2022
Authors: Keith Lines, Harish Krishnamurthy, NPL

Generic Calibration System A control computer runs a data acquisition (DAQ) system that calibrates a customer artefact j

«Block»
E Calibration_System dataStrags
attributes
customerArtefact 0.1 |2 + controlComp: Control_Computer [1] 0.4
= + daq: DAQ_System [1]
= + standardNPLArtefact: Artefact [1] >
standardNPLArefact 0.1 | + customerArtefact: Artefact [1] 0.1
1 1 operations controlComp 1
«Block» 0.1 1
Generic artefact, could & Artefact daq i 1
be resistor, mass, attributes) «Blocks «Block» «Block»
length bar .etclm 5 + nomVal Ar‘tefadL_ﬁnns 11 DAQ_System & Control Computer = Data_Storage_System
ArtefactUnits is also = + manufacturer: String [1] ibuts tiributes attributes
ic, Id be 5 + serialNo: String [1] = il H = 3 i & = ;i
gi:{?rt C::et(PR g S + manufacturer: String [1] £ + serialNo: String [1] E: + storageCapacity: PB [1]
K9 - = + userinterface: User_|nterface [1]
operations operations S
operations
1
artefactvalue 14
B
13 user_interface
«Block» 1
= ArtefactValue «Block>»
TR E User Interface
= + calibrationDate: EDate [1] attributes
= + difffromNomPPM: Real [1] T
5 + uncertaintyPPM: Real [1]
operations

Figure Al.14 A section of the block definition diagram.

The diagram illustrates the relationships between the blocks. For example, although the
nominal value of an artefact will remain unchanged, its actual value is highly likely to vary
over its lifetime. Accordingly, the Artefact block is linked to the ArtefactValue block using an
association (i.e., link) with a multiplicity of 1..* (see below) that indicates on artefact can be
associated with an unlimited number of artefact values.

Page 21 of 27

7 artefactvalue

UML

Comments

Profile
Advanced

NPL Report MS42

Figure Al.15 Artefact / artefact value link.

Al.4.6 Internal block diagram

The internal block diagram captures the internal structure of the generic calibration system.
The elements have types listed in the block definition diagram.

Name ‘ artefactvalue |
Label ‘ |
Visibility public b4
Member End Member End
Name ‘ ‘ Name ‘ |
Label ‘ ‘ Label ‘ |
Type = ArtefactValue o (| |2 | %] Type = Artefact PNt
Owner Classifier v Owner Assaciation v
Navigable @true O false Navigable Otrue @false
Aggregation none v Aggregation none v
Multiplicity 1t v Multiplicity 1 ¥ B

«Block»
Calibration_System

EQ + controlComp: Control_Computer [1]

r 1
1S + dag: DAQ_System [1]}

EIEI + customerArtefact: Artefact [1]!
L 1

EB‘ + standardNPLArtefact: Artefact [1]i

r 1
EE‘ + data_Storage_System: Data_Storage System [1]E

Figure Al.15 Internal block definition diagram.

Al.4.7 Further additions
Features beyond the scope of this version of the model that could be added in a later version

include:

o Ports: SysML allows ports to be associated with the boundary of a block. They also
model the operations that can be carried out and data exchanged via these ports.
Ports could be used to specify the interactions between the control computer and the
data acquisition and data storage systems.

e Operations: The use cases listed in Figure Al.12 provide a good starting point for
specifying the operations within the blocks. E.g., the actions linked to the operator:
“Power On”, “Place artefacts”, “Log into control PC”, “Commence measurements”,
“Monitor measurements”, “Post process”, “Power off” could be associated with
Calibration_System block. Included use cases could be associated with the blocks
associated with Calibration_System, e.g. “Verify username and password” with
Control_Computer.

Page 22 of 27

NPL Report MS42

APPENDIX II: THE COMPELETE BLOCK DEFINITION DIAGRAM

Generic Calibration System

A control computer runs a data acquisition (DAQ) system that calibrates a customer artefact
against an NPL standard artefact.

