
remote sensing  

Article

Ancillary Data Uncertainties within the SeaDAS Uncertainty
Budget for Ocean Colour Retrievals
Pieter De Vis 1,*, Frédéric Mélin 2, Samuel E. Hunt 1 , Rosalinda Morrone 1, Morven Sinclair 1 and Bill Bell 3

����������
�������

Citation: De Vis, P.; Mélin, F.; Hunt,

S.E.; Morrone, R.; Sinclair, M.; Bell, B.

Ancillary Data Uncertainties within

the SeaDAS Uncertainty Budget for

Ocean Colour Retrievals. Remote Sens.

2022, 14, 497. https://doi.org/

10.3390/rs14030497

Academic Editors: Adam Povey and

Claire E. Bulgin

Received: 15 December 2021

Accepted: 18 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Sam.Hunt@npl.co.uk (S.E.H.);
Rosalinda.Morrone@npl.co.uk (R.M.); Morven.Sinclair@npl.co.uk (M.S.)

2 European Commission, Joint Research Centre (JRC), TP270, Via Fermi 2749, 21027 Ispra, Italy;
Frederic.Melin@ec.europa.eu

3 European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX, UK; Bill.Bell@ecmwf.int
* Correspondence: pieter.de.vis@npl.co.uk or pieter.devis1@gmail.com

Abstract: Atmospheric corrections introduce uncertainties in bottom-of-atmosphere Ocean Colour
(OC) products. In this paper, we analyse the uncertainty budget of the SeaDAS atmospheric correction
algorithm. A metrological approach is followed, where each of the error sources are identified in
an uncertainty tree diagram and briefly discussed. Atmospheric correction algorithms depend
on ancillary variables (such as meteorological properties and column densities of gases), yet the
uncertainties in these variables were not studied previously in detail. To analyse these uncertainties
for the first time, the spread in the ERA5 ensemble is used as an estimate for the uncertainty in the
ancillary data, which is then propagated to uncertainties in remote sensing reflectances using a Monte
Carlo approach and the SeaDAS atmospheric correction algorithm. In an example data set, wind
speed and relative humidity are found to be the main contributors (among the ancillary parameters)
to the remote sensing reflectance uncertainties.

Keywords: ocean colour; atmospheric correction; uncertainty; ancillary parameters

1. Introduction

Ocean colour remote sensing opens a window onto ocean biology through the calcula-
tion of chlorophyll-a concentration from radiometric remote sensing reflectance (normalised
water-leaving radiances) measurements. To obtain the water-leaving radiances, the top-of-
atmosphere (TOA) radiances measured by the satellite instrument have to be corrected for
atmospheric (aerosols and Rayleigh scattering) and surface (glint and foam) contributions.

Just like any other physical measurement, Ocean Colour (OC) products require es-
timates of their uncertainties to be meaningful. Without, there is no way to assess their
quality or understand how far the true value may be from the measured value. Radio-
metric uncertainty (at k = 2) lower than 5% in the blue and green spectral regions along
with 0.5% decadal stability was listed by the Global Climate Observing System (GCOS)
as requirements for water-leaving radiance as an Essential Climate Variable [1]. There
are various sources of uncertainty in OC products. Two of the main contributions are the
radiometric properties and stability of the sensor and the uncertainties in the atmospheric
correction, the process that determines the water-leaving radiance (or reflectance) from the
TOA radiances [2]. The uncertainty of the atmospheric correction depends on the algorithm
used as well as on the distribution of gases and aerosols in the atmosphere.

In clear sky conditions, the processes affecting the atmospheric correction are gaseous
absorption, molecular scattering, aerosol scattering and absorption, and water surface
(Fresnel) reflection. Gaseous absorption is easy to handle when the satellite sensors observe
in atmospheric windows (the usual case) where molecular scattering can be computed
accurately. The influence of scattering by aerosols and Fresnel reflection (waves, whitecaps
and surface perturbations due to wind) are both highly variable in space and time and are
more difficult to correct.
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The standard approach for atmospheric correction, first suggested by [3], consists
of first estimating the aerosol/surface reflectance in the red and near-infrared where the
water body can be considered as totally absorbing (i.e., black), and then extrapolating the
aerosol/surface reflectance to the other wavelengths. In many cases (e.g., coastal waters)
the water reflectance in the red and near-infrared is not completely zero, and corrections
were proposed to improve the algorithms in these cases, e.g., [4,5].

There are many software packages (e.g., the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) Data Analysis System, SeaDAS, developed by NASA) which successfully im-
plement these standard approach algorithms and use reanalysis datasets for obtaining the
ancillary parameters necessary in the atmospheric correction (mostly information about
meteorological conditions and ozone concentration). Reanalysis datasets such as the one
produced by National Centers for Environmental Prediction (NCEP) or by the European
Centre for Medium-Range Weather Forecast (ECMWF) are created using the data assimila-
tion schemes of numerical weather prediction (NWP) models which assimilate observations
over the entire reanalysis period. The R2 NCEP reanalysis dataset is presented in [6] and
the ECMWF Reanalysis 5th Generation (ERA5) in [7]. For completeness, there also exist
other approaches for atmospheric correction, such as algorithms that simultaneously fit the
surface reflectances and key properties of the atmosphere (e.g., aerosol type and optical
depth). These pose the atmospheric correction as an inverse problem, which can be solved
deterministically e.g., [8,9] or using a Bayesian approach e.g., [10].

In this paper, we use a metrological approach established in the Fidelity and uncer-
tainty in climate data records from Earth Observations (FIDUCEO) project [11] to study
the uncertainty in the atmospheric correction using the SeaDAS “l2gen” algorithm [12–14],
and apply it to investigate how uncertainties in ancillary data impact the atmospheric
correction, a topic that was little addressed so far in the OC community. In Section 2,
we detail the TOA SeaWiFS data used in this work and the NCEP and ERA5 reanalysis
datasets. In Section 3, we discuss the SeaDAS uncertainty budget, build the uncertainty
tree diagram and discuss the uncertainty contributions. In Section 4, the distribution of the
global ancillary variables and their uncertainties is presented.

Next, Section 5 explains the uncertainty propagation method. We illustrate this
method in Section 6 by showing results obtained by propagating the ancillary data uncer-
tainties to uncertainties on remote sensing reflectance for two example SeaWiFS scenes
analysed in this paper. Finally, Section 7 lists the conclusions. In a companion paper to
this work (Mélin et al., submit.), we perform a comprehensive analysis of the effects of the
ancillary data as well as their uncertainties, spanning the whole globe and all of 2003 using
consistent methods.

2. Data Description

To investigate the uncertainties introduced by ancillary variables, we apply the l2gen
algorithm to Level-1A (L1A) TOA data from the Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS, [15]) using various sets of ancillary data from reanalysis datasets. In this section,
we start by describing the L1 and reanalysis data used in this work.

