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Abstract
Many dynamical systems experience sudden shifts in behaviour known as tipping points or critical
transitions, often preceded by the ‘critical slowing down’ (CSD) phenomenon whereby the
recovery times of a system increase as the tipping point is approached. Many attempts have been
made to find a tipping point indicator: a proxy for CSD, such that a change in the indicator acts as
an early warning signal. Several generic tipping point indicators have been suggested, these include
the power spectrum (PS) scaling exponent whose use as an indicator has previously been justified
by its relationship to the well-established detrended fluctuation analysis (DFA) exponent. In this
paper we justify the use of the PS indicator analytically, by considering a mathematical formulation
of the CSD phenomenon. We assess the usefulness of estimating the PS scaling exponent in a
tipping point context when the PS does not exhibit power-law scaling, or changes over time. In
addition we show that this method is robust against trends and oscillations in the time series,
making it a good candidate for studying resilience of systems with periodic oscillations which are
observed in ecology and geophysics.

1. Introduction

The phenomenon of critical slowing down (CSD)
is observed in a broad range of dynamical systems
exhibiting tipping behaviour [2, 12, 18–20]. The
‘slowing down’ to which the phrase refers is the
increasing times taken by the system to return to
the equilibrium state given a random perturbation:
at some critical point (a tipping point) the system
changes state and the return time becomes effect-
ively infinite. The autocorrelation scaling exponent of
time series data is a useful measurement of CSD [18]
and is a candidate for use as a tipping point indic-
ator. The closely related detrended fluctuation ana-
lysis (DFA) [9, 13] and power spectrum (PS) [15,
16] scaling exponents have also been used as indic-
ators following the ‘degenerate fingerprinting’ tech-
nique of [7]. It is, however, tacitly assumed that the
estimation of the PS scaling exponent will yield a use-
ful tipping point indicator (although this is not obvi-
ous when the PS does not actually exhibit true power-
law scaling). In this paper we demonstrate that the
PS scaling exponent is relevant to the AR(1) model

of CSD, which has a non-scaling PS, and demon-
strate that the method is resilient to oscillations in the
underlying dynamical system.

In section 2 we examine the PS scaling exponent
of the lag-1 autoregressive (AR(1)) process which is
used as a model of CSD. In section 3 we then look
more closely at the PS indicator method to determ-
ine the best frequency range by which to estimate the
exponent for a PS not exhibiting power-law scaling.

In section 4 we apply this method of estimating
the PS exponent to data for which the PS does not
exhibit power-law scaling and, in section 5, we model
a system undergoing CSD by considering AR(1) pro-
cesses with increasing autoregressive parameter and
analyse the sensitivity of the estimated PS exponent
to the size of the data set and the addition of trends
and periodicities to the AR(1) process. This is partic-
ularly relevant tomeasuring resilience in ecological or
geophysical systemswith complex periodicities which
may be difficult to remove.

Finally in section 6 we consider an application of
this method to paleo-temperature proxy data previ-
ously found to exhibit tipping behaviour [10].
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2. Amodel of critical slowing down

The use of the autocorrelation scaling exponent as
a tipping point indicator is justified by modelling
a one-dimensional dynamical system using a lag-1
autoregressive (AR(1)) process [7, 19]:

z(tn+1) = e−κ∆tz(tn)+σηn, (1)

where σ is a constant, ∆t= tn+1 − tn, ηn is a white
noise term and κ is the decay rate. The model con-
siders the equilibrium state z= 0 as the critical mode
of a dynamical system undergoing a bifurcation. The
system returns to equilibrium exponentially with rate
κ. During a bifurcation a system will undergo critical
slowing down, that is, a decreasing rate κ. The auto-
correlation coefficient α≡ e−κ∆t increases to 1 as κ
decreases to zero. The autoregressive model para-
meter exp(−κ∆t), and thus the simple lag-1 autocor-
relation function (ACF1), will increase as κ decreases.
The ACF1 is therefore a good tipping point indic-
ator and is widely used [7, 11]. As noted by [19], it
is often the case that as the autocorrelation increases
so does the variance, this is true of the AR(1) pro-
cess described by equation (1) where the expectation
is zero and the variance is given by:

Var(z(t)) =
σ2

1−µ2
, (2)

where µ= exp(−κ∆t) is the autocorrelation coef-
ficient. Thus detecting an increase in variance will
provide an additional early warning signal.

