
1. Introduction
Long-term homogeneous climate data records (CDRs) are essential to diagnose changes in our climate, under-
stand its variability, and assess and contextualize future climate projections (Cramer et al., 2018). Use of CDRs 
influenced by residual non-climatic factors may lead to incorrect conclusions about the changing state of the 
climate (Kivinen et al., 2017). Therefore, when CDRs are used it is highly desirable to:
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• �Metrologically accurate estimates 
of the observational uncertainty 
are provided together with each 
observation and variable

• �For all variables, RHARM increases 
the geographical coherency of 
estimated trends and the agreement 
with a modern atmospheric reanalysis
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1. �Detect and adjust for all the known and quantifiable systematic inhomogeneities in the observational record,
arising from a variety of causes (changes in station location, instrumentation, calibration or drift issues, differ-
ent instrument sensitivity across different networks, changes in the measurement procedures, etc.);

2. �Establish measurement traceability ideally to an absolute reference (Système international, SI), or community
acknowledged “standard” through an unbroken chain of calibrations, each contributing to the measurement
uncertainty;

3. �Quantify measurement uncertainties in any data where traceability was not properly established; in such cases, 
uncertainties must be inferred from the available metadata, results of sensors' intercomparisons, or informa-
tion about the measurement process.

In practice, for historical in-situ observations it is often not easy to fulfill the above list of requirements, especially 
for global baseline or comprehensive networks (Thorne et al., 2017). Where commonly the metadata and original 
pre-processed data (e.g., digital sensor counts, hereinafter raw data) are either missing or retained solely by indi-
vidual station PIs (if at all) and not routinely shared or stored in data archives.

This is the case for radiosounding measurements of temperature (T), relative humidity (RH), and wind which 
still represent anchor information for many meteorological applications, despite the advent of Global Navigation 
Satellite System-Radio Occultation (GNSS-RO) measurements which have proven valuable for data assimilation 
purposes (Bauer et al., 2014). Since the mid-20th century, radiosounding measurements are the only data source 
continuously available to study climate variability and change in the troposphere and lowermost stratosphere. 
They also constitute a valuable source of information for satellite cal/val activities (Calbet et al., 2017; Finazzi 
et al., 2019; Loew et al., 2017). In the ERA-Interim European Centre for Medium-Range Weather Forecasts (EC-
MWF) reanalysis (Dee et al., 2011), the conventional observing system which includes radiosoundings, despite 
proportionately low data volumes, still represents an indispensable constraint (Haimberger et al., 2012). A similar 
situation exists for the latest ECMWF ERA5 reanalysis (Hersbach et al., 2020) as well as for other recent global 
reanalyses (e.g., Gelaro et al., 2017; Kobayashi et al., 2015).

Quality and biases of radiosounding observations strongly vary with sensor type, altitude level, and through 
time. Many previous works described the adjustment of historical radiosounding temperature measurements to 
construct CDRs (e.g., Dai et al., 2011; Free et al., 2004; Haimberger, 2005; Haimberger et al., 2012; McCarthy 
et al., 2008; Sherwood et al., 2008; Thorne, Parker, et al., 2005; Zhou et al., 2021). These works have used a broad 
range of approaches enabling an exploration of structural uncertainty (Thorne, Christy, & Mears, 2005). Several 
products additionally include ensemble approaches to explore parametric uncertainty (Haimberger et al., 2012; 
Sherwood & Nishant, 2015; Thorne et al., 2011). Application of innovative statistical approaches has been re-
cently proposed for the production of future datasets (Fassò et al., 2018). Datasets to date have not, however, taken 
direct benefit from either periodic intercomparisons (parallel measurement campaigns) or the work of the Global 
Climate Observing System (GCOS) Reference Upper Air Network (GRUAN).

Intercomparison datasets made available by various research organizations, institutions and manufacturers repre-
sent an invaluable source of information which improves the interpretation of effects, drifts and inhomogeneities 
in the recorded time series. Most notable are the periodic intercomparison campaigns that have been organized 
by the World Meteorological Organization/Commission for Instruments and Methods of Observation (WMO/
CIMO), involving the vast majority of commercial manufacturers and providing a thorough periodical assessment 
of inter-sensor differences (e.g., Nash et al., 2006, 2011). These intercomparison exercises involve the flying of 
multiple sonde models on the same rig, enabling an evaluation of the relative performance of various sensors 
under the full range of conditions experienced at the location and time of the comparison. The most recent inter-
comparison, held at Yangjiang (China) in 2010, involved 11 manufacturers and for the first time three manufac-
turers from China. Different groups of radiosondes were intercompared by launching them on the same payload; 
permitting robust comparisons from at least 25 flights for each radiosonde type up to 20 km altitude.

To address the need of providing homogeneous and fully traceable upper-air measurements with quantified un-
certainties, GRUAN was established in 2006 (Bodeker et al., 2016). GRUAN aims to provide reference-quality 
observations of Essential Climate Variables (ECVs, Bojinski et al., 2014) above the Earth's surface. GRUAN is 
providing long-term, high-quality radiosounding data at 30 sites (12 sites are certified to date) around the world 
with characterized uncertainties, ensuring the traceability to SI units or accepted standards, providing extensive 
metadata and comprehensive documentation of measurements and algorithms. GRUAN data processing starts 
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from the raw data and applies a number of SI-traceable adjustments (e.g., due to solar radiation, measurement 
sensors' time-lag, sonde pendulum motion, etc.), each with a quantified uncertainty contributing to the final 
uncertainty budget. As a reference network, GRUAN provides a potential basis for enhanced interpretation of 
broader radiosonde networks, for example, through the provision of instrumental corrections which can be ex-
tended to non-GRUAN stations to adjust quantifiable systematic effects compromising the quality of operation-
ally processed data (JCGM100, 2008).

Taking advantage of GRUAN and intercomparison data we have designed and applied a novel algorithm for ho-
mogenizing historical radiosounding time series available since 1978. The new Radiosounding HARMonization 
(RHARM) approach discussed herein is a hybrid method based on two main steps:

1. �Adjustment of radiosounding observations of temperature, humidity and wind from 2004 to present using the
GRUAN data and algorithms, as well as the 2010 WMO/CIMO radiosonde intercomparison data set (herein-
after ID2010, Nash et al., 2011), with quantification of uncertainties;

2. �Identification of change-points in the earlier portions of the time series (before 2004 and as early as 1978)
and adjustment of non-climatic effects using statistical methods with related quantification of uncertainties.

The present paper provides an analytical description of the RHARM algorithm and an assessment of key charac-
teristics of the data set comprising of 697 radiosounding stations available from the Integrated Global Radiosonde 
Archive (IGRA, Durre et al., 2006, 2018). Only data since 1978 are homogenized as before then radiosounding 
reports at mandatory pressure levels were not frequent and homogeneous.

The RHARM approach increases the limited number of existing homogenized datasets, which includes:

1. �homogenized radiosounding temperature measurements: Radiosonde Atmospheric Temperature Products for
Assessing Climate (RATPAC) by NOAA (Free et  al.,  2004), RAdiosonde OBservation COrrection using
REanalyses (RAOBCORE), Radiosonde Innovation Composite Homogenization (RICH) by the University of
Wien (Haimberger et al., 2012), Hadley Centre's radiosonde temperature product v2 (HadAT2) by Met Office
(Thorne, Parker, et al., 2005), Iterative Universal Kriging v2 (IUKv2) by University of New South Wales
(Sherwood & Nishant, 2015), the State University of New York Albany data set (Zhou et al., 2021);

2. �homogenized radiosounding humidity measurements: the Homogenized RS92 radiosounding humidity meas-
urements (HomoRS92) by State University of New York Albany (Dai et al., 2011) and the Hadley Centre's
radiosonde temperature and humidity product (HadTH) (McCarthy et al., 2009); and

3. �homogenized radiosounding wind datasets: IUKv2 and GRASPA (Ramella-Pralungo & Haimberger, 2014;
Ramella Pralungo et al., 2014).