2.1. L1 Data

SeaWiFS was a sensor on the OrbView-2 satellite launched in 1997, and it collected
data until 2010. Its main goal was to collect ocean colour measurements at 4 km and 1 km
resolution in 8 spectral bands. We study the various uncertainty contributions associated
with ancillary data on the pixel level. Only two SeaWiFS scenes were used, yet we note the
same methods can be applied to each of the instruments that can be processed by SeaDAS,
and for any given scene.

The two scenes were chosen somewhat at random, while discarding scenes with too
much cloud cover. We chose one case with significant variability in the OC products, and
one case with quite little variation (see also Section 6). The scene with significant variability
is off the west coast of Australia, observed on the 7 April 1999. The variability is caused by
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an algae bloom. For this scene we use the Merged Local Area Coverage (MLAC) SeaWiFS
data with spatial resolution of 1.1 km. Our other case is in the Atlantic ocean, north of
Suriname, and was observed on the 30 December 2004. Here, we used the Global Area
Coverage (GAC) SeaWiFS data with effective resolution of about 4.5 km. In addition to
the two scenes that are the focus of this study, we studied some additional scenes to check
whether the conclusions made for our two main scenes hold for other cases. Mélin et al.
(submit.) perform a systematic study of the effects of the ancillary parameter uncertainties
using all SeaWiFS L1A GAC data for the year 2003.

2.2. NCEP Reanalysis Dataset

The SeaDAS ocean colour processing typically uses the Reanalysis 2 (R2) dataset [6]
produced by NCEP and the US Department of Energy, together with ozone products from
the Total Ozone Mapping Spectrometer (TOMS) [16] instrument. R2 is a reanalysis data set
with 1◦ spatial resolution spanning from 1979 to the present. The dataset provides data
for a range of variables every 6 h with a latency of between 2 and 6 weeks. Improvements
were made from its predecessor, NCEP Reanalysis, by reducing its coverage to commence
alongside the first satellite observations to make the data more consistent throughout
the record. For the results in Section 6, the NCEP data were acquired by SeaDAS itself.
Additionally, we downloaded data from all of 2002, and investigate the spread in ancillary
parameters in Section 4.

2.3. ERA5 Reanalysis Dataset

ECMWF released their latest meteorological reanalysis dataset, ERA5, in 2018. It cur-
rently extends from 1979 up to the present. The reanalysis runs one day behind real time
and products are available 5 days behind real time. A preliminary dataset is available
from 1950 to 1978 [17]. In addition to an hourly high resolution product (31 km horizontal
resolution) ERA5 also provides a ten-member ensemble of analyses every three hours for a
range of variables at 62 km spatial resolution. The ensemble provides an estimate of the
uncertainties in the ERA5 analyses, taking into account uncertainties in the underlying
forecast model (used to propagate the analysis state between assimilation cycles) and in
the assimilated observations.

ERA5 is a state-of-the-art reanalysis dataset that benefits from many years of develop-
ments in model physics, core dynamics and data assimilation [7]. In addition to the high
spatial and temporal resolution (for a global reanalysis), it uses the ECMWF Integrated
Forecasting System at Cycle 41r2 (the most up-to-date version of the ECMWF model when
ERA5 was started in 2016). Each member of the ensemble (except the control) is run with
different random perturbations added to the observations. The perturbations of obser-
vations are sampled from a zero-mean Gaussian distribution with variance equal to the
expected variances of the observation errors. Likewise, the model physical tendencies are
perturbed [18] in the short forecasts that link subsequent analysis windows. Perturbations
in Sea Surface Temperature (SST) and Sea Ice Concentration (SIC) are taken from the spread
within the range of available products [19]. The perturbations applied to the observations,
the SST, SIC, and the model imply that the resulting background (i.e., the short-range
forecast linking successive analyses) of each member is implicitly perturbed, thus avoiding
the need for explicitly perturbing the background fields. This leads to an uncertainty
contribution which is correlated over the whole image, and over a few timesteps for each
ensemble member. Even though multiple systematic biases are highly likely, the random
uncertainties dominate the spread between ensemble members at the pixel-level. However,
averaged data (e.g., monthly or global averages) will likely be dominated by correlated
uncertainties. The ERA5 data for the times associated with our SeaWiFS scenes, as well as
data for all of 2002, were downloaded from the Copernicus Climate Change Service (C3S)
Climate Data Store (CDS) [20].
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3. SeaDAS Uncertainty Budget

The SeaDAS software package was used by NASA to produce OC products for many
years. The package was originally produced by the NASA Ocean Biology Processing
Group for the SeaWiFS satellite mission, but is now able to manage multiple missions
(e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution
Imaging Spectrometer (MERIS), Ocean Colour Monitor-2 (OCM2), Ocean Colour and
Temperature Scanner (OCTS) and Coastal Zone Colour Scanner (CZCS) among others).
Since the software is open source, a metrological analysis of it is possible. This, combined
with its widespread use, is why we opted to use SeaDAS in our analysis.

For this study, we are analysing uncertainty contributions using the SeaDAS tool
for processing from L1 to L2, “l2gen” version 7.5.1 [14]. This tool reads TOA radiances
and applies an atmospheric correction algorithm to determine remote sensing reflectance,
Rrs(λi), in spectral channels λi, making use of ancillary meteorological data that describe
the atmospheric state during the observation. For a detailed description of the SeaDAS
l2gen processing we refer to [12–14,21].

3.1. Uncertainty Tree Diagrams

To represent the different uncertainty contributions to the SeaDAS l2gen process, we
follow the approach outlined in the FIDUCEO project [11] and produce an uncertainty
tree diagram. At the centre of the diagram in Figure 1 is the measurement function for
how l2gen calculates the remote sensing reflectances (Rrs) from the water leaving radiance
(Lw) obtained after atmospheric correction. From this function branches spread from
each input quantity, which may themselves be determined by their own measurement
functions. A separate diagram is given in Figure 2 for the calculation of the water-leaving
radiances. Each of the sources of uncertainty can be traced back through to its impact on
the measurand by the sensitivity coefficients (partial derivatives) on each branch. Finally,
the effects which cause each respective uncertainty are connected to the end of each branch.
Note that most measurement functions used are not a perfect representation of reality. To
account for the difference between the true physical effects and the measurement functions
used, a +0 term (a term with an expected value of zero but with positive uncertainty) is
included at the end of most measurement functions.

Figure 1. In-band remote sensing reflectance (Rrs) uncertainty tree diagram. Here, branches are
given for solar irradiance F0, angle normalisation µ0 (cosine of solar zenith angle), Earth-Sun distance
normalisation fs, BRDF normalisation fBRDF and out-of-band-effect normalisation foob.
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Figure 2. Water-leaving radiance (Lw) uncertainty tree diagram. Here, branches are given for
transmittances Tg & Td, polarisation normalisation fpol, and TOA (L

′
t), Rayleigh (Lr), aerosols (La),

foam (Lf) and glint (Lg) radiances.