The PS exponent β of a time series x(t), as used
in [16] as a tipping point indicator, is defined as the
negative power-law scaling exponent of the power
spectral density (PSD), which is the modulus squared
of the Fourier transform. This is, if the PSDof the pro-
cess x(t) satisfies the power-law scaling relationship:

Sx( f ) :=

∣∣∣∣ˆ ∞

−∞
x(t)e−2πiftdt

∣∣∣∣2 ∼ f −β , (3)

then we define β as the PS exponent. If the PSD is
obtained numerically as the fast Fourier transform
periodogram [15, 16], then β must be estimated by
plotting the periodogram on logarithmic axes and
measuring the negative gradient, expressed in terms
of the PSD as:

βf =− d

d(log f )
log [Sx( f )] , (4)

(where ‘log’ refers to the base-10 logarithm) which
is a constant in terms of f only if the PSD exhibits
true power-law scaling (a straight line in the log–log
plot). In practice a single value for β is obtained by
using a linear fit to the periodogram either over the
entire frequency range f ∈ (0,0.5] or in some subset
log f ∈ [a1,a2] where a1 < a2 ⩽ log(0.5). That is, we

find the linear function p : log f 7→ β log( f )+ c min-
imizing the squared error:∑

a1⩽log f⩽a2

|p(log f )−βf|2. (5)

In cases where the PS does not exhibit power-law
scaling the choice of the frequency range is a signific-
ant consideration potentially affecting the usefulness
of the estimated value β as a tipping point indicator.
In section 3 we analyse the PS exponent more closely
in an EWS context in order to ascertain optimal values
of a1 and a2.

3. Determining the frequency range for
the PS exponent estimation

When estimating the value of the PS scaling exponent
from a discrete periodogram it is necessary to use a
chosen range of frequencies for the calculation (the
a1 and a2 in equation (5)) since at very high or low
frequencies the discrete periodogram will not be reli-
able. In particular, very low frequencies do not exist in
the discrete periodogram and the range of frequencies
available is determined by the length of the time series
(i.e. the number of data) used. In previous work [14,
16] we have calculated the exponent over the range
10−2 ⩽ f⩽ 10−1 since this relates to the time range
10⩽ s⩽ 100 used in the estimation of the DFA scal-
ing exponent as presented by [13].

In cases where true power-law scaling exists, and
data exist with sufficiently high time resolution, the
estimation can be done over any sensible range, or
over the entire periodogram. Where there is no true
power-law scaling, the choice of the range of frequen-
cies may significantly affect the result. For our pur-
poses, where the value of the scaling exponent is used
as an early warning signal of a tipping point, it is
not the exponent value itself in which we are inter-
ested but the change in the exponent as the system
approaches a tipping point. In this section we find
a rule-of-thumb frequency range for the exponent
estimation by examining a model of the CSD phe-
nomenon (anAR(1) process with increasingARpara-
meter) and determining the range of frequencies in
which the periodogram shows most consistent and
visible change.

In this paper we follow [19] in using the AR(1)
process zn+1 = µzn +σηn, with increasing parameter
µ, as a model of a process experiencing CSD. The
autoregressive parameter µ is therefore considered to
be a function of time t and is assumed to be mono-
tonically increasing. In our attempt to analyse the
power spectral properties of CSD processes we there-
fore consider the PSD of the AR(1) process, which is
given in [21] as:

Sz( f ) =
σ2

1+µ2 − 2µcos(2πf )
. (6)
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Figure 1. Scaling properties of the AR(1) process with varying parameter µ. Panel (a): the power spectrum of the AR(1) process
(see equation (6)) is plotted on a log–log scale for various values of the parameter µ. Note the ‘white-noise’ (flat) part of the
power spectrum for small f and the ‘red-noise’ (negative gradient) part for large f. Panel (b): the PS indicator (see equation (9)) is
plotted as a function of f for the same µ values.