Distinct from previous efforts, RHARM is the first data set to provide homogenized time series of temperature, 
relative humidity and wind in the same package. Moreover, RHARM is based on the use of "reference measure-
ments" to calculate and adjust for systematic effects, instead of using background information provided by me-
teorological reanalysis, autoregressive models or neighboring stations. RHARM adjusted fields are not affected 
by cross-contamination of biases across stations (Sherwood, 2007) and are fully independent of reanalysis data 
(Haimberger et al., 2012). In addition, each harmonized data series is provided with an estimation of the measure-
ment uncertainty. RHARM is also valuable in providing adjustments for each individual radiosounding profile, 
not only at mandatory (https://glossary.ametsoc.org/wiki/Mandatory_level) but also at all the report significant 
levels (https://glossary.ametsoc.org/wiki/Significant_level).

The remainder of this paper is organized as follows. In Section 2, the data sources used are outlined. In Section 3, 
a detailed overview of the RHARM data processing for the observations post-2004 is provided followed by a de-
scription of the detection of breakpoints and the adjustments for the period before 2004. In Section 4, statistics of 
adjustments applied by RHARM in comparison with IGRA and ECMWF ERA5 reanalysis data and comparisons 
of the trend profiles in the troposphere and lower stratosphere are discussed for all the variables. In Section 5, 
statistics on the correlation of the identified breakpoints at different pressure levels is presented. Discussion and 
conclusions are provided in Section 6. Additional information on the consistency with GRUAN data and the vali-
dation of uncertainties as well as additional examples and comparisons between IGRA and RHARM are available 
in the appendices and Supporting Information S1.
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2. Data Sources Used
RHARM is applied to IGRA Version 2 (Durre et al., 2018) which incorporates data from a considerably greater 
number of data sources with an increased data volume by 30% compared to Version 1. A subset of 697 radio-
sounding stations and radiosoundings from ships are retained based upon documented metadata (i.e., including 
the radiosonde code according to WMO table 3685, describing the radiosonde type) since 2000 and for a subset 
of these stations since 1978 (full metadata record provided by the station PIs). Depending on the radiosonde type, 
adjustments based on the application of GRUAN-like data processing or on the comparison between GRUAN 
data and ID2010 can be applied to the post-2004 period, for which several instrumental effects are already cor-
rected (e.g., the well-known solar radiation dry bias, Dirksen et al., 2014).

The IGRA data v2 are the result of improved quality assurance procedures developed for the IGRA data v1 
(Durre et al., 2006, 2008), which can be grouped into eight categories: fundamental “sanity” checks, checks on 
the plausibility and temporal consistency of surface elevation, internal consistency checks, checks for the repe-
tition of values, checks for gross position errors in ship tracks, climatology-based checks, checks on the vertical 
and temporal consistency of temperature, and data completeness checks. The RHARM data set thus inherits the 
IGRA quality assurance procedures, and additional quality checks are then applied on: the metadata availability; 
physical plausibility; data completeness check; accuracy of the bias adjustment; removal of outliers; vertical 
correlation between structural breaks at the same station; coherency check for the adjustments applied at the 
significant levels.

As noted, the RHARM approach is applied on a subset of IGRA stations, depending on the availability of meta-
data (Durre et al., 2008; Ferreira et al., 2019). For these stations, a quality-enhanced data set with a sufficient 
number of radiosoundings available over 2004 to present are provided directly post-processing the profiles to 
account for several instrumental effects. The post-processed profiles are then used as reference information to 
adjust the systematic effects in the historical data before 2004. For those stations where the number of post-pro-
cessed radiosoundings profiles is not sufficient for the purposes of the homogenization algorithm before 2004, 
the post-processed profiles since 2004 are provided only.

The GRUAN data v2 includes data from 26 sites providing radiosounding data since 2008, although with dif-
ferent lengths and completeness. Data availability can be found on the GRUAN website (www.gruan.org). The 
GRUAN data product is fully traceable to SI units and processed as described in Dirksen et al. (2014). As part of 
the product, GRUAN provides a full and extensive set of metadata which should enable to fully reprocess the raw 
data or to properly adjust unknown effects in future. For example, in the case of a radiosonde launch, a complete 
description of the set-up is required that includes the description of the balloon, the gas, filling weight, unwider 
type and length and so on. At present, there are only two GRUAN data products (GDPs), for the Vaisala RS92 
and for Meisei RG11 sondes. RHARM applies adjustments to RS92 Vaisala sondes only, which represents a 
substantive portion of the global data. For the Meisei RG11 GDP, its recent introduction (Kobayashi et al., 2019) 
precluded its implementation within RHARM so far, but an update of the data processing will be implemented in 
the near future for any other radiosonde GDP which might become available.

The coverage of RHARM is reasonably homogeneous (Figure 1): it is one of the broadest datasets for the South 
America, while there is a sufficient coverage over Siberia. For the latter, limited information is available on the 
main radiosonde type used in the region since 2004 (AVZ), which cannot be adjusted using RHARM. The station 
density in Canada, Northeast Asia, and East Africa is lower than in Europe, U.S. and South America, but this 
is common to all datasets and reflects the inadequacies of the historical observing system. Table 1 confirms the 
lower number of measurements available in the Southern Hemisphere (SH) than at other latitudes, although the 
quantity of measurements alone cannot address the value of the data set for a specific study without considering 
representativeness (Weatherhead et al., 2017).

In the following sections, IGRA and RHARM datasets are also compared with the ECMWF ERA5 reanalysis 
(Hersbach et al., 2020). ERA5 is one of the most utilized datasets for climate studies and, although it cannot 
be considered a reference data set like GRUAN, reanalyses are often used to study datasets homogeneity (e.g., 
Haimberger et al., 2012; Zhou et al., 2021). ERA5 incorporates millions of observations into a data assimilation 
system, every 6–12 hr over the period being analyzed, providing a systematic approach to produce a data set for 
climate monitoring and research. ERA5 is the latest climate reanalysis produced by ECMWF providing hourly 
data on regular latitude-longitude grids at 0.25° × 0.25° resolution and on 37 pressure levels. ERA5 is publicly 
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available through the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu). For the purposes 
of the validation of uncertainties, described in Appendix A, we also use the ERA5 background (6-hr forecast) as 
a comparator value. The various reanalysis products have proven to be valuable when used appropriately (Dee 
et al., 2011). Nevertheless, reanalysis reliability can considerably vary depending on the location, time period, 
and variable considered (Dee et al., 2016). The changing mix of observations, and biases in observations and 
models, can introduce spurious variability and trends into reanalysis output (Dee et al., 2016).

For the comparison with RHARM data, which are not gridded, ERA5 fields have been sub-sampled to match the 
location of RHARM stations using the nearest grid point to each station. The same approach has been used for 
the ERA5 background data considered for the uncertainty validation. Considering the high spatial resolution of 

Figure 1.  Global distribution and quantity of Radiosounding HARMonization homogenized profiles. The scale in the bottom left corner denotes the cumulative 
number of available radiosoundings at each station (in millions of ascents) from 1978 to present. The + symbol indicates Integrated Global Radiosonde Archive (IGRA) 
stations (1,156) reporting data since 1978 to present (last access to IGRA 31-12-2020).

Region Latitude range Number of launches (thousands) Fraction of total launches (%)

Arctic 70–90 N 316.1 2.5

Northern Hemisphere mid-latitudes 25–70 N 8203.7 65.4

Tropics 25 N–25 S 2979.3 23.8

Southern Hemisphere mid-latitudes 25–70 S 974.0 7.8

Antarctica 70–90 S 64.2 0.5

Total 12537.3 100

Table 1 
Number and Fraction of Launches in Different Latitude Bands for the Stations Shown in Figure 1
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ERA5 and its representativeness, the uncertainty due to the use of the nearest grid-point interpolation should be 
comparable with other methods (like kriging or bilinear interpolation).