There are many sources of measurement error identified in these uncertainty tree
diagrams. In many cases, the full description of the analysis of an effect is beyond the scope
of this work. Many of these uncertainty terms were studied in previous works (see [2]
for a review). However, as far as we are aware, there were no previous studies into how
much the atmospheric correction of ocean colour products is affected by uncertainties
in ancillary parameters such as the surface wind speed (WS), sea level pressure (SLP),
precipitable water vapour (PW), relative humidity (RH), nitrogen dioxide concentration
([NO2]) and total ozone concentration ([O3]). The uncertainty tree diagrams allow an
easy identification of the various modules of the algorithm where ancillary data have an
impact. In Section 4, we will focus on these ancillary variable uncertainties and look at the
spread in ancillary data in 2002. In the remainder of this Section, we briefly discuss for
completeness the other uncertainty contributions for our two uncertainty tree diagrams.
We refer to the ‘Uncertainties in Ocean Colour Remote Sensing’ review in [2] for a more
detailed discussion.

3.2. Discussion of Uncertainty Contributions to Remote Sensing Reflectances

In this section, we discuss the contributions to the uncertainty tree diagram in Figure 1.
When inspecting the measurement function, we see that a number of correction factors are
applied to the water-leaving radiance to get the remote-sensing reflectance normalized for
bi-directional effects (e.g., [22]), which is the fundamental measurement from which OC
products, e.g., chlorophyll concentration, are derived. Each of these correction factors has
an uncertainty associated with it.

The water-leaving radiances are normalised by the solar irradiance F0. The 1-σ un-
certainty on F0 is between 0.6 and 1.1%, depending on the wavelength [23]. This includes
both random (0.5–1%) and systematic (about 0.25–0.5%) uncertainties. Another source of
uncertainty is the pointing error on the solar zenith angle. These errors (including any
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interpolation errors, etc., for getting the solar zenith angle for a given pixel) are sufficiently
small that the error on the cos(θs) correction factors can safely be considered negligible.

Additionally, there is a factor fs to correct the remote-sensing reflectance for variation
in the Earth-Sun distance. The uncertainty on the earth-sun distance is well below 0.01%
and can thus safely be considered negligible. The bidirectional reflectance distribution
function (BRDF) effect is removed by correcting by a factor fBRDF that depends on radiative
transfer calculations. For a given set of geometry, wavelength, atmospheric conditions,
and the chlorophyll concentration, the fBRDF is taken from a look-up table. The magnitude
of the error this introduces is generally unknown, and varies with existing conditions
(e.g., [24,25]).

There is also an uncertainty associated with the out-of-band correction that is applied
to the radiances in each band. This uncertainty comes from both an uncertainty in the
spectral response function (SRF), and an uncertainty in the hyperspectral radiances (at
the same spectral resolution as the SRF). The SRF is well defined with small uncertainties,
but the hyperspectral radiances will vary from scene to scene. [26] derive a maximum of
0.8% model uncertainty on the correction factor at 555 nm for very clear open oceans. For
the diffuse transmittance towards the sun Td,s and the water-leaving radiances Lw, the
uncertainty tree diagram refers to Figure 2, and these terms will thus be discussed in the
next section.

3.3. Discussion of Uncertainty Contributions to Water-Leaving Radiances

Moving on to the measurement function for water-leaving radiances in Figure 2, we
see the picture is a bit more complex, as many of the branches have their own measurement
functions, which in turn have their own uncertainty contributions. For example, the
first term Td,v (the diffuse transmittance from the surface to the instrument) has its own
measurement function fd with associated uncertainty contributions, two of which in turn
have their own branches on the uncertainty tree and their own measurement functions.
To account for the uncertainty in our assumptions, we have again added ‘+0’ model
error terms in the uncertainty tree diagram. The magnitude of these uncertainties is
generally unknown.

The ancillary variables (WS, SLP, PW, RH, [O3], and [NO2]) show up at the ends of
multiple branches in the uncertainty tree diagram and thus errors in these parameters will
have multiple effects (which might reinforce or counteract each-other) on the water leaving
radiances. We discuss their uncertainties in Section 4. However, nitrogen dioxide is not
included in Section 4 as it is not available from the ERA5 data, yet it does of course have
uncertainties associated with it. Nitrogen dioxide has a fairly broad absorption spectrum
with a peak at 412 nm. For this blue band, neglecting the [NO2] would modify the TOA
radiance by about 1% [27].

The gaseous transmittance Tg is the product of the gaseous transmittance in direction
of the sun and in the direction of the sensor and is determined by how much light the
various gases absorb at each wavelength for these directions. Tg only has uncertainty
contributions from the ancillary variables and a pointing error that is negligible compared
to the resolution of the reanalysis data. The pointing errors also show up in other branches
and affect the values of θv, though these uncertainties are also small enough to be negligible.
However, there is also a pointing uncertainty related to what the sensor is actually looking
at. For a nonhomogeneous target, a small pointing error can still cause one to measure at a
different location than expected.

The diffuse transmittance Td is the product of the diffuse transmittance towards the
sun and in the viewing direction and it takes into account the light scattered out of the line
of sight between the source and the sensor. The diffuse transmittance uncertainties are
somewhat more complicated as Td depends on the Rayleigh and aerosol optical thickness,
which have their own uncertainties. The Rayleigh optical depth and radiance are affected
by errors in ancillary parameters, pointing errors, model errors and errors in the nominal
Rayleigh transmittance. All but the latter have already been described in the previous
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paragraphs. One assumption made within SeaDAS is the wavelength-dependence of the
nominal Rayleigh and aerosol transmittance functions. Any deviation from the assumed
dependence will result in errors in the Rayleigh or aerosol radiances. Uncertainties on
these were not estimated.

In addition to errors in the nominal aerosol transmittance, the aerosol radiances
and optical depth depend on RH, PW, (negligible) pointing errors, model errors and
errors in the TOA radiances (see next paragraph). There is also an additional source of
uncertainty in determining the aerosol radiance/reflectance, which is due to the conversion
from the multiple-scattering ε to the single-scattering ε, where ε is the ratio of aerosol
reflectance at 2 near-infrared (NIR) bands [12]. The former is what can be constrained
from the observations, yet the latter is the term used for the selection of the best aerosol
model. The aerosol model selection is done using an iterative approach and look-up tables.
This selection process has a significant uncertainty related to it, as the selected aerosol
model may not faithfully represent the properties of the aerosols actually present (see also
Section 6.2).