The specific PS exponent βf is then found, as
in equation (4), by differentiating log[Sz( f )] with
respect to log f:

βf =− d

d(log f )
log[Sz( f )] (7)

=
4πµf sin(2πf )

1+µ2 − 2µcos(2πf )
. (8)

This gradient may then be evaluated at a partic-
ular value of f (or, rather, in the case of the periodo-
gram, estimated by a linear fit in a particular range of f
values).What we refer to as the Power Spectrum Indic-
ator is the value of this PS exponent as a function of
time, Bf(t), given by the expression in equation (8),
where the t dependence comes from the fact that
µ= µ(t) is a function of time. That is,

Bf(t) =
4πµ(t)f sin(2πf )

1+µ(t)2 − 2µ(t)cos(2πf )
. (9)

In the following calculations we instead con-
sider the PS indicator directly as a function of µ,
which can be done without loss of generality assum-
ing µ(t) is increasing. Taking the µ derivative we
find:

d

dµ
Bf(µ) =

4πf sin(2πf )(1−µ2)

(1+µ2 − 2µcos(2πf ))2
. (10)

Equating this to zero we find the maximum value of
the PS indicator occurs when µ= 1 (when the AR(1)
process is a randomwalk) at which point the PS indic-
ator Bf has a maximal value of 2 which occurs as f
approaches zero, that is,

max[Bf] = Bf(1) =
2πf sin(2πf )

1− cos(2πf )
→ 2. (11)

For larger values of f the maximum indicator value
is not close to the maximal value of 2. For f = 0.1
we have B0.1(1) = 1.93, whereas for f = 0.38 already

the value is significantly less: B0.38(1) = 1 (note that
B1/2(1) = 0). In cases where the PS indicator is being
estimated using a noisy periodogram it is essential
that the increase in the indicator value as critical slow-
ing down occurs (that is, as µ increases from 0 to 1)
is easily observable. For this reason, when we estim-
ate the PS scaling exponent, a frequency log( f )⩽−1
should be used in order to be able to observe the
largest increase in the PS indicator.

In figure 1 the PSD of the AR(1) process, as
given by equation (6), is plotted for parameter
µ= 0.7,0.8,0.9,0.999 (panel (a)). We note that for
µ= 0.999 the AR(1) process is very similar to a ran-
dom walk (µ= 1) and thus the PS clearly exhibits
the associated negative gradient in the log–log plot.
For lower values of µ, where the process is some-
where between a white noise process (µ= 0) and a
randomwalk, we note that a ‘cross-over’ occurs in the
range−2< log( f )<−1 (that is, there is a flat ‘white
noise’ PS for low frequencies and a negative-gradient
‘random walk’ spectrum for higher frequencies) sug-
gesting that this is the range in which the PS expo-
nent (the gradient of the PSD plots) will exhibit the
most noticeable change. Indeed, the PS exponent in
the range −3.5< log( f )<−2.5 is close to zero for
all µ< 0.9, only exhibiting a change for µ ∈ [0.9,1.0],
and so cannot provide a useful indicator of CSD
which is usually modelled as an increase of µ from
0 to 1.

We note that there may be specific cases where a
greater degree of sensitivity is required, for example
where the CSD can be modelled as an increase in
µ between 0.9 and 1.0. This may arise if the time
series under investigation has a high (µ≈ 0.9) ‘back-
ground’ autocorrelation to start with. In this case, if
the resolution of the time series is high enough that
the periodogram is sufficiently reliable for low fre-
quencies, a lower frequency range, such as −3.5<
log( f )<−2.5, might yield a more effective tipping
point indicator. Alternatively, a Gaussian filter may
be applied.
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In figure 1(b) we plot the PS indicator Bf(µ) as a
function of f and note again that the most significant
increase in Bf(µ) as µ increases from 0 to 1 (compar-
ing successive lines in the plot) is found in the fre-
quency range−2< log( f )<−1, i.e. 10⩽ s⩽ 100.