3. Methodology
The RHARM homogenization of global radiosounding temperature, humidity and wind profiles is applied to 
each balloon launch (generally 00:00 and/or 12:00 UTC) data on 16 mandatory pressure levels (10, 20, 30, 50, 
70, 100, 150, 200, 250, 300, 400, 500, 700, 850, 925, 1,000 hPa), because these levels are available from the 
stations for each ascent, whereas significant level reports vary by definition per profile. Relative humidity (RH) 
adjustments are limited to 250 hPa owing to pervasive sensor performance issues at greater altitudes in almost all 
commercial sondes (Miloshevich et al., 2004).

The RHARM algorithm works through the following steps:

1. �For each time series (i.e., station), data since 2004 (with starting time station-dependent) are obtained by
post-processing each single radiosounding profile using a GRUAN-like algorithm; these data are labeled
“Stage I” time series;

2. �The Stage I time series is merged with the preceding radiosounding time series, hereinafter named the “Stage
II” time series;

3. �The merged time series are then divided in two sub-series to separate the nominal 00 UTC and 12 UTC
launches, which are the two most frequent launch times in IGRA;

4. �Profiles are first adjusted at mandatory pressure levels and, therefore, a breakpoint detection method is applied 
to the night and daytime time series, at each mandatory level;

5. �The trend of the Stage II time series is adjusted using the Stage I time series as a constraint;
6. �The observational uncertainties are estimated for each data point;
7. �Finally, adjustments and uncertainties estimated only at mandatory pressure levels are interpolated at sig-

nificant levels; uncertainties are estimated for each processing step and propagated to estimate the total
uncertainty.

The concatenation of Stage II and Stage I time series provides the entire time series for each station, and only 
those stations satisfying the requirements to produce a Stage I time series are considered for the Stage II time 
series calculations. An overall scheme of the RHARM approach is shown in Figure 2.

Local nighttime and daytime conditions for each radiosounding launch are identified by calculating the solar 
zenith angle using the LOWTRAN module (available at http://ethangutmann.com/pages/idl/Utilities/zensun.pro, 
last access on 31 December 2020), using as inputs each radiosonde launching time and the corresponding station 

Figure 2.  Schematic diagram describing the steps of the Radiosounding HARMonization approach.
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geographical coordinates. The small number of launches available at other synoptic hours have not been consid-
ered in the current RHARM data version. The step A1 in Figure 2 is critical mainly for temperature and humidity 
where radiation-heating effects can have substantive impacts on instrument performance (Dirksen et al., 2014; 
Miloshevich et al., 2004; Wang et al., 2013). The same separation is made for the wind profile to keep cross-vari-
able processing consistency and because in many regions of the globe there exist marked diurnal and semi-diurnal 
components in the variability of winds (e.g., Harris et al., 1962). Nevertheless, either using GNSS or precursor 
radar tracking techniques, the effect of the separate daytime and nighttime post-processing for wind speed, wind 
direction and the related uncertainties is negligible (not shown).

In Section 3.1 and 3.2, the approach applied to obtain the Stage I time series (Step A1 in Figure 2) is outlined. The 
remaining subsections describe the adjustment of the Stage II time series (Step B-D) and subsequent adjustments 
to the significant levels of the radiosounding profiles and the estimation of measurement uncertainties (Steps 
E-F).

3.1.  Adjustment of Vaisala Temperature, Humidity, and Wind Profiles Since 2004

During daytime, the sensor boom of any radiosonde type is heated by solar radiation which introduces biases in 
temperature and humidity (Wang et al., 2013). The net heating of the temperature sensor and the resulting dry 
bias affecting the relative humidity sensors depends on the amount of absorbed radiation and, therefore, the solar 
elevation angle (α), as well as on the cooling by thermal emission and ventilation by air flowing around the sensor 
(Dirksen et al., 2014).

To adjust this effect in the measured profiles of temperature and RH, the first step of the RHARM algorithm, 
involving only the Vaisala RS92 sondes, is to apply a solar radiation correction to the T vertical profiles (both for 
mandatory and significant levels) similarly to the metrologically traceable GRUAN processing. This is performed 
in two steps:

1. �First, the radiation correction, 𝐴𝐴 Δ𝑇𝑇VAISALA, applied by the manufacturer to the temperature profiles is removed
(i.e., 𝐴𝐴 Δ𝑇𝑇VAISALA is added, because the correction is applied to decrease the measured value);

2. �Second, a GRUAN-like radiation correction, 𝐴𝐴 Δ𝑇𝑇GRUAN is applied using the values of the actinic flux modeled
with the Streamer RTM (Key & Schweiger, 1998) following the approach documented in Dirksen et al. (2014).
Where GRUAN-like corrections cannot be applied, the manufacturer correction is left unchanged.

𝐴𝐴 Δ𝑇𝑇VAISALA is derived from the tables provided by the manufacturer and accounts for changes in the RS92 data pro-
cessing during the sonde model's production lifetime (see https://www.vaisala.com/en/sounding-data-continuity).

The GRUAN correction, 𝐴𝐴 Δ𝑇𝑇GRUAN , is defined as:

Δ𝑇𝑇GRUAN(𝐼𝐼𝑎𝑎, 𝑝𝑝𝑝 𝑝𝑝) = 𝑎𝑎𝑎𝑎
𝑏𝑏 (1)

𝑥𝑥 =

𝐼𝐼𝑎𝑎

𝑝𝑝𝑝𝑝
(2)

where Ia is the actinic flux at the solar zenith angle of the balloon release time, calculated using the LOWTRAN 
v7 solar position data; p is the pressure level; and v is the ascent speed in m s−1. v cannot be directly ascertained 
from IGRA data as times of individual observations are, in general, not archived. For this reason, an average 
ascent speed of 5 m s−1 is assumed, based on the recommended ascent speed from WMO guidance, which cor-
responds well to typical measured ascent speeds (e.g., Madonna, Kivi, et al., 2020). The coefficients a and b in 
Equation 1 derived from laboratory experiments (Dirksen et al., 2014) are a = 0.18(±0.03) and b = 0.55(±0.06).

Once 𝐴𝐴 Δ𝑇𝑇GRUAN is calculated, the final correction following Dirksen et al. (2014) is to derive a best estimate be-
tween the two approaches:

Δ𝑇𝑇 =
(Δ𝑇𝑇GRUAN + Δ𝑇𝑇VAISALA)

2
(3)

Within RHARM, the final adjustment added to IGRA temperature profiles is correspondingly:

Δ𝑇𝑇RHARM,𝑅𝑅𝑅𝑅92 = Δ𝑇𝑇VAISALA − Δ𝑇𝑇 + Δ𝑇𝑇𝑟𝑟 (4)

 

https://www.vaisala.com/en/sounding-data-continuity
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where 𝐴𝐴 Δ𝑇𝑇𝑟𝑟 is a residual calibration bias calculated from the mean difference of GRUAN and IGRA nighttime 
temperature profiles at mandatory pressure levels for the six GRUAN sites reported in Table 2. To calculate 𝐴𝐴 Δ𝑇𝑇𝑟𝑟 , 
outliers are filtered using a Z-score method removing values outside ±6 standard deviations. 𝐴𝐴 Δ𝑇𝑇𝑟𝑟 is added to both 
night and daytime profiles.

If the value of Ia in Equation 2 is equal to zero (i.e., ∆T = 0), the manufacturer radiation correction applied to 
IGRA profiles is not modified and Equation 4 reduces to 𝐴𝐴 Δ𝑇𝑇RHARM,𝑅𝑅𝑅𝑅92 = Δ𝑇𝑇𝑟𝑟 . Equation 4 removes the solar radi-
ation correction applied by the manufacturer and adjusts the data using the GRUAN correction plus an additional 
term minimizing, on average, the difference with the GRUAN processing.