TOA radiances have both random uncertainties and systematic uncertainties which
are typically on the order of 3–5% (e.g., [2,28]). Since the water-leaving radiances make
up only a small fraction of the TOA signal, the uncertainties on the TOA radiances will
be increased about tenfold when propagated to water-leaving radiances. Because of this,
system vicarious calibration is typically used to reduce these uncertainties. A detailed
discussion of the uncertainty budget of the TOA radiances is outside the scope of this
document and was performed previously by e.g., [29] for SeaWiFS (see also [11,30] for
a FIDUCEO-style approach for different TOA instruments). The random uncertainties
come from detector noise, electrical noise, digitisation, cosmic rays, etc. The systematic
uncertainties typically come from the calibration. Some of these biases apply to the whole
image. Examples of this are errors from instrument characterisation, e.g., non-linearity
characterisation, which are applied throughout the mission. There are also systematic
uncertainties that apply on intermediate scales resulting in structured errors with nontrivial
covariance structures. Stray light for example can make it into the detector and affect certain
pixels more than others (depending on the instrument geometry).

The branch for the polarisation correction fpol is relatively simple. This correction
depends on the observed Stokes vector, the geometric angle, and the Mueller matrix (optical
properties of the instrument). Each of these has uncertainties, which we cannot currently
constrain. However, the total correction factor ranges from <0.25% for SeaWiFS to 3% for
MODIS. Ref. [31] show that the polarization correction is acceptably accurate (to within
1%) when m12 (key element in Mueller matrix) is independent of wavelength and less
than about 0.1 in magnitude. For the remaining glint and foam radiance branches, all of
the terms have already been discussed in previous paragraphs. However, model errors
(+0 in the uncertainty tree diagrams) affecting these terms will be significantly different.
Particularly, the assumed dependence of the foam and glint radiance on wind speed is
particularly prone to model errors. Finally, even when the uncertainties on the input
quantities are the same in different branches, the resulting uncertainties on the water
leaving radiances will be different since the uncertainties propagate through different
measurement functions.

4. Global Ancillary Variables
4.1. Statistics on Ancillary Variables

As illustrated in the uncertainty tree diagrams in Section 3, various ancillary data
are necessary for the atmospheric correction from TOA radiances to remote-sensing re-
flectances. Before propagating the uncertainties on these ancillary data in following sections,
it is important to understand the global variability of the ancillary data and their uncer-
tainties. In this Section, we study the global ancillary data from NCEP and ERA5: their
main characteristics are first presented and their differences are analysed; implications in
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terms of their uncertainties are then discussed. The goal of this section is to understand
how representative the uncertainties we use in Section 6 are in a global context.

The five ancillary data considered here are WS, SLP, PW, RH and [O3]. These variables
are distributed in the NCEP data, except [O3] provided by satellite missions such as
TOMS. These variables are also directly available from the ERA5 data, except RH that
can be computed from surface temperature (t2m) and dew point temperature (d2m) at 2 m
altitude [32]:

RH = 100× e
17.625∗d2m−273.15
243.04+d2m−273.15−

17.625∗t2m−273.15
243.04+t2m−273.15 (1)

The annual average of the meteorological values (WS, SLP, PW and RH) from NCEP
for the year 2002 are shown in Figure 3. They display well-known patterns of atmospheric
circulation and dynamics (e.g., trade winds, high wind speeds in the Southern Ocean, high
pressure systems in the subtropical gyres, high PW in the Inter-Tropical Convergence Zone
(ITCZ), low humidity over terrestrial deserts, etc), while [O3] provided by TOMS shows
the expected gradient of higher values toward the high latitudes (Figure 3e). The annual
average of the meteorological values is very similar for ERA5 (not shown). To document
the natural variability of these quantities, their annual standard deviation is shown in
Figure 4. Obvious features are the higher values found at mid-to-high latitudes for WS,
SLP and RH whereas the standard deviation of PW shows distinct patterns at low and mid
latitudes. For ozone, there is a strong gradient, with high values poleward of 45◦N.

a)

d) e)

c)b)WS SLP PW

RH O3

Figure 3. Annual average for 2002 for NCEP meteorological variables: (a) surface wind speed WS,
(b) sea level pressure SLP, (c) precipitable water vapor PW, (d) relative humidity RH, and (e) ozone
concentration [O3] from TOMS.

Before further analysing the data from NCEP/TOMS and ERA5, statistical metrics are
introduced. First, for a given grid point and time step j, the average of the ERA5 ensemble
members (xi,j)i=1,Nens is expressed as:

µj,ERA5 =
1

Nens

Nens

∑
i=1

xi,j (2)

where Nens is the number of ensemble members (10 in the case of ERA5). The corresponding
standard deviation σj,ERA5 of the ERA5 ensemble members (quantifying the ensemble
spread) is written as:

σj,ERA5 =

√√√√ 1
Nens − 1

Nens

∑
i=1

(xi,j − µj,ERA5)2, (3)
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a)

d) e)

c)b)WS SLP PW

RH O3

Figure 4. Standard deviation for 2002 for NCEP meteorological variables: (a) surface wind speed WS,
(b) sea level pressure SLP, (c) precipitable water vapor PW, (d) relative humidity RH and (e) ozone
concentration [O3] from TOMS.

The root-mean-square (RMS) deviation of σj,ERA5 is computed over the Nt time steps
of the year:

σens =

√√√√ 1
Nt

Nt

∑
j=1

σ2
j,ERA5. (4)

giving an average estimate of the spread between the ensemble members. As discussed in
Section 2.3, the spread between ERA5 ensemble members gives a useful estimate of the
uncertainties, though likely underestimating systematic uncertainties.

As mentioned above, the global average values from ERA5 are similar but not identical
to those of NCEP/TOMS. The annual average of the differences between data from the two
data sources δdif is computed as (using the ensemble average in the calculation):

δdif =
1

Nt

Nt

∑
j=1

(µj,ERA5 − xj,NCEP), (5)

The difference between ERA5 and NCEP/TOMS is of course not constant and varies
from day to day. To quantify this variability, the metric σdif is introduced, quantifying
the RMS difference between the 2 products (again using the ensemble average in the
calculation):

σdif =

√√√√ 1
Nt

Nt

∑
j=1

(µj,ERA5 − xj,NCEP)2, (6)

Focusing first on the average ensemble spread, an important result is that σens shows
distinct patterns for all five variables considered (Figure 5). A recurring feature is that high
values of σens over the oceans are found near the equator (extending to higher and lower
latitudes for the west Pacific and east Indian Ocean), except for [O3] (Figure 5e). The values
of σens exceed 0.75 m s−1 for WS and 1.5 kg m−2 for PW. Patterns of secondary magnitudes
are seen in the northwest Pacific for WS, SLP and RH and the southern Pacific (about half
way between New Zealand and Chile) for WS and SLP. For [O3], high σens are distributed at
high latitudes. In Section 6, we will look at how the spread between the ensemble members
propagates to remote sensing reflectances. It is important to keep in mind that the results
in Section 6 are only a local snapshot of the global variability reported in Figure 5.
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a)

d) e)

c)b)WS SLP PW

RH O3

Figure 5. Average ensemble spread σens for 2002 for (a) surface wind speed WS, (b) sea level pressure
SLP, (c) precipitable water vapor PW, (d) relative humidity RH, and (e) ozone concentration [O3].