4. Estimating the PS exponent for power
spectra without power-law scaling

The definitions of all scaling exponents, and thus
it seems that the resulting early warning indicat-
ors, assume the existence of power-law scaling. For
example, in the case of the PS exponent we assume the
PS S(f ), which is approximated by the periodogram,
is of the form S( f )∼ f −β for some exponent β, and
it is this value that we seek to measure. However, it is
unlikely that we will find true power-law scaling like
this in dynamical systems or data from real-life pro-
cesses unless we are dealing with pure white noise or a
pure random walk. Indeed we note that the common
stochastic model, the AR(1) process, with which we
model critical slowing down [18], does not even have
true asymptotic power-law scaling in the PS, as shown
in figure 1.

In this section we show that it is still valuable to
measure the PS exponent in cases in which there is
clearly no true power-law scaling. In particular, we
focus on two cases where the PS has ‘crossover’: a pro-
cess for which the PS follows one power-law scaling
relationship at low frequencies and another at higher
frequencies.

(a) The combination of a white noise series and a
red noise series, in which the white noise signal
dominates at the higher-frequency end of the PS
whilst the red noise dominates the low-frequency
end.

(b) The aforementioned AR(1) process which has PS
described by equation (6) with parameter µ ∈
[0,1].

In both of these cases we attempt to estimate a
specific PS scaling exponent βf by applying a linear
fit to the non-linear log–log periodogram in some
range [f0, f1] 3 f. We then show that this pseudo scal-
ing exponent provides a proxy for increased ‘redden-
ing’ of the underlying process.

4.1. Sum of red and white noise signals
To create a time series with a clear crossover in the
PS we take the sum of a Gaussian white noise series
ηt and red noise (random walk) seriesW t defined by
the relationWt =Wt−1 + ζt, where ζ t are a Gaussian
white noise series independent of ηt . Thus the terms
of the series are given by:

z(t) =

(
t∑

τ=0

ζτ

)
+µηt, (12)

where µ is a parameter modifying the variance of the
white noise terms ηt . Due to the linearity of the Four-
ier transform we are able to calculate the PSD Sz( f )
of the series z(t) by combining the Fourier trans-
form η̂( f ) = 1 of the white noise process η(t) and the
Fourier transform Ŵ( f ) = (2πf )−1 of the red noise
(Brownian) processW(t). The derivation follows:

Sµη( f ) = |µη̂( f )|2 = µ2, (13)

and

SW( f ) =
∣∣Ŵ( f )

∣∣2 = ∣∣∣∣ 1

2πf

∣∣∣∣2 = 1

4π2
f−2. (14)

Combining the two series we have:

Sz( f ) = |̂z( f )|2

=
∣∣Ŵ( f )+µη̂( f )

∣∣2
=

1

4π2
f−2 +

µ

2π
f−1 +µ2. (15)

In figure 2 the power spectra of white noise µηt
and red noise W t , given by equations (13) and (14)
respectively, are shown (dashed lines) imposed over
the periodograms of computed instances of these
series (shown in grey and red respectively). In this
case the value µ= 103/2/2π has been chosen so
that the intersection of the two curves is given by
f= 10−3/2, which is the midpoint of the values
f = 0.01 and f = 0.1 on the logarithmic scale.

In figure 2 we also see the PS of the function z(t),
given by equation (15) (solid line), and the periodo-
gramof an instance of the time series (shown in blue).
This time series is simply the sum of the white noise
and red noise series. We note that the periodogram of
z entirely overlaps the periodogram of the red noise
series W for small values of f, and overlaps the peri-
odogram of the white noise series η for large values
of f.

In figure 3(a) we consider a time series z(t) given
by equation (12) but with a changing parameter µ
given by:

µ(t) = 1− tanh(t− 6), (16)

so that the value of standard deviation of the white
noise component decreases from 2 to 0 as t goes from
0 to 10, whilst the component randomwalk process is
produced using a constant-variance white noise sig-
nal. In figure 3(b) we plot the PS indicator of the
signal z(t) and note that, whilst noisy (we are using
a model ensemble of size 1), the PS indicator well
reflects the change in the white noise component,
rising synchronously as µ(t) decreases. The PS indic-
ator in this case is calculated by estimating the PS
exponent in the frequency range −2< log( f )<−1,
as determined in section 3.