The standard uncertainty (coverage factor k = 1, confidence that 68% of values lie within one standard deviation) 
on 𝐴𝐴 𝐴𝐴RHARM,𝑅𝑅𝑅𝑅92 , 𝐴𝐴 𝐴𝐴(𝑇𝑇RHARM,𝑅𝑅𝑅𝑅92) , is calculated according to the following equation:

𝜀𝜀(𝑇𝑇RHARM,𝑅𝑅𝑅𝑅92) =

√

∑

𝑖𝑖
𝜀𝜀𝑖𝑖

systematic
(Δ𝑇𝑇 )

2
+ 𝜀𝜀𝑅𝑅(Δ𝑇𝑇 ) 2 =

=

√

𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑎𝑎 (Δ𝑇𝑇 )
2
+ 𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(Δ𝑇𝑇 )
2
+ 𝜀𝜀vent(Δ𝑇𝑇 )

2
+ 𝜀𝜀𝑟𝑟(Δ𝑇𝑇 )

2
+ 𝜀𝜀𝑅𝑅(Δ𝑇𝑇 )

2

(5)

In Equation 5, 𝐴𝐴 𝐴𝐴𝑖𝑖
systematic

(Δ𝑇𝑇 ) indicates a systematic uncertainty contribution, estimated using laboratory experi-
ment, simulation and dual radiosoundings; 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑎𝑎 (Δ𝑇𝑇 ) is the uncertainty due to the estimation of the solar actinic 
flux (variable magnitude, typically <0.6 K); 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(Δ𝑇𝑇 ) is the uncertainty due to parameters estimated in the radi-
ation correction (typically <0.2 K) model reported in Equation 1. Formulas to calculate 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑎𝑎 (Δ𝑇𝑇 ) and 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(Δ𝑇𝑇 ) 
are fully documented in Dirksen et al. (2014). 𝐴𝐴 𝐴𝐴vent is the uncertainty due to the ventilation rate (including the 
effect of the pendulum motion of the radiosonde assumed as in GRUAN to be about 0.2 m s−1); 𝐴𝐴 𝐴𝐴𝑟𝑟 indicates the 
comparison uncertainties estimated from the standard deviation of 𝐴𝐴 Δ𝑇𝑇𝑟𝑟 . In RHARM, 𝐴𝐴 𝐴𝐴𝑅𝑅 is the random uncertainty 
with a fixed value of 0.15 K chosen in agreement with the GRUAN approach (Dirksen et al., 2014). When the 
radiation correction of the manufacturer is left unchanged, 𝐴𝐴 𝐴𝐴(𝑇𝑇RHARM,𝑅𝑅𝑅𝑅92) is assumed to be the same as the closest 
temperature profile in time measured under the same meteorological conditions (i.e., clear sky or cloudy, when 
RH > 95% at least on one level).

Following the application of temperature adjustments, the measured value of the relative humidity, 𝐴𝐴 𝐴𝐴𝐴𝐴RHARM,𝑅𝑅𝑅𝑅92 , 
is adjusted for the solar radiation dry bias, estimated by the effect of the T warm bias on the saturation vapor 
pressure, using a correction factor:

��RHARM,��92 = ���IGRA,��92

(

��(�RHARM,��92 + �Δ�RHARM,��92)
��(�RHARM,��92)

)

(6)

where f is a scalar factor accounting for the temperature dependency of the sensor calibration estimated at night 
by a comparison with GRUAN measurements (Table 2); 𝐴𝐴 𝐴𝐴𝑠𝑠 is the saturation vapor pressure and g is a factor de-
termined experimentally to weight the applied correction on different radiosonde batches (Dirksen et al., 2014). 
The factor f may embed a residual contribution from the sensors' time-lag which is typically small for the RH 
values up to 250 hPa. Known issues in radiosonde humidity data, such as humidity values under dry conditions 

GRUAN code Station name and country Latitude Longitude Altitude WMO index

CAB Cabauw, Netherlands 51.97° 4.92° 1 m 06,260

LIN Lindenberg, Germany 52.21° 14.12° 98 m 10,393

NYA Ny-Ålesund, Norway 78.92° 11.92° 5 m 01,004

SGP Lamont, OK, USA 36.60° −97.49° 320 m 74,646

SOD Sodankylä, Finland 67.37° 26.63° 179 m 02,836

TAT Tateno, Japan 36.06° 140.13° 25 m 47,646

Note. GRUAN, Global Climate Observing System (GCOS) Reference Upper Air Network; IGRA, Integrated Global 
Radiosonde Archive; RHARM, Radiosounding HARMonization; WMO, World Meteorological Organization.

Table 2 
List of the GRUAN Stations Used to Calculate the Additional Calibration Bias Applied in the RHARM Approach to Adjust 
the Vaisala RS92 Radiosoundings Available From IGRA
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(RH < 20%) for U.S. stations which were set to a dewpoint depression of 30°C (or RH = 19%), have been man-
aged according to McCarthy et al. (2009)

A flow diagram describing the application of the RHARM adjustments to both T and RH profiles from Vaisala 
RS92 instruments is shown in Figure 3.

Similarly to Equation 5 for temperature, the combined standard uncertainty for relative humidity is calculated as:

𝜀𝜀(𝑅𝑅𝑅𝑅RHARM,𝑅𝑅𝑅𝑅92) =

√

∑

𝑖𝑖
𝜀𝜀𝑖𝑖

systematic
(Δ𝑅𝑅𝑅𝑅)

2
+ 𝜀𝜀𝑅𝑅(Δ𝑅𝑅𝑅𝑅) 2 =

=

√

𝜀𝜀𝑅𝑅𝑅𝑅𝑇𝑇
(Δ𝑅𝑅𝑅𝑅)

2
+ 𝜀𝜀𝑅𝑅𝑅𝑅𝑔𝑔

(Δ𝑅𝑅𝑅𝑅)
2
+ 𝜀𝜀𝑓𝑓 (Δ𝑅𝑅𝑅𝑅)

2
+ 𝜀𝜀𝑅𝑅(Δ𝑅𝑅𝑅𝑅)

2

(7)

where 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑇𝑇
(Δ𝑅𝑅𝑅𝑅) is the uncertainty of dry bias correction; 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑔𝑔

(Δ𝑅𝑅𝑅𝑅) is the uncertainty of the radiation sen-
sitivity factor g in Equation 5; 𝐴𝐴 𝐴𝐴𝑓𝑓 is the uncertainty due to calibration factor f; 𝐴𝐴 𝐴𝐴𝑅𝑅 is an additional random uncer-
tainty of 2% RH. 𝐴𝐴 𝐴𝐴(𝑅𝑅𝑅𝑅RHARM,𝑅𝑅𝑅𝑅92) is typically of the order 5–10%RH. In analogy with temperature, when the 
radiation correction of the manufacturer is left unchanged, 𝐴𝐴 𝐴𝐴(𝑅𝑅𝑅𝑅RHARM,𝑅𝑅𝑅𝑅92) is assumed to be the same as the 
closest RH profile in time measured under the same meteorological conditions.

At the end of 2010, Vaisala processing software underwent a major change with the inclusion of humidity time-
lag correction and an improved dry bias correction for RH (no specific details on the applied algorithm), but its 
uptake was heterogeneous across stations. For example, Germany and the UK started using it only in 2015, but 
this was not the case for other countries, due to choices by National Meteorological Services. In this version of 
RHARM it is very difficult to take into account such changes at each individual station, given the grossly insuf-
ficient metadata available. Nevertheless, this may be possible in future, for any such subsequent changes, using 
native BUFR reports which include the processing software version in their extra metadata. Storing of these files 
on a routine basis has been undertaken by ECMWF starting from 2016. Collaboration with Vaisala will also be 
undertaken to identify when individual stations switched, in order to improve future updates of the RHARM data 
set.