Figure 6 illustrates the RMS difference σdif between the products of the two consid-
ered data sources, while Figure 7 shows the average difference δdif. With respect to the
ensemble spread σens, σdif usually has higher amplitudes (comparing the colour scales
of Figures 5 and 6; see also median values reported in Figure 8). Even the amplitude of
δdif (in modulus) in Figure 7 is at least comparable or higher (particularly for [O3]) than
σens. The spread within the ERA5 ensemble is thus smaller than the differences between
ERA5 and NCEP/TOMS. This is either because there are biases affecting the ERA5 and/or
NCEP/TOMS data, or because ERA5 uncertainties are underestimated, with the ensemble
not fully accounting for contributions of systematic terms to uncertainties.

a)

d) e)

c)b) PWSLPWS

RH O3

Figure 6. RMS difference σdif between ERA5 and NCEP/TOMS for 2002 for (a) surface wind speed
WS, (b) sea level pressure SLP, (c) precipitable water vapor PW, (d) relative humidity RH, and (e)
ozone concentration [O3].

Another important point is that the spatial distributions of σens and σdif share some
common patterns. For WS, in both cases, higher values are found for example in the
equatorial Pacific and equatorial (east) Indian Ocean and the northwest Pacific, while low
values are seen in the subtropical southern Pacific and Atlantic (Figures 5a and 6a). One
notable difference is that in the south of the Southern Ocean, the differences between NCEP
and ERA5 are significantly more pronounced than for σens. For both data sources, higher
values are observed in the Southern Ocean and the north Pacific for SLP, in the subtropical
regions for PW, and in the tropical Indian and western Pacific regions for RH. In the case
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of [O3], the highest σdif are observed at high latitudes for both data sources. Some of
the differences observed for [O3] are due to differences in how the data products were
produced. ERA5 is a real daily average, whereas the TOMS product is a daily composite
where each region is observed once at different times of the day.

Looking at δdif in Figure 7, WS from ERA5 is on average lower than NCEP with some
noticeable exceptions such as the Southern Ocean, eastern subtropical Pacific or the Arabian
Sea. For SLP, δdif is mostly positive, with local exceptions in the Pacific and western Indian
Ocean. The values of δdif for PW are mostly negative (ERA5 below NCEP) outside the
tropics and south of the equator in the eastern Pacific and Atlantic, while it is positive in
the rest of the tropics. Similarly for RH, δdif is usually negative outside the tropics, and
positive within the tropical band. As already anticipated by Figure 3, there is a latitudinal
gradient in δdif for [O3], with the ERA5 product on average higher (lower) than TOMS in
the high (low) latitudes. The overall agreement between the spatial distributions of σens
and σdif confirm our understanding that regions with high σens and σdif are indeed regions
of high uncertainty.

a)

d) e)

c)b)

O3RH

WS SLP PW

Figure 7. Average difference δdif between ERA5 and NCEP/TOMS for 2002 for (a) surface wind
speed WS, (b) sea level pressure SLP, (c) precipitable water vapor PW, (d) relative humidity RH, and
(e) ozone concentration [O3].

An important question is to know how these statistics and geographical patterns
observed for 2002 change with time. From similar maps obtained for the period 1998–2003,
the main patterns are actually well preserved every year (not shown). Figure 8 illustrates
this agreement by showing frequency distributions and (ocean) median values that are very
stable in time. To give further perspective to these results, it is worth comparing the median
σens and σdif with the standard deviation of the individual quantities over the year (that
quantifies the natural variability). For WS and PW, the ratios between σens and the annual
standard deviation are ∼0.1–0.15 while they are 0.47 for σdif. These ratios are smaller for
SLP, 0.04 and 0.19 for the ratios for σens and σdif respectively, while they are higher for RH:
the ratio between σens and the annual standard deviation is 0.3 while the median σdif and
annual standard deviation are almost equal, ∼8%. For [O3], the ratio between σens and the
annual standard deviation is 0.04 while the ratio of σdif and annual standard deviation is
about 0.5. So, even though usually smaller, the ERA5 ensemble spread or the difference
between data sets are certainly not negligible with respect to natural variability, and they
are in some cases comparable.
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Figure 8. Frequency distributions of statistics (a,d,g,j,m) σens, (b,e,h,k,n) σdif, and (c,f,i,l,o) δdif for
years listed in panel (c) and variables: (a–c) surface wind speed WS, (d–f) sea level pressure SLP,
(g–i) precipitable water vapor PW, (j–l) relative humidity RH, and (m–o) ozone concentration [O3].
Numbers provide median of every distribution for each year listed in panel (c).

4.2. Ancillary Variables Uncertainties

In this section, we briefly review how the ancillary variables affect the atmospheric
correction, and provide information on uncertainties documented for these quantities,
and how they relate to the statistics presented in the previous section. A comprehensive
discussion is also given by [2].

Surface wind speed (WS) is a key variable for performing an accurate atmosphere
correction. It affects the shape (waves) and roughness of the sea surface, which directly
affects the Rayleigh radiance (Lr), the glint radiance (Lg) and whitecaps and foam radi-
ance (Lf), and indirectly the aerosol radiance (see also Section 6.2). Breaking waves can
also introduce bubbles below the surface and thus modify the in-water radiation field.
Comparing Numerical Weather Prediction monthly model products and buoy data from
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the tropical regions, Ref. [33] document RMS differences of the order of ∼1 m s−1 but
higher values would be expected for 6-h products. Ref. [34] show maps of RMS difference
of model outputs and scatterometry satellite data, with values typically of 2 to 4 m s−1,
higher values being seen in the high latitudes and ITCZ, patterns that are also observed for
σens and σdif (Figures 5a and 6a) (see also [35]). Misfits with respect to observations of the
order of 2 m s−1 for only the zonal component of the wind are represented by [7] for ERA5
products. These values are fairly consistent with the distribution obtained for σdif with a
median 1.2–1.5 m s−1 (Figure 8b), while σens might appear somewhat low with respect to
actual uncertainties (with a median three times lower than that of σdif).

Sea level pressure is also an important variable for performing the atmosphere correc-
tion for ocean colour data. It affects the amount of gas molecules in the lines of illumination
and sight, with a direct impact on Rayleigh scattering [36] and the atmospheric transmit-
tance. Statistics shown above for σens or σdif show larger values for the Southern Ocean, in
line with the results of [37] who compared products from meteorological models. From
comparison with island data, these authors obtained RMS differences of the order of
0.5–2 hPa with the largest values at high latitudes. For ERA5 products, [7] obtain misfits
with respect to observations of the order of 0.6 hPa. So, with median values of 0.21 and
0.96 hPa, respectively (Figure 8d,e), σens and σdif are consistent with these uncertainty
estimates (with the former again at the low end).