We have thus demonstrated the applicability of
the PS indicator to a process whose PS does not
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Figure 2. Scaling crossover in the power spectrum of the sum of red and white noise series. Showing the power spectrum of the
series z(t) (solid black line, see equation (12)) imposed over the periodogram (blue). Also showing the power spectrum of white
and red noise (dashed black lines) and their periodograms (grey and red respectively). The crossover occurs at f= 10−3/2.

Figure 3. Power spectrum indicator of the sum of white noise and red noise series with decreasing white noise component.
Panel (a): the time series z(t) (left y-axis) and the standard deviation of the white noise component (right y-axis). Panel (b): the
PS indicator in a sliding window of size 1% of the length of the time series.

exhibit power-law scaling. By estimating the PS scal-
ing exponent in the optimal frequency range we
have detected the ‘reddening’ of the noise signal. It
is indeed this ‘reddening’, or a shift from a process
approximated by white noise towards a randomwalk,
that characterises CSD, but it is the AR(1) process
in particular which provides a model of this phe-
nomenon [1, 7].

4.2. Power spectrum of the AR(1) process
The PS of the AR(1) process (equation (6)) is plot-
ted in figure 1 for various values of the auto regress-
ive parameter µ. For µ ∈ (0,1) the PS contains a cros-
sover point (similar the simple sum of the white noise
and random walk processes in figure 2) where the PS
changes from a flat (µ= 0) shape at low frequencies

to a negative-gradient (µ= 1) shape at high frequen-
cies. Estimating the PS scaling exponent by perform-
ing a linear fit within some range of frequencies will
clearly give inconsistent results based on the range
chosen, as discussed in section 3. By integrating the
expression in equation (8) over the desired frequency
range a1 ⩽ log( f )⩽ a2, we obtain an expression for
the estimated value of β (as a function of µ) when
using that range:

β =

ˆ a2

a1

−d log [Sz( f )]

d(log f )
d(log f )

= log

[
1+µ2 − 2µcos(2× 10a2π)

1+µ2 − 2µcos(2× 10a1π)

]
, (17)
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Figure 4. The PS exponent β estimated for 100 AR(1) time series with 0 ⩽ µ ⩽ 1. The exponent is estimated by taking the
gradient of the periodogram in a range of frequencies and three different ranges are used to give three estimates for each series:
one estimate using the optimal range−2 ⩽ log( f ) ⩽−1 (circles), an estimate using a lower range of frequencies
−2.5 ⩽ log( f ) ⩽−1.5 (triangles) and one using a higher range of frequencies−1.5 ⩽ log( f ) ⩽−0.5 (squares). The true value
of β as a function of µ is shown as a solid line, see equation (17).

where Sz( f ) is the PSD of the AR(1) process given by
equation (6).

As an experiment we generate 100 AR(1) time
series of length 105 with different parameter µ values
in the range [0,1]. We then estimate the PS exponent
using three frequency ranges:

• The ‘optimal’ range: (−2⩽ log( f )⩽−1).
• Lower frequencies: (−2.5⩽ log( f )⩽−1.5).
• Higher frequencies: (−1.5⩽ log( f )⩽−0.5).

The results are shown in figure 4. We note that
the PS exponent estimation accurately recreates the
expected values given by equation (17). The variance
(after subtracting the expected values) when using the
lower frequencies is significantly larger (0.026) than
when using the optimal range (0.0075) or the higher
frequency range (0.0037), an observation attributable
to the fact that the periodogram is noisier at lower
frequencies, and this becomes more apparent with
shorter time series.

We also note, looking at figure 4, that using lower
frequencies yields an indicator that is more sensit-
ive to change in AR parameter µ close to 1 but it
shows no change as µ increases from 0 to 0.8, as
observed already with figure 1. At the end of section 3
we remark that this may be useful for tipping point
detection in specific systems with µ close to 1, as con-
firmed here. Also with figure 4 we are able to observe
the difference in behaviour for the other frequency
ranges, in particular that the PS exponent increases
almost linearly with µwhen using higher frequencies,
and this property may itself be exploited in specific
cases.