The GRUAN processing on wind profiles is more basic and does not apply as many corrections to the raw data. 
The manufacturer software retrieves the magnitudes of u and v from the Doppler shift in the GNSS carrier signal. 
In the GRUAN processing, these vectors are smoothed and converted into wind speed and direction. The noise in 
the raw zonal and meridional (u and v) data, due to the radiosonde's pendulum motion and the noise of the GNSS 

Figure 3.  Flow diagram summarizing the post-processing steps of the Radiosounding HARMonization (RHARM) algorithm to adjust temperature and relative 
humidity profiles measured by the RS92 sondes from 2004. In the diagram, f is a calibration factor, p_s is the saturation vapor pressure, g is a factor determined 
experimentally to weight the applied correction on different radiosonde batches used over the years. ∆T indicates the adjustments applied to temperature, ∆RH to 
relative humidity. The subscripts refer to the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) adjustments, Integrated Global 
Radiosonde Archive (IGRA) adjustments (manufacturer based plus IGRA quality control), RHARM adjustments and to RS92 Vaisala sondes. The subscript “r” refers 
to a residual correction derived from the nighttime comparison between GRUAN and IGRA data at six GRUAN sites, reported in Table 2.
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data, is reduced by using a low-pass digital filter (Dirksen et al., 2014). This smoothing reduces the effective 
temporal resolution of the wind data to 40 s. Using statistical uncertainties calculated for u and v, the uncertainty 
of the wind direction 𝐴𝐴 𝐴𝐴 is given by:

�(�) = 180
�

√

�2� + �2�
(

1 +
(

�
�

)2
)

|�|
(8)

and the uncertainty of the wind speed 𝐴𝐴 𝐴𝐴 by

𝜀𝜀(𝑤𝑤) =

√

(𝑢𝑢𝑢𝑢𝑢𝑢)
2

+ (𝑣𝑣𝑣𝑣𝑣𝑣)
2

𝑢𝑢2 + 𝑣𝑣2
(9)

𝐴𝐴 𝐴𝐴𝑢𝑢 and 𝐴𝐴 𝐴𝐴𝑣𝑣 are the uncertainties of the u and v wind components. Typical values are between 0.4 and 1 ms−1 for 
𝐴𝐴 𝐴𝐴(𝑤𝑤) and about 1° for 𝐴𝐴 𝐴𝐴(𝜑𝜑). In the case of negligible wind, when u and v approach 0, the value of 𝐴𝐴 𝐴𝐴(𝜑𝜑) becomes 

very large. For such cases, the absolute value of 𝐴𝐴 𝐴𝐴(𝜑𝜑) is limited to 180° (Dirksen et al., 2014). The same limitation 
is applied to uncertainties estimated with RHARM. The RHARM algorithm converts wind direction and speed 
reported in IGRA data files into the vectorial components u and v. At time instant t and at a pressure level p, these 
variables are related as follows:

�(�, �) = �(�, �) ���
( �
180

�(�, �)
)

(10)

�(�, �) = �(�, �) ���
( �
180

�(�, �)
)

(11)

The conversion into u and v components avoids issues of interpretation over averages or differences associated 
with the use of the discontinuous wind direction scale. Nevertheless, to facilitate user applications preferring 
the use of wind speed and direction, vectors are converted back into wind speed and direction after uncertainty 
quantification. Equations 8 and 9 are then used also in RHARM to estimate the final uncertainty on w and 𝐴𝐴 𝐴𝐴 .

To adjust the IGRA wind profiles, the daytime and nighttime differences for u and v between the GRUAN 
processed and the IGRA radiosounding wind profiles have been calculated using the stations in Table 2. The 
approach is the same as for temperature (Equation  4), although it is reduced to 𝐴𝐴 Δ𝑢𝑢RHARM,𝑅𝑅𝑅𝑅92 = Δ𝑢𝑢𝑟𝑟 and to 

𝐴𝐴 Δ𝑣𝑣RHARM,𝑅𝑅𝑅𝑅92 = Δ𝑣𝑣𝑟𝑟, for each of the wind vectorial components. The standard deviation of the 𝐴𝐴 Δ𝑢𝑢RHARM,𝑅𝑅𝑅𝑅92

and 𝐴𝐴 Δ𝑣𝑣RHARM,𝑅𝑅𝑅𝑅92 are then used as the estimation of the combined standard uncertainties, which are expressed 
as 𝐴𝐴 𝐴𝐴(Δ𝑢𝑢RHARM,𝑅𝑅𝑅𝑅92) =

√

(𝜀𝜀𝑟𝑟(Δ𝑢𝑢)
2
+ 𝜀𝜀𝑅𝑅(Δ𝑢𝑢)

2
) and 𝐴𝐴 𝐴𝐴(Δ𝑣𝑣RHARM,𝑅𝑅𝑅𝑅92) =

√

(𝜀𝜀𝑟𝑟(Δ𝑣𝑣)
2
+ 𝜀𝜀𝑅𝑅(Δ𝑣𝑣)

2
) . 𝐴𝐴 𝐴𝐴𝑅𝑅 is a random un-

certainty of 0.15 m s−1 for both u and v (https://www.vaisala.com/sites/default/files/documents/RS92SGP-Data-
sheet-B210358EN-F-LOW.pdf, last access 23 April 2021).

This adjustment can only partly reconcile the difference between GRUAN processing and manufacturer data pro-
cessing, due to the differences in the low-pass filtering applied to reduce the effect of the radiosonde's pendulum 
motion. In Appendix B, discrepancies between the RHARM and GRUAN are quantified using the data from the 
six GRUAN stations reported in Table 2.

3.2.  Adjustment of Other Radiosonde Types

For non-Vaisala radiosonde types, the adjustment estimation requires the adoption of a different approach given 
the lack of GRUAN reference products. To harmonize these time series, RHARM leverages the ID2010 intercom-
parison, from which estimations of the relative performance of operational radiosondes in 2010 were evaluated. 
ID2010 permits assessment of the systematic component of the inter-sensor differences, and does not contain 
strong outliers, but the post-processing applied may come at the cost of under-representing sonde-to-sonde ran-
dom uncertainty effects (Nash et al., 2011). Furthermore, the use of complex multi-sonde rigs may alter the sonde 
characteristics compared to standard single-payload flights in important ways vis-a-vis aspects such as ventila-
tion, thermal effects and the magnitude and periodicity of pendulum motion effects.

Among the radiosonde types involved in the intercomparison (Table 3), only those routinely employed at enough 
stations have been considered for calculating the adjustments for RHARM. The Vaisala RS92-SGP (WMO 

 

https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-B210358EN-F-LOW.pdf
https://www.vaisala.com/sites/default/files/documents/RS92SGP-Datasheet-B210358EN-F-LOW.pdf
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radiosonde code = 80) was used as one of the common models during (almost) all flights, allowing us to tie each 
sonde to the RS92 (at least for the particular location, RS92 model version, the RS92 Vaisala data processing 
in operation at the time, and the season of the campaign). Therefore, the mean difference 𝐴𝐴 Δ𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92 between 
parallel profiles of RS92 and each radiosonde type was used for the adjustment (Figure 4). The Vaisala RS92 
sondes available in ID2010 have been adjusted using the RHARM algorithm described in the prior sub section. 
The standard deviation 𝐴𝐴 𝐴𝐴𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92

 is calculated from the spread of pairwise estimates of 𝐴𝐴 Δ𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92 estimated as 

𝐴𝐴 𝐴𝐴𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92
=

√

𝜎𝜎𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92

2
+ 𝜀𝜀(𝑇𝑇RHARM,𝑅𝑅𝑅𝑅92)

2 and used as the best estimate of the uncertainty for 𝐴𝐴 Δ𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92 assuming 
independence of the two components.

Due to the launch setup adopted during the WMO intercomparison, a few radiosonde types were compared less 
frequently than others on the same payload. Specifically, some models did not have a sufficient sample of coin-
cident Vaisala RS92 sondes associated with them. In these cases, the Graw radiosondes, which flew on rigs both 
with RS92 sondes and the under-sampled sondes, have been used to make the bridge with the RS92 and to calcu-
late statistics for a larger number of comparisons. 𝐴𝐴 𝐴𝐴𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92

 have been recalculated accordingly to consider the ad-
ditional contribution of the Graw radiosonde uncertainties and the two steps required to quantify the comparison.