Version: 1.0 Date: 12/10/2022
Authors: Keith Lines, Harish Krishnamurthy, NPL

Developed with Papyrus Version: 2020-06 (4.16) «Block»
Calibration_System dataStorage
attributes
customerArtefact 0.1 |E + controlComp: Control_Computer [1] 0.4
= + daq: DAQ_System [1]
= + standardNPLArtefact: Artefact [1]
standardNPLArtefact 0.1 |2 + customerArtefact: Artefact [1] 0.1
1 1 operations controlComp 1
«Block» 0.1 1
Generic artefact, could rtefact daq i 1
be resistor, mass,
length bar etc... 5 + nomValéf\rlltzL::cstUnits [1] Bock» Hock> Plack>
ks ’ - E DAQ_System E Control Computer H Data_Storage_System
ArtefactUnits is also = + manufacturer: String [1] : : -

; i : attributes attributes attributes
generic; catild be & + serialNo: String [1] S + manufacturer: String [1] 5 + serialNo: String [1] E& + storageCapacity: PB [1]
ohm, kg, m etc... _

- = + userlnterface: User Interface [1]
operations operations :
- operatwons
operat\ons
14
artefactvalue 1
*
1 user_interface
«Block» 1
ArtefactValue «Block»
BT ElUser Interface
© + calibrationDate: EDate [1] attributes
= + difffromNomPPM: Real [1]
% operations
=+ uncertaintyPPM: Real [1]
operations
«Block» Example of non-generic artefact «DataType» ValueTypes kg, ArtefactUnits and PB are
& MassArtefact Nominal value is of type kilogram. <ValueType» specialisations of ValueType Real. Therefore,
attributes @ Real there's a generalisation relationship between
S + nomVal: kg [1] <ValueType> Real and these other ValueTypes.
=+ manufacturer: String [1] quantityKind=null
5 + serialNo: String [1] unit=null
operations
«DataType» «DataType» «DataType»
«ValueType» «ValueType» «ValueType»
& ArtefactUnits kg = pB

«ValueType»
quantityKind=generic_quantity

«ValueType»
quantityKind=mass

quantityKind=information

«<ValueType»

unit=generic_units unit=kilogram unit=bytes
attributes attributes attributes
operations operations operations

Figure All.1 Block definition diagram.

Page 23 of 27

NPL Report MS42

APPENDIX Ill: IMPORTING THE MODEL INTO PAPYRUS

Alll.1 INTRODUCTION

An archive file containing the SysML model for the Generic Calibration System is available.
The file can be uploaded to the Eclipse Papyrus™ modelling environment. The following
appendix provides some guidance on installing Papyrus and uploading the archive file.

Alll.2 INSTALL PAPYRUS

1.

The latest version of Papyrus can be downloaded from:

https://www.eclipse.org/papyrus/download.html

Unzip papyrus-<version>-win64.zip in an appropriate location, e.g.,
c:\eclipse. Papyrus is be started by clicking:

papyrus-<version>-win64\Papyrus\papyrus.exe

When starting Papyrus, an error message beginning Java was started but
returned error code=13 may appear. If so, Papyrus is using the wrong version of
the Java runtime.

Papyrus will run using 64-bit Open Java Development Kit 14.0.1. This software can be
downloaded from https://jdk.java.net/archive/

To install Open Java Development Kit 14.0.1, unzip in an appropriate location, e.g.,
c:\openjdk

The papyrus. ini file held in the same folder as the Papyrus executable will need to be
modified to ensure the correct Java Runtime is being used. An example section of a
modified ini file is provided below (modifications indicated in bold):

—--launcher.appendVmargs

-vm
C:/openjdk/openjdk-14.0.2 windows-x64 bin/jdk-14.0.2/bin
-vmargs

-Dosgi.requiredJavaVersion=1.8

By default, Papyrus can be used to develop UML projects. Further installation is required
for SysML. This section and the following section describe the required installations.

Alll.3 INSTALL ECLIPSE MARKETPLACE

1.

After installing Papyrus, Eclipse Marketplace is required. Check whether it's been
installed by starting up Papyrus and clicking He1p. If it's been installed, it will be listed. If
Eclipse Marketplace is not listed, install as describe below.

Click Help —» Install New Software.. The Install window will now appear.