5. Sensitivity analysis

5.1. Sensitivity of the PS exponent to time series
length
If we calculate the PS exponent β using the fre-
quency range −2⩽ log( f )⩽−1, as we have estab-
lished above, then when concerned specifically with
the AR(1) process wemay reconstruct the value of the
ARparameterµ by performing the inverse function of
the β calculation in equation (17), that is,

µ(β)≈ b−
√

b2 − 1 ,

b=
cos(0.2π)− 10β cos(0.02π)

1− 10β
. (18)

Doing so allows us to test the accuracy of the exponent
estimation by calculating the variability between the
true value µ and the reconstructed value. For 100 val-
ues of µ in the range [0,1] (i.e. µ= 0,0.01,0.02, . . .)
we produce a time series of a given length using an
AR(1) process for each of the parameters µ. We then
calculate the mean difference (over the 100 values)
between the true value µ and the reconstructed value
obtained from the PS exponent β. The results are
shown in figure 5where themean difference is plotted
for different time series lengths, alongside the stand-
ard method to estimate the AR parameter: the simple
lag-1 autocorrelation function (ACF1). We see that
the PS exponent is a poor proxy for autoregressive
parameter in comparison to the ACF1 estimator, par-
ticularly for short time series, although the gap does
narrow with increasing time series length. This poses
a problem for the use of the PS exponent as a tipping
point indicator where the value is calculated in a short

6
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Figure 5. Sensitivity of the ACF1 and PS indicator to time series length as estimators of the AR(1) model parameter. Panel (a): for
102 ⩽ N ⩽ 105 time series of length N are created using an AR(1) model with 100 different values of the parameter µ in the range
[0,1]. The value of the model parameter is then estimated using either the lag-1 autocorrelation or the PS exponent β (see
equation (18)). The mean difference between the estimated value and the true value is plotted for the ACF1 method (squares) and
the PS method (triangles). Panels (b) and (c): the estimated values of the parameter µ are plotted against the true values when
using a series length N= 102 (the shortest considered) and 105 (the longest considered). Negative values of the PS indicator are
mapped to µ= 0.

(comparatively to the scale on which the tipping takes
place) sliding window.

5.2. Sensitivity of the PS exponent to trends
Despite the accuracy of the ACF1 estimator in recon-
structing the value of the AR(1) parameter (in com-
parison to the PS exponent), there are some situations
in which the ACF1 is less suitable as a tipping point
indicator. For example, when trends or oscillations
are present in a time series these must be removed
before calculating the autocorrelation since they cre-
ate a high ‘background correlation’ against which it
is difficult to measure an increase in the vicinity of a
tipping point [16]. It may be the case, however, that
removing oscillations at multiple frequencies is diffi-
cult and doing so destroys some of the increasing cor-
relation one is hoping to detect (see [14, pp 175–8]).

The measurement of the PS exponent, by its
nature, is likely to be resilient to oscillations in the
time series since oscillations at specific frequencies
will show as short spikes in the periodogram which
will be averaged-out when taking the negative gradi-
ent. Moreover, if logarithmic binning is used to pre-
process the periodogram before the estimation (in
order to remove the bias in favour of high frequen-
cies) many such spikes will likely be removed3. In this

3 For particulars of this logarithmic binning, see [14, pp 48, 89].

section we investigate this resilience, both to oscilla-
tions and to a non-linear trend.

We now consider an AR(1) process with added
parabolic trend, given by the equation:

X(tn) = µX(tn−1)+ ηn + 5t2n, (19)

where [t1, . . . , tN] = [0, . . . ,1] and the ηn are inde-
pendent Gaussian white noise terms. The trend will
tend to increase the autocorrelation in the resulting
time series and, in a practical tipping-point detection
context, would be removed by subtracting a polyno-
mial fit before analysis.We then repeat the experiment
shown in figure 5, calculating the mean difference
between the true value µ and the value reconstruc-
ted from the PS exponent β, besides the ACF1 estim-
ator, for a range of values µ ∈ [0,1]. The results are
shown in figure 6. The constant high (in comparison
to the case with no trend) value for the ACF1 estim-
ator is explained by the fact that the ACF1 consistently
over-estimates the AR(1) parameter where µ< 0.9.
The PS exponent also over-estimates the value in
short time series, giving a constant value 1, as shown
in figure 6(b). But for series longer than 103 the
PS exponent actually performs better than the ACF1
estimator. Indeed, we note the similarity between
figures 5(c) and 6(c) (using time series of length 105

in both cases): it appears that for time series length
N= 105 the trend does not affect the PS indicator at
all.