Although the ID2010 have already been filtered for the presence of outliers, 𝐴𝐴 Δ𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92 and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92
 have been 

calculated using an outlier resistant algorithm where the mean trims away outliers using the median and the 
median absolute deviation (see https://idlastro.gsfc.nasa.gov/ftp/pro/robust/resistant_mean.pro, last access on 
31-21-2020). This ensures that the most typical differences between any two radiosonde types are caught in the
calculated differences, enabling their application as an average adjustment for a wide range of radiosondes. With
the related considerations, the same approach used for temperature is applied to adjust also wind profiles.

For relative humidity, also in order to be consistent with the RHARM post-processing of RS92 sondes, instead 
of using the mean difference between pairwise profiles, relative humidity profiles have scaled using the factor 
f(RH) obtained as the mean ratio of 𝐴𝐴 𝐴𝐴𝐴𝐴RHARM,𝑅𝑅𝑅𝑅92 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92 (Figure 4). The related standard deviation, 

𝐴𝐴 𝐴𝐴𝑓𝑓 (𝑅𝑅𝑅𝑅)𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92
 , is calculated via error propagation. If the Graw radiosonde was considered as the link with the Vais-

ala RS92 f(RH) and 𝐴𝐴 𝐴𝐴𝑓𝑓 (𝑅𝑅𝑅𝑅) were rescaled accordingly.

To facilitate the application of the adjustments for all significant pressure levels available in the IGRA data set, 
the ID2010 profiles have been first smoothed to an effective resolution of 100 m (Iarlori et al., 2015), to reduce 
the uncertainties due to the limited sample size, and then interpolated at 0.1 hPa resolution. Interpolation has been 
performed to allow the processing chain to always get an exact match with any of the mandatory and significant 
levels available in the IGRA files. As for the RS92 case, the interpolation has been performed using a linear 
function for temperature, while a cubic spline interpolation has been applied to RH and wind component profiles. 
The interpolation uncertainty has been finally added to the final uncertainty budget (for T, 𝐴𝐴 𝐴𝐴  = 0.25 K, for RH, 

𝐴𝐴 𝐴𝐴  = 0.5%, for both u and v, 𝐴𝐴 𝐴𝐴  = 0.05 ms−1). All the profiles derived from the ID2010 with the corresponding 
standard deviations are shown in detail in the Supporting Information S1.

Table  4 gives the number and percentage of radiosonde launches adjusted by RHARM since 2004 with the 
approach generating the Stage I time series: it shows that more than 85% of RHARM adjusted radiosondes are 
manufactured by Vaisala. This increases the homogeneity of the data set globally, but on the other hand it makes 
the data set more prone to the impacts of unquantified random and systematic effects unique to Vaisala sondes. 
The radiosoundings reported in Table 4 include about 40,000 launches from 37 ships (mostly traveling in the 
Atlantic Ocean).

3.3.  Detection and Adjustment of Early Period Breakpoints Using the CUSUM

This section discusses the homogenization module (Steps C, D, and E in Figure 2), applied separately to the daily 
time series of daytime and nighttime observations at mandatory pressure levels. Differently from previous efforts, 
data in RHARM are not monthly or annually aggregated.

The output of this module is the homogenized record before the year 2004, denoted above Stage II time series. 
Nonetheless, the algorithm below uses both Stage I and Stage II data with different aims.

For mandatory levels, the step C of the homogenization module is made by a sequence of four substeps (a–d), 
then followed by step D. These steps work iteratively along with each time series for a fixed mandatory pressure 

 

https://idlastro.gsfc.nasa.gov/ftp/pro/robust/resistant_mean.pro
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level. After the quality check of substep (a), a LOESS transform is applied to the ECV time series in substep (b). 
Then, substep (c) uses the Cumulative Sum change detection algorithm (CUSUM) to estimate breakpoints. After 
that, data between two breakpoints are considered. In substep (d) the outliers are removed and in step D, adjust-
ments are estimated and applied. In step E, after merging all the time series and reconstructing the atmospheric 
profiles, significant levels are adjusted by interpolation along with every single profile. Note that our CUSUM 
approach builds upon previous successful ECV literature (Peterson & Vose, 1997; Rhoades & Salinger, 1993), 
and it is used here to define a new integrated algorithm.

3.3.1.  Preliminary Quality Check

First, the IGRA data set is filtered by a comprehensive set of quality control procedures to remove gross er-
rors without removing jumps and other discontinuities caused by changes in instrumentation, observing practice 
(Durre et al., 2008, 2018). RHARM exploits the IGRA flagging system to eliminate questionable data. In addi-
tion to the IGRA quality checks, RHARM preliminarily verifies the physical plausibility of the values reported at 
each pressure level, that is, temperature values 170 K < T < 350 K, relative humidity 0.01% < RH < 100%, wind 
speed 0 m/s < w < 250 m/s, and wind direction 0° < ϕ < 360°. The missing data are not explicitly considered in 
the formulas below for the sake of simplicity, but note that data gaps larger than 10 days cause CUSUM to restart.

After filtering out the above unphysical values, we describe each time series for a fixed station and pressure level 
using the following additive model:

𝑥𝑥(𝑡𝑡) = 𝐵𝐵(𝑡𝑡) + 𝑇𝑇 𝑇𝑇(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑧𝑧(𝑡𝑡) + 𝛿𝛿(𝑡𝑡) (12)

where 𝐴𝐴 𝐴𝐴 = 1,…, 𝑇𝑇  is the time index in days. In the sequel, we use a backward time approach. Hence, we let 𝐴𝐴 𝐴𝐴 = 1 
represent the most recent observation and 𝐴𝐴 𝐴𝐴 = 𝑇𝑇  the oldest one. In between, we have 𝐴𝐴 𝐴𝐴 = 𝑇𝑇1 denoting the oldest 
observation in Stage I data, and 𝐴𝐴 𝐴𝐴 = 𝑇𝑇1 + 1 denoting the most recent observation in Stage II data.

In the left-hand side of Equation 12, 𝐴𝐴 𝐴𝐴(𝑡𝑡) is the observed time series of a specific ECV, with mean 𝐴𝐴 𝐴𝐴𝑥𝑥 and stand-
ard deviation 𝐴𝐴 𝐴𝐴𝑥𝑥 . On the right-hand side, 𝐴𝐴 𝐴𝐴 (t) is the instrumental bias component modeled by a step function 
characterizing the behavior of the different sensors used in different periods. The long-term climate trend 𝐴𝐴 𝐴𝐴 𝐴𝐴 (t) 
is a slowly varying function. The seasonal component 𝐴𝐴 𝐴𝐴 (t) is a quasi-periodic term with a yearly period. The 
stochastic component 𝐴𝐴 𝐴𝐴(𝑡𝑡) represents the local meteorological variability, namely a zero-mean colored noise with 
a spectrum dominated by high frequencies. Eventually, 𝐴𝐴 𝐴𝐴(𝑡𝑡) is the zero mean measurement error with the standard 
deviation 𝐴𝐴 𝐴𝐴𝜀𝜀 representing the measurement uncertainty.

The subsequent harmonization steps are applied to Stage II data only if the corresponding Stage I time series is 
informative enough to learn the trend 𝐴𝐴 𝐴𝐴 𝐴𝐴(𝑡𝑡) and the bias 𝐴𝐴 𝐴𝐴(𝑡𝑡) . Namely, only if the Stage I time series meets the 
following two conditions:

1. �Minimum length of 5 years;
2. �At least 60 measurements per year.

If these two requirements are not met, the Stage II time series is not harmonized and provided as-is in IGRA after 
passing through the quality check mentioned above.