Water vapour absorbs significant amounts of radiation within its absorption bands
in the visible and near-infrared spectral range. This affects the gaseous transmittance and
thus the process of atmospheric correction. For most OC instruments, the spectral bands
were chosen to minimise overlap with the water absorption bands, yet there is still a non-
negligible effect of water absorption, especially for λ > 680 nm. Besides transmittance, PW
also affects the calculations of the aerosol radiance through out-of-band corrections active
in the conversions between single and multiple scattering performed in SeaDAS. Using
a diverse source of field data, results have shown RMS differences with meteorological
products of the order of 1–2 kg m−2 in the polar regions, 1.5–4 kg m−2 in temperate regions
and 2.5–6 kg m−2 in the tropics [38–40], a latitudinal distribution that is consistent with
that seen for σens or σdif, and magnitudes comparable to σens and σdif (ocean global median
of 0.8 kg m−2 and 3.9 kg m−2 respectively, Figure 8g,h).

Within the SeaDAS processing chain, relative humidity (RH) is an important parameter
as it is used in defining the aerosol models used in the atmospheric correction. The
algorithm offers 80 candidate aerosol models, organized with 10 values of the aerosol
fine-mode fraction and 8 values of RH [41]. First, the two families of aerosol models with
RH bracketing the input value are kept for further analysis, the final selection being on
the basis of the aerosol reflectance ratio ε of two bands in the near-infrared (NIR). Since
the aerosol radiance (La) can make up a significant fraction of the TOA radiance (Lt),
RH has the potential to significantly affect the calculated water leaving radiance. Misfits
with respect to observations of the order of 10% were seen for ERA5 products [7], and
other studies comparing products (including satellite-based ones) suggest that this is not
uncommon [42,43]; even the uncertainty of some in-situ measurements may reach this
value [44]. Values of 10% are also fairly typical for σdif over the oceans (having an ocean
global median of 7.7%) while σens is usually lower (median of 2.4%) (Figure 8j,k).

Ozone absorbs light between 500 and 700 nm with a peak at 600 nm and thus affects
the gaseous transmittance. Ozone satellite products typically have uncertainties below
5% [16,45,46] that correspond fairly well to the differences between ERA5 and TOMS as
quantified by σdif (ocean global median of 11.5 dobs, Figure 8n). The ERA5 ensemble
spread σens is smaller (ocean global median of 0.9 dobs, Figure 8m).

As already noted, σens is usually lower than σdif. Some elements suggest that at
least some ensemble spreads within the ERA5 ensemble are too small with respect to
actual uncertainties [47], and the low values of σens with respect to σdif are at least partly
explained by the fact that σens does not include any systematic terms that would contribute
to a general uncertainty budget. In the case of ERA5, higher values of σens and, in general,
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of the products uncertainties are expected when the availability of in-situ data is low for
assimilation in the re-analysis simulations, which might contribute for example to the high
values found for SLP in the Southern Ocean. However, due to including a wide range
of satellite records, for such regions ERA5 has significantly smaller uncertainties than its
predecessors such as CERA-20C ([47]; see also Mélin et al., submit.). Considering σdif, it
is obvious that both products (ERA5 or NCEP/TOMS) cannot be true at the same time,
but implications for the uncertainties of the individual products are not straightforward.
The fact that both distributions (σens and σdif) are stable in time and share major spatial
patterns, and that they are comparable to uncertainty values reported in published studies
suggest that they can be considered as representative estimates of uncertainties for the
considered ancillary variables, with σens usually on the low end. It practically means that
they can be used to test the sensitivity of the atmospheric correction to uncertainties in
ancillary variables.

5. Uncertainty Propagation Method

As discussed in Section 4.1, there is a lot of spatial variability in the uncertainties on
each of the relevant ancillary parameters. There are also temporal changes. Therefore,
to get realistic uncertainty estimates on the remote sensing reflectances, it is important
to get a local estimate of the ancillary data uncertainties at the relevant time (time of
satellite overpass), consistent with the combination of observations available at that time
and location. Reanalysis datasets are the best option to obtain such data, as they assimilate
all available observations by design and combine them into a consistent framework (and
with representative uncertainty information in the case of ERA5, see previous section). We
thus opt to use the ERA5 ensemble to obtain uncertainty estimates on the input quantities
(i.e., the ancillary data) in our uncertainty propagation. The 10-member ensemble is a new
inclusion in this recently updated ERA dataset. It provides the most detailed information
in terms of uncertainty for any reanalysis dataset.

To perform the correction from TOA radiances to surface reflectances, it is possible to
give SeaDAS input files containing ancillary data specified by the user. These files need to
be in HDF format mimicking the NCEP data. To use the ERA5 ensemble members, we thus
first need to convert the ERA5 ancillary data to NCEP format. We produce two files (one for
ozone and one for the other ancillary variables, as required by SeaDAS) for each ensemble
member and each time frame (every three hours). ERA5 has a finer resolution than the
NCEP data. Therefore, we resample the ERA5 data to the same grid as the NCEP data.

A Monte Carlo (MC) approach is used to propagate the uncertainties in the ancillary
data to the remote sensing reflectances. MC methods typically generate a large number
of draws from an input probability distribution and propagate each draw through the
measurement function. The resulting output values then make up an approximation of the
output probability distribution, which in turn can be used to determine uncorrelated and
correlated uncertainties in the measurand. For our study, we use the whole SeaDAS level 1
to level 2 processing chain as the measurement function.

Usually many draws are generated from the input distribution. However, ERA5 only
has 10 ensemble members (due to the large computational cost per ensemble member),
which together make up the best available probability distribution. We thus use the
10 members as 10 individual MC draws. For each level 1 scene, we generate 10 level 2 maps
corresponding to the 10 ensemble members. We then study the standard deviation in each
pixel between these 10 level 2 maps and compare it to the standard deviation within the
corresponding ancillary data in the ensemble.

The various ancillary data variables each influence the measurement function shown
in Figure 2. The level 2 uncertainties will thus have some contribution from each of the
included ancillary data variables. It is very difficult to disentangle these contributions
without additional information. Therefore, we performed a second set of MC analyses,
where only one of the ancillary data variables is varied at once. The other parameters are
not varied and kept to the ensemble average. By varying the ancillary data one variable
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at a time, we can separate the contributions of the various ancillary data to the level 2
uncertainty in each pixel. We then look at the correlation between the pixel uncertainty in
the level 2 maps and the pixel ancillary data uncertainty on the same scale. For the latter,
we use the interpolated ancillary data maps produced by SeaDAS which are on the same
grid as the level 1 and level 2 maps.