7
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Figure 6. Sensitivity of the ACF1 and PS indicator to time series length as estimators of the AR(1) model parameter when a
parabolic trend is added to the AR(1) process. Panel (a): for 102 ⩽ N ⩽ 105 time series of length N are created using an AR(1)
model with a parabolic trend with 100 different values of the parameter µ in the range [0,1]. The value of the model parameter is
then estimated using either the lag-1 autocorrelation or the PS exponent β. The mean difference between the estimated value and
the true value is plotted for the ACF1 method (squares) and the PS method (triangles). Panels (b) and (c): the estimated values of
the parameter µ are plotted against the true values when using a series length N= 102 (the shortest considered) and 105 (the
longest considered).

The PS indicator will, therefore, be most useful as
an EWS in cases where a tipping point occurs over
a period of ⩾103 points—e.g. on a scale of months
where hourly data are available, which is the case
for somemeteorological datasets from recent decades
[5, 6]. This raises the possibility of detecting modern
weather- and climate-related tipping points such as
coral bleaching [4, 8] which is linked to increase in
ocean temperatures.

5.3. Sensitivity of the PS exponent to periodicity
Besides the long-term parabolic trend considered
above, we also consider the addition of a periodic
function to the AR(1)model. To this endwe superim-
pose a simple sinewave, or combination of sinewaves,
over an AR(1) process Z(t) with parameter µ: that is:

Z(tk) = µZ(tk−1)+ ηk, (20)

where the ηk are i.i.d. Gaussian white noise terms. As
an experiment we use time series of length N= 104

with time variable t ∈ [0,20π] (so that t0 = 0, tN =
20π) to create three distinct time series:

(a) The original time series z(t) = Z(t).
(b) The original time series plus a simple sine wave

z(t) = Z(t)+ sin(t).

(c) The original time series plus a more complicated
function z(t) = Z(t)+ 2sin(50t)+ 3sin(7t).

Since the time variable is in the range [0,20π], ten
periods of the function sin(t) occur within the time
series in each case, whilst 500 and 70 periods of the
functions 2sin(50t) and 3sin(7t) occur respectively.
Using the same method as the experiments shown in
figures 5 and 6 we create the three groups of time
series 100 times using different values of µ ∈ [0,1],
and for each of the 3× 100 time series we calculate
the lag-1 autocorrelation function (ACF1), the DFA
exponent (see [9, 13]) and the PS exponent. The res-
ults are shown in figure 7 which also shows the expec-
ted values for the ACF1 (straight line) and PS expo-
nent (curve given by equation (17)).

We note that when the periodic functions are
added to the AR1 series the same over-estimation
occurs in the ACF1 estimator as observed in
figures 6(b) and (c). The DFA exponent also suf-
fers the same deficiency as we observe the difference
between the DFA exponents plotted in column (a)
(pure AR(1) process) and those in columns (b) and
(c). If, however, we observe the bottom row of figure 7
in which the PS exponents are plotted. There is no
noticeable difference between the three columns. The
PS indicator is robust under the influence of period-
icities in the time series.

8
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Figure 7. The ACF1 (top row), DFA exponent (middle row) and PS exponent (bottom row) are calculated for 100 AR(1) time
series of length 104 with µ ∈ [0,1]. The AR(1) time series is superimposed with either no other function (column (a)), a simple
sine wave (column (b)), or a more complicated periodic function (column (c)). We note that the PS exponent is practically the
same in all three cases and is not affected by periodicities. In the case of the ACF1 and PS, the expected value function is plotted in
grey.