3.3.2.  LOESS Smoothing

To filter the quasi-periodic and high-frequency component given by 𝐴𝐴 𝐴𝐴(𝑡𝑡) + 𝑧𝑧(𝑡𝑡) + 𝛿𝛿(𝑡𝑡) , the nonlinear trend com-
ponent 𝐴𝐴 𝐴𝐴 𝐴𝐴(𝑡𝑡) + 𝐵𝐵(𝑡𝑡) is preliminarily estimated by applying a locally weighted smoothing (LOESS) with a smooth-
ing window equal to 30% of the length of the overall time series. Due to its nature, LOESS enables an efficient 
propagation into the smoothed times series of the bias present in the non-smoothed time series, removing the 
seasonality due to the large smoothing window used. Nonetheless, it is only a preliminary estimate of the instru-
ment bias 𝐴𝐴 𝐴𝐴(𝑡𝑡) as it tends to smooth the steps of 𝐴𝐴 𝐴𝐴(𝑡𝑡) itself.

3.3.3.  CUSUM Breakpoint Detection

Denoting the LOESS output by 𝐴𝐴 𝐴𝐴𝐿𝐿(𝑡𝑡) , breakpoints detection is based on the following CUSUM statistics:

𝑆𝑆(𝑡𝑡) = max(0, 𝑆𝑆(𝑡𝑡 − 1) + 𝑥𝑥𝐿𝐿(𝑡𝑡) − 𝜇𝜇𝑥𝑥𝐿𝐿
− 𝑘𝑘) (13)

𝑆𝑆
′
(𝑡𝑡) = max(0, 𝑆𝑆

′
(𝑡𝑡 − 1) + 𝜇𝜇𝑥𝑥𝐿𝐿

− 𝑥𝑥𝐿𝐿(𝑡𝑡) − 𝑘𝑘). (14)

 



Journal of Geophysical Research: Atmospheres

MADONNA ET AL.

10.1029/2021JD035220

13 of 37

where 𝐴𝐴 S and 𝐴𝐴 𝐴𝐴 ′ are equal to zero at the time t = 0, 𝐴𝐴 S is used to signal increasing changes, and 𝐴𝐴 𝐴𝐴 ′
is used to signal 

decreasing ones. When either 𝐴𝐴 S (t) or 𝐴𝐴 𝐴𝐴 ′
(t) exceeds the threshold value h, a break is detected at time 𝐴𝐴 𝐴𝐴 .

In general, by appropriate selection of the “allowance” 𝐴𝐴 𝐴𝐴 and the threshold 𝐴𝐴 𝐴 , it is possible to design CUSUM 
to be highly effective at detecting shifts of all sizes, even for highly skewed and extremely heavy-tailed process 
distributions (Stoumbos & Reynolds,  2004). However, the use of smoothed time series may affect the exact 
identification of the break occurrence (before or after the “real” occurrence). RHARM has been tuned to find a 
balance among the appropriate allowance value of the CUSUM, the LOESS smoothing window, and the timing 
ambiguity in the identification of breaks in the time series.

Consolidated literature (Woodall & Adams, 1993) has been integrated by manual investigation of selected sta-
tions with comprehensive metadata from 1978 to present (e.g., Lindenberg WMO index = 10,393 and Sodankyla 
WMO index = 2,836) to tune CUSUM parameters in RHARM. Moreover, unreported synthetic time series with 
artificial systematic effects 𝐴𝐴 𝐴𝐴(𝑡𝑡) have been considered.

As a result, the allowance 𝐴𝐴 𝐴𝐴 = 0.1𝜎𝜎𝑥𝑥𝐿𝐿
 and the threshold value h = 𝐴𝐴 0.4𝜎𝜎𝑥𝑥𝐿𝐿 are used. Note that both the mean 𝐴𝐴 𝐴𝐴𝑥𝑥𝐿𝐿

 and 
standard deviation 𝐴𝐴 𝐴𝐴𝑥𝑥𝐿𝐿 are estimated using the entire time series, before and after 2004, to avoid variance inflation 
and level bias due to instrument changes.

As mentioned above, CUSUM has applied backwards in time and the breakpoints denoted by 𝐴𝐴 𝐴𝐴∗
1
< ⋯ < 𝑡𝑡∗

𝑘𝑘
 are 

detected iteratively from the most recent one of Stage II data.

Among the breakpoints 𝐴𝐴 𝐴𝐴∗
𝑖𝑖−1

< 𝑡𝑡∗
𝑖𝑖
 , we have and 𝐴𝐴 𝐴𝐴 -th adjustment period. If an adjustment period is shorter than one 

year, the corresponding breakpoint is skipped, and the period is merged with the previous one. As a result, we 
have that the 𝐴𝐴 𝐴𝐴 -th adjustment period defined by 𝐴𝐴 𝐴𝐴∗

𝑖𝑖
− 𝑡𝑡∗

𝑖𝑖−1
> 365 and 𝐴𝐴 𝐴𝐴∗

0
located at the beginning of Stage II time 

series: 𝐴𝐴 𝐴𝐴∗
0
= 𝑇𝑇1 +1.

3.3.4.  Outlier Removal

Once an adjustment period is identified, outlier detection and removal are performed between the two corre-
sponding breaks. For temperature, data with a mean deviation larger than six times the standard deviation are 
rejected. For RH, values with a median deviation exceeding three times the interquartile range are rejected; for 
wind data, no outliers' removal is applied because, due to their highly non-Gaussian distribution, all tested crite-
ria result in filtering too many plausible values. All the preliminary and post-processing data checks lead to the 
removal of an additional 0.2% of data points from the original IGRA collection.

3.3.5.  Adjustment

To eliminate the instrument bias in the 𝐴𝐴 𝐴𝐴 -th adjustment period, two log-linear trends are considered. One, say 
𝐴𝐴 𝐴𝐴0(𝑡𝑡) = exp(𝑎𝑎0 + 𝑏𝑏0𝑡𝑡) , assumes no changes, while the other one, say 𝐴𝐴 𝐴𝐴𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = exp(𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑡𝑡) , is sensitive to instru-

ment bias of the 𝐴𝐴 𝐴𝐴 -th period.

In particular, for the first trend, 𝐴𝐴 𝐴𝐴0 and 𝐴𝐴 𝐴𝐴0 are estimated using the data before the 𝐴𝐴 𝐴𝐴 -th break, namely 𝐴𝐴 𝐴𝐴(1),…, 𝑥𝑥(𝑡𝑡∗
𝑖𝑖−1

) . 
For the second trend, 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑖𝑖 are estimated using the data in the 𝐴𝐴 𝐴𝐴 -th period, namely 𝐴𝐴 𝐴𝐴(𝑡𝑡∗

𝑖𝑖−1
+ 1),…, 𝑥𝑥(𝑡𝑡∗

𝑖𝑖
). In both 

cases, a robust least absolute deviation method, known as LADFIT (Barrodale & Roberts, 1974), is applied to 
the log-transformed ECVs. For other climate variables, such as sea surface temperature, it is common practice to 
represent anomaly decay over time using exponential functions (Bulgin et al., 2020).

Recalling Equation 12 and using the first model, the average trend in the 𝐴𝐴 𝐴𝐴 -th period, say � �� , free of instrumental 
bias, is obtained by averaging 𝐴𝐴 𝐴𝐴0(𝑡𝑡) in the 𝐴𝐴 𝐴𝐴 -th period, say �0,� . Using the second model, the average trend plus the 
bias, � �� + �(�) is obtained by 𝐴𝐴 averaging 𝐴𝐴 𝐴𝐴𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) in the 𝐴𝐴 𝐴𝐴-th period, say ��,� .

The 𝐴𝐴 𝐴𝐴 -th adjustment is then given by:

Δ� = �0,� − ��,� (15)

and the homogenized data 𝐴𝐴 𝐴𝐴𝐻𝐻 (𝑡𝑡) in the 𝐴𝐴 𝐴𝐴-th period is given by:
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�� (�) = �(�) + Δ� (16)

Note that, if the two intercepts 𝐴𝐴 𝐴𝐴0 and 𝐴𝐴 𝐴𝐴𝑖𝑖 have opposite signs, the former is replaced by the first, while the slope is 
not adjusted. This condition is mainly related to the presence of instrumental calibration drifts in a small number 
of time series.