6. Remote Sensing Reflectance Uncertainties
6.1. Relative Uncertainty at Different Wavebands

To study the uncertainty introduced by the ancillary data, we make maps of the
standard deviation (std) between the propagated ensemble members for each waveband.
In Figure 9, we show images of the average 555 nm remote-sensing reflectance (Rrs), as
well as the relative std in each pixel (i.e., standard deviation between ensemble members,
divided by ensemble average). We see that in some regions, the relative std is around 2%,
yet in most of the image it is significantly lower. In addition to studying the std between
the ERA5 ensemble members, we can also look at the differences between the ensemble
average Rrs and the NCEP-based Rrs data in Figure 9 (right). The differences are somewhat
larger than between the ERA5 Rrs ensemble spread.

Figure 9. Average 555 nm remote-sensing reflectance (left), relative standard deviation (centre)
between ensemble members, and relative difference between NCEP and ERA5 (right) for Australian
scene consisting of 400× 150 MLAC (1.1 km) pixels (top), and Atlantic scene consisting of 100× 175
GAC (4 km) pixels (bottom).

We can quantify the differences between images by looking at the median pixel of the
relative std images (i.e., the median of the relative std between ensemble members for each
pixel). For the relative std between ERA5 ensemble members (Figure 9 centre), the median
pixel corresponds to 0.5% for the Australian scene, and 0.6% for the Atlantic scene. The
medians of different wavebands can be used to study the wavelength dependency of the
remote sensing reflectance uncertainties. Figure 10 shows the total relative std from varying
all ancillary parameters at once as the blue line. The 670 nm waveband has significantly
higher std than the blue bands, and the 555 nm waveband has slightly higher values too.
In relative terms, the red bands are thus more susceptible to uncertainties introduced by
the ancillary data.

Figure 10 also shows the relative std from varying the ancillary variables one-by-one,
and the quadratic sum of the individual components for the median pixel in each band.
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When we compare the individual contributions, we see that for the blue bands WS is the
dominant contribution for both scenes. For the red bands, RH is the biggest contributor for
the Australian scene, yet WS is still the biggest contribution for the Atlantic scene (closely
followed by RH). [O3] is also an important contributor for the red bands. SLP does not
add much variance in any of the bands. The effect of PW is quite different for our two
scenes. For the Australian scene, PW is a significant contributor in the red bands, yet for
the Atlantic scene it only adds a very small contribution. We also note in Figure 10 that
the total relative std is similar to the quadratic sum of the individual components. This
indicates that the different contributions are fairly uncorrelated to each-other.

To understand how to put these results in a global context, we can compare where
our ancillary data lies within the global distribution discussed in Section 4.1. In Table 1,
we list the range of the ancillary data within our two scenes as well as the range of their
uncertainties. When these are compared with their respective regions in Figure 3, we
find that compared to the annual average, both scenes have lower WS, slightly lower RH,
slightly lower PW and similar [O3]. The SLP for the Australian scene is lower than the
annual average, yet for the Atlantic scene it is similar. The differences with the annual
average could be due to a bias introduced by our selection criteria of the scene having a
large clear-sky area or simply due to the specific meteorological regimes analysed at the
time (which would be expected to differ from the annual average values for most times).
In addition, we can also compare the uncertainties to the global distribution of σens. The
spread between the ensemble members for the pixels in our scenes lie well within the global
distributions for 2003 in Figure 8, with the exception of the PW uncertainty for the Atlantic
scene, which has significantly higher values. The reason for this high spread between
ensemble members for PW for this scene is not clear. Compared to the annual average σens
value of their respective locations in Figure 5, a similar picture emerges, where now the
values in Table 1 for the Atlantic scene are somewhat lower for WS and again higher for
PW, but all the other values are comparable. We will revisit the ancillary variables within a
global context in a dedicated study (Mélin et al., submit.), where we perform a much more
systematic study on global scales.

Figure 10. Plots showing wavelength-dependence of median pixel for Australian scene (left) and
Atlantic scene (right). Various coloured lines show relative std for varying all ancillary variables at
once, relative std for varying variables one-by-one, and quadratic sum of individual components.
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Table 1. Table listing range of pixel values of ancillary parameter values for each of our two scenes.

Ancillary Variable Australian Scene Atlantic Scene

WS (m s−1) 1.5–6 0.5–4.5
WS uncertainty (m s−1) 0.3–0.8 0.1–0.45
SLP (hPa) 1007–1009 1013–1014
SLP uncertainty (hPa) 0.22–0.32 0.08–0.2
PW (kg m−2) 23–29 16–40
PW uncertainty (kg m−2) 0.8–1.8 0.8–3.5
RH (%) 57.5–75 60–80
RH uncertainty (%) 1.25–3 1.5–4
O3 (dobs) 247–252 242–266
O3 uncertainty (dobs) 0.8–1.3 0.5–1.6

6.2. Sensitivity to Aerosol Model Selection

If we look at the std in Figure 9 (centre column) in more detail, we see that the
introduced variation is not smooth, and there are some pixels that seem to have significantly
higher std than the surrounding pixels, whereas we know that the variation in each of the
ancillary parameters varies smoothly. In this section, we look at what affects these pixels,
as it will influence the discussion in the following sections. We here focus our discussion
on the Australian scene, although the same principles apply to other scenes too.

The reason for the large std in these pixels becomes clear when we look at the std in
the Ångström exponent α, the slope of the aerosol models. By manually inspecting the
outlying pixels in the left and centre panels of Figure 11, it can be seen that the outlying
pixels are the same in the Ångström std as in the remote-sensing reflectance std. It is thus a
difference in aerosol model selection (between the different ensemble members for that
pixel) that causes these outlying pixels. To better understand this, we look in more detail at
how the aerosol models are selected. The main factors in selecting an aerosol model are
the RH, and the observed ε (again, the ratio between NIR aerosol reflectance). The RH
mainly serves in limiting which aerosol models are compared to the observed ε. When the
observed RH goes across a tabulated RH value associated with a subset of the candidate
aerosol models, significant changes in the calculation of the aerosol radiance might happen
but this effect does not explain the large pixel-to-pixel variations in std as the RH variability
is very smooth (being interpolated from 1-degree resolution products).

Figure 11. Relative std between ensemble members for aerosol Ångström exponent (left), 555 nm
remote sensing reflectance without adding noise (centre), and 555 nm reflectance after adding
measurement noise to each L1 map and averaging, resulting in std maps between members (right).