Figure 8. The PS indicator applied to the δ18O water isotope record with a sliding window of 4 kyr. The Bølling warming event at
14.7 kyr is visible in this temperature proxy but the PS indicator is unable to provide an EWS with such low time-resolution.

6. An application to GISP ice-core data

Although the results in figure 7, where the PS expo-
nent value closely matches the analytically-derived
value, require a window of⩾103 data points, it is pos-
sible to detect an increase in the PS indicator prior to
a tipping point with much shorter time-series [16].
We here attempt to approximate the results obtained
by [10]4 where the DFA and ACF-1 indicators are

4 See figure 3 in this reference.

applied to a paleo-temperature proxy—the GISP2
δ18O water isotope record from Greenland ice-cores
[17]. The PS indicator is applied to the data with a
sliding window of 4 kyr (approximately 200 points),
which allows for the use of logarithmic binning in the
PS exponent estimation but masks the slowing down
which happens on a relatively short (i.e. <100 data
points) scale. In [10] the Bølling warming event at

14.7 kyr before present is preceded by a steady rise
in the DFA indicator. We note that no such EWS is
visible in figure 8, indeed the PS indicator increases

9
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relatively sharply, and does so with a lag of 1 kyr (50
data points) rather than preceding the tipping. The
increase does, however, whilst not providing an EWS,
demonstrate presence of slowing-down in the data,
confirming the results of [10], which are subject to
debate [3, 12].

7. Summary

In this paper we have studied the use of the PS scaling
exponent as a tipping point indicator (section 2) and
obtained several key results regarding the implement-
ation of such a technique.

In particular, in section 3 we have determined the
optimal frequency range in which to estimate the PS
exponent from the discrete periodogram, based on
using the AR(1) process as a model of critical slowing
down. We note, however, that there may be certain
systems for which it is informative to use a different
frequency range.

In section 4 we have then shown that it is worth-
while (chiefly considering the AR(1) process) to
estimate the PS exponent even when the PS does not
exhibit true power-law scaling since, when applying
the PS indicator to dynamical systems with tipping
behaviour, it is not the exact value of the indicator
that is of interest but the change in the value over time
as the indicator is applied in a sliding window on the
time series. In particular we are concerned with the
detection of critical slowing down in the time before
a tipping point is reached, which is characterised by
an increase in the autocorrelation (for which the PS
exponent is a proxy) or, in other words, a ‘redden-
ing’ of the PS as the return time around a stable state
increases.

In section 5 we then demonstrate two key differ-
ences in behaviour between the PS exponent and the
simple lag-1 ACF in detecting a change in the AR(1)
model parameter. First, that in short time series the
PS exponent performs poorly (by comparison) as an
estimator for the return time which, however, should
not affect the usefulness of the PS exponent as a tip-
ping point indicator. And even for longer times series
(N= 105) the lag-1 ACF is more accurate. We then
proceed to show thatwhen theAR(1) process is super-
imposedwith a trend (we have used a parabolic trend)
or an oscillation (the sum of sine waves), the PS expo-
nent value is unchanged from the values obtained
without the addition of a trend or oscillation. This
is significant improvement over the ACF1 estimator,
or even the DFA exponent which is inherently robust
against low-order polynomial trends [9] but cannot
remove short-wavelength oscillations. This property
makes the PS exponent a valuable addition to the
canon of tipping point indicators in specific cases
where the times series are sufficiently long and where
removing oscillations or trends may be difficult or
may affect the detection of EWS in real systems.
This is of particular value in various ecological and

geophysical systems with seasonal or diurnal period-
icities, whose resilience the PS indicator may estimate
with better accuracy than other techniques.

In section 6 the PS indicator is able to suggest
the presence of CSD in the GISP2 δ18O water isotope
record prior to the Bølling warming event, confirm-
ing the result of [10], but is not able to provide an
EWS, and we conclude the DFA and ACF-1 indicat-
ors are more appropriate in such applications. Future
research involving modern high-resolution meteor-
ological data may provide an application for the PS
indicator in climate-linked tipping events over recent
decades, such as coral bleaching.
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