In the Work with: drop-down list select A11 Available Sites. Wait for the Name
field to populate; this may take a few minutes. Click OK to any error messages that may
appear.

After the Name / Version window has been populated, type marketplace into the
field just under Work with:. Click OK to any error messages that may appear.

Page 24 of 27

NPL Report MS42

5. General Purpose Tools / Marketplace Client should now be listed. Tick
Marketplace Client and click Next> at the bottom of the window.

6. A “review” window will now appear, click Next>
7. Accept the terms and conditions (if acceptable). Click Finish.

8. Restart Papyrus. Click Help and the Eclipse Marketplace should now be available.

Alll.4 INSTALL SYSML 1.4
1. Click Help and select Eclipse Marketplace.

2. Enter SysML into Find. To perform the search, select 211 Markets from the drop-
down list next to Find.

3. Click install for the required version of SysML. Read and accept the terms and
conditions (if acceptable). Click Finish.

4. Restart Papyrus. To check whether SysML is now available, select File — New
— Papyrus Project. A New Papyrus Project window will appear. SysML should be an
option.

Alll.5 UPLOAD THE ARCHIVE FILE

1. To obtain a copy of the archive file for the case study, contact Keith Lines.

2. It will be assumed that the file has been copied to the C drive of the PC, i.e.
C:\SysML\GCS v1.0.zip

3. Start Papyrus and create a new project in which to upload the file. Select File — New
— Papyrus Project. A New Papyrus Project window will appear. Select SysML 1.4

7 New Papyrus Project m] X
i —c)
Select Architecture Context &
/-
Select the architecture context(s) and viewpoints to apply to the Papyrus model
Architecture Contexts:
v [€) Software Engineering
[& profile
O™ umL
v [J € Systems Engineering
T SysML 1.4

Architecture Viewpoints:

 Standard SysML Modeling

? K Next > Cancel

Figure Alll.1 New Papyrus Project window.

4. SelectFile —» Import. The import window should appear. Select
General — Archive File. Click Next>

Page 25 of 27

NPL Report MS42

72 Import [m] b4

Select
Ry

Import resources from an archive file into an existing project.

Select an import wizard:
I type filter text
A

v & General
2 Archive File
2 Existing Projects into Workspace
(. File System
[T} Preferences
2 Projects from Folder or Archive
> & CDO
> & Git
> & Install

® < Back Finish Cancel

Figure Alll.2 Import wizard window.

5. The Import window now appears. Click Browse... to select the archive file. Tick the /.

Enter a folder name in Into folder.

7~ Import (] b 4
Archive file =3
Import the contents of an archive file in zip or tar format from the local file system. ?J
From archive file: | C:\SysML\GCS_v1.0.zip v] Browse...
> Me/
Filter Types... Select All Deselect All
Into folder: l Generic_Calibration_System_v1.0) Browse...
[[] Overwrite existing resources without warning
@ < Back Next > Cancel

Figure AlIL.3 Import window.

6. The project should now upload. In the Project Explorer window browse to the

model.

Page 26 of 27

NPL Report MS42

“¥ papyrus2 - Generic_Calibration_System_v1.0/Generic_Calibration_System,

File Edit MNavigate Search Papyrus Project Run Window Help

milh g ‘v O~ G- B~-@8~id2~ &
5 Project Explorer 2 SIS I S =
v = Generic_Calibration_System_v1.0 ~

~ [= Generic_Calibration_System v1.0
~ ~¥ Generic_Calibration_System_v1.0

2 di
|2 notation
& uml
£ _en_GB.properties

@ Activities.JPEG

@ Allocations.JPEG

@ Block Class_Calibration_System_Internal_Block_Diagram.Ji

@ Block Definition Diaaram.JPEG e
< >
B Model Explorer 52 EREFEEESE 8§ = O
w Generic_Calibration_System_v1.0 ~

%, <Package Import> UML Primitive Types
i <Package Import> Libraries

£ 01-User_Requirements

3 03-Design

3 02-Functional_Requirements

5 04-Verification

5 05-Validation

E3 SI_Units

P NA-Delivery llse and Maintenance v

Caa

Figure Alll.4 Browse model.

Page 27 of 27

	Blank Page
	Blank Page