The observed ε corresponds to the total Multiple Scattering (MS) ε, whereas the aerosol
models are characterised by Single Scattering (SS) ε. Even though the polynomial functions
to convert the model SS ε to model MS ε were computed for each model, the comparison
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of the MS observed ε to the SS model ε is complicated by two effects. The first is that the
diffuse transmittance, which is applied when calculating the observed MS ε, is dependent
on which aerosol model is selected. Second, the conversion from model SS ε to MS ε is
not only model-dependant but also depends on the observed radiances (after correcting
for glint, foam and Rayleigh radiances). Several methods were developed to deal with
this. We use the default SeaDAS option, which is the RH-dependent [12] aerosol model
selection, for which the model selection is done iteratively. Starting with all models at a
given RH, the algorithm determines an average observed SS ε by converting the observed
MS ε to a SS ε for each model, and then removes the two models that are furthest away
from the average SS ε. A new average SS ε is then calculated, and the process is repeated
until only 2 models remain. An interpolation is then performed between these 2 models.

The key cause of the observed variance here is that around some critical values
between two models, slight variations in the observed MS ε (due to changes in, e.g., the
transmittance), can lead to a different average and different models being discarded, which
then affects the next average. A small change can thus cause a large difference, but only if
the observed MS ε (which is affected by the noise in the L1 maps) is close to some critical
transition value that causes different models to be discarded during the selection. This
explains how only few pixels are affected by this issue.

One way to mitigate the variance introduced by this is by adding noise to the L1
observations and averaging the results. For each L1 map, we generate 10 new maps
following a Monte Carlo approach and a 0.1% L1 uncertainty. After processing each of the
generated L1 maps with SeaDAS for each member in the ERA5 ensemble, we calculate
the std between the different members for the same L1 map. Next, we average the std
maps for each generated L1 map. This spreads out which pixels are at the critical transition
value and leads to smoother std maps, as illustrated in the right panel of Figure 11. Adding
noise will allow to produce smoother maps which make it easier to visually reveal the
underlying correlations with ancillary data and will give us a better measure for the average
uncertainty in a pixel. Following the standard approach without adding measurement
noise will result in some pixels being quite strongly biased (up to about 1%), while other
pixels are unaffected. The latter can be useful for better revealing trends in the unaffected
pixels. Both versions of the maps can thus be useful, yet throughout the remainder of this
document we use the version without adding additional noise.

6.3. Spatial Correlation between Variance in Ancillary Data and Reflectance

Next, we look at the spatial correlation between the uncertainty in the ancillary data
and the associated uncertainty in the remote sensing reflectances. We show in Figure 12
the spatial correlation between the standard deviation (between the 10 ERA5 ensemble
members) in WS and the standard deviation in the resulting L2 maps when only WS is
varied for both scenes. We find a strong linear correlation for all except the red band
(correlation coefficient ranging from r = 0.88 for 412 nm to r = 0.82 for 555 nm when strong
outliers are discarded) between the uncertainties in WS and the associated uncertainties in
the remote sensing reflectances. However, from analysing additional scenes, we find that
this clear correlation does not hold for all scenes (especially for high WS).

RH, which is the other main contributor to the uncertainty on remote sensing re-
flectances, does not have such a clear spatial correlation (at least on the pixel-level) since
the RH affects the aerosol model selection through rather complex selection criteria which
also depend on other parameters.

There is a strong linear correlation between the std in SLP and the std in 412 nm
reflectance (correlation coefficient ranging from r = 0.91 at 412 nm to r = 0.42 at 555 nm).
However, this strong linear correlation between most pixels in Figure 13 is not easily visible
due to the strong outliers. There are again two uncertainty components when varying SLP
only: one accounting for the uncertainty arising from std in the Rayleigh radiance and
transmittances, and one accounting for the outlying pixels due to the aerosol selection. The
critical transition for aerosol model selection uncertainty is very apparent here due to the
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lower overall variance in the image from the other component (as the uncertainty on SLP
itself is very low). The pixels that are at the critical transition values stand out much more.

Figure 12. Plots illustrating uncertainty on WS (left) and associated uncertainty on remote sensing
reflectance (right) for our Australian Scene (top) and Atlantic Scene (bottom).

Figure 13. Plots illustrating dependence of remote sensing reflectance on SLP for Australian Scene.

PW and [O3] also contribute to the uncertainty budget, yet do not show clear spa-
tial correlations between the std in the ancillary parameters and the std in the resulting
reflectance maps. For both these variables we also find a continuous component as
well as outliers due to some pixels being around critical transition values for aerosol
model selection.
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The results presented in this section are based on representative SeaWiFS images but
it is acknowledged that they are susceptible to vary for other areas and/or periods and
that a much larger study is required (see Mélin et al., submit.).

7. Conclusions

We illustrated the uncertainty budget of the NASA SeaDAS l2gen software using
an uncertainty tree diagram and discussed the various uncertainty contributions. From
the uncertainty tree diagram, the components of the algorithm where ancillary data have
an impact were identified. To judge the effect of the ancillary data uncertainties in the
atmospheric correction, an MC approach was used where the MC steps were taken to be
the 10 members of the ERA5 ensemble. Our main conclusions from this study are:

• The SeaDAS uncertainty budget reveals numerous sources of error. Particularly,
ancillary data uncertainties enter the measurement equation through various branches
and together form an important contribution to the uncertainty budget.

• The difference between the NCEP/TOMS and ERA5 ancillary data is larger than the
variance within the ERA5 ensemble. Both the average difference between NCEP/TOMS
and ERA5 and the spread within ERA5 show similar spatial patterns, with the largest
values generally observed in the the mid-latitudes for surface wind speed (WS), sea
level pressure (SLP), precipitable water vapour (PW), and relative humidity (RH) or
the high latitudes for total ozone concentration ([O3]). Differences between ancillary
data and within the ensemble appear to provide realistic estimates of their uncertain-
ties in magnitude and spatial distribution, and allow sensitivity analyses on OC data
processing. However, these uncertainty estimates might be slightly underestimated
due to the ensemble spread not fully including systematic effects.

• WS and RH (through its interaction with aerosol model selection) were found to be
the biggest contributors to the uncertainty in the atmospheric correction.

• The complex iterative aerosol model selection algorithm leads to a small fraction of
pixels having significantly higher uncertainties than other pixels. This happens when
the L1 radiances (of the bands used in aerosol model selection) for these pixels are
near some critical transition values, which results in a different model being selected
for different MC iterations.

• The uncertainties in the remote sensing reflectance due to WS and SLP typically show
a strong spatial correlation with the uncertainties in WS and SLP, respectively. The
other ancillary variables show no such strong correlation.

• The uncertainty in remote sensing reflectances introduced by varying RH is complex.
In addition to the pixels close to the critical transition values, aerosol model selection
also introduced large-scale variation in uncertainties.

In general, it is thus recommended that uncertainties on ancillary variables (especially
those on WS and RH) are included when determining uncertainties on ocean colour remote
sensing reflectances. For a more detailed global picture, we refer to Mélin et al., (submit.). In
future work, it would be very interesting to study the effects of ancillary data uncertainties
on water quality parameter estimations (such as chlorophyll-a) as well as to explore other
algorithms for retrieving remote sensing reflectances, especially if the effects of aerosols
and their detailed dependence on RH can be better understood.
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