Figure 5 shows an example of the breakpoints and adjustments for the nighttime relative humidity (over liquid 
water) measured at 300 hPa in Sodankyla from 1978 to the present: RHARM approach can identify the main 
documented breakpoints shown. Note that the most recent breakpoint is in the year 2005. As already mentioned, 
the separation date between Stage I and II data set in the text in 2004 is station dependent must be interpreted as 
an average.

3.3.6.  Harmonization at Significant Pressure Levels

The significant pressure levels are known to show extreme variability over time and are provided for the reasona-
bly accurate reproduction of the radiosonde profiles. By construction, the pressure of significant levels and their 
vertical randomness are different for different radiosonde launches. This hampers the use of time series tech-
niques. Indeed, RHARM uses a profile-based approach to compute adjustments at each significant pressure level. 
After reconstructing the atmospheric profiles at mandatory levels, the RHARM adjustment Δ of Equation 16 at 
a significant level is calculated by interpolating Δs at the two closest mandatory levels, 𝐴𝐴 𝐴𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐵𝐵 (step E in Fig-
ure 2). The interpolation is performed using a linear function for temperature, while a cubic spline interpolation 
has been applied to RH and wind component profiles. The resulting interpolation uncertainty has been evaluated 
using the comparison of the effect of the interpolation at GRUAN stations where high-resolution profiles are 
available. As discussed in the next section, this interpolation uncertainty has been added to the final uncertainty 
budget (0.25 K for temperature, 0.5%RH for relative humidity, 0.05 ms−1 for both the wind components).

The above overall approach has exceptions at the approximately 30 stations where the Stage I data has more than 
one type of sonde post-processed by RHARM (see Table 4). These are handled with an ad-hoc application of the 
RHARM algorithm. Due to the above checks and constraints applied in the RHARM algorithm, the total amount 
of RHARM data represents 92% of those available in IGRA from surface to 100 hPa and 94%–95% at altitudes 
above.

Figure 4.  Flow diagram summarizing the post-processing steps of the Radiosounding HARMonization (RHARM) algorithm 
to adjust the temperature and relative humidity profiles measured for all radiosonde types other than RS92 reported in Table 3 
in the period from 2004 onward. In the diagram, “X” stands for T, u or v. The subscript RHARM refers to the output adjusted 
variable and the subscripts RS92/NORS92 refer to the input radiosonde type: RS92 Vaisala or other.
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3.4.  Estimation of Uncertainties

As for the Stage I time series, an uncertainty is attributed to each value of the 
Stage II time series using the following formula:

𝜀𝜀𝐻𝐻 (𝑝𝑝𝑝 𝑝𝑝) =

√

(𝜀𝜀(𝑋𝑋Stage I))
2

+ (𝜀𝜀(𝑋𝑋Stage II))
2 (17)

In Equation 17 (under the square root, dependencies for 𝐴𝐴 (𝜀𝜀(𝑋𝑋Stage II))
2 on p 

and t are omitted), 𝐴𝐴 𝐴𝐴𝐻𝐻 (𝑝𝑝𝑝 𝑝𝑝) is the total uncertainty for the homogenized IGRA 
time series calculated at the pressure level p and the time instant t, 𝐴𝐴 𝐴𝐴(𝑋𝑋Stage I) 
is the average uncertainty of the Stage I time series at the selected station, 
and 𝐴𝐴 𝐴𝐴(𝑋𝑋Stage II) is estimated using the residuals of each time series with respect 
to a predictor model (i.e., the smoothed time series obtained by applying a 
LOESS smoother):

𝜀𝜀(𝑋𝑋Stage II) = 𝑥𝑥𝑖𝑖 − 𝑞𝑞𝑖𝑖 𝑡𝑡 = 1, 2,……, 𝑇𝑇 (18)

where xi is the measurement for the variable x at the instant i, qi is the LOESS 
modeled value and T is time length of the time series.

In order to tune the statistical model and obtain a reliable estimation of the un-
certainty, the LOESS smoothing parameter is optimized, for each individual 
station, to match the residuals to the average values of 𝐴𝐴 𝐴𝐴(𝑋𝑋RHARM,𝑅𝑅𝑅𝑅92∕𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁92) , 
in the time period when this is available (approximately after 2004, depend-
ing on the station). The obtained smoothing parameter is then assumed to be 
optimal for the entire time series and the final value of the uncertainty is ob-
tained by averaging the residuals on a monthly time scale. The uncertainty is 
not estimated for months with fewer than 15 radiosonde launches. The Stage I 
time series portions are built upon the most recent radiosounding instruments 
which should logically be better performing or, at least, better characterized 
through the outcome of the intercomparison experiments and it is therefore 
assumed to be a good constraint to the estimation of the uncertainties in the 
historical measurements which should be larger.

At each significant pressure level (𝐴𝐴 𝐴𝐴′ ), also the uncertainty is interpolated 
between the two closest mandatory levels, 𝐴𝐴 𝐴𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐵𝐵 . Similarly to what is 
reported in Section 3.2, an interpolation uncertainty term 𝐴𝐴 is also added to 
the interpolated uncertainty values (𝐴𝐴 𝐴𝐴𝐼𝐼 (𝑝𝑝𝐴𝐴, 𝑝𝑝𝐵𝐵, 𝑡𝑡) ).

For these levels indicated with p′, Equation 17 becomes:

𝜀𝜀𝐻𝐻 (𝑝𝑝
′
, 𝑡𝑡) =

√

(𝜀𝜀𝐼𝐼 (𝑝𝑝𝐴𝐴, 𝑝𝑝𝐵𝐵, 𝑡𝑡))
2
+ (𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝′, 𝑡𝑡))

2 (19)

After interpolation of adjustments and uncertainties at the significant levels, 
nighttime and daytime time series are merged to provide the final homoge-
nized time series (step F in Figure 2).

For wind, the formula to obtain the harmonized time series of wind speed 
(w) and direction (𝐴𝐴 𝐴𝐴 ) (i.e., intensity and direction of the wind vector) once
the u and v component have been homogenized. The following formulas are
applied:

𝑊𝑊 =

√

𝑢𝑢2 + 𝑣𝑣2 (20)

𝜑𝜑 = 𝑎𝑎tan2(−𝑢𝑢; −𝑣𝑣)
180

𝜋𝜋
= 180 + 𝑎𝑎tan2(𝑣𝑣; 𝑢𝑢)

180

𝜋𝜋
(21)

Abbrev. Name WMO radiosonde code

RS92 VAISALA RS92 SGP 80

Graw DMF-09 Graw 17

Modem M10, Modem 57

LM LMS6 11 (01/01/2008), 82 (07/11/2012)

Meisei Meisei 30 (01/01/2010)

JinYang JinYang 21

IntermSA iMet-2 InterMet 97, 98, 99

Daqiao Nanjing GTS1-2/GFE(L) 33 (03/11/2011)

Huayun Taiyuan GTS1-1/GFE(L) 31 (03/11/2011)

Changf Beijing Changfeng CF-06 45 (07/05/2014)

ML Meteolabor 26

Note. Dates in brackets refer to the date of assignment for the WMO 
radiosonde code. Note that also RS92 is included in the list. Adjustments have 
been calculated using the RS92-SGP sondes as the comparator, in order to be 
physically consistent with the GRUAN product. For consistency, RS92-SGP 
sondes launched during the intercomparison have been reprocessed using 
the RHARM approach. CIMO, Commission for Instruments and Methods of 
Observation; GRUAN, Global Climate Observing System (GCOS) Reference 
Upper Air Network; RHARM, Radiosounding HARMonization; WMO, 
World Meteorological Organization.

Table 3 
List of the Operational Radiosondes Involved in the 2010 WMO/CIMO 
Radiosonde Intercomparison Used to Calculate the RHARM Adjustments

Radiosonde type Launches Percentage

LMS6 29,148 1.3

DMF-09 Graw 16,736 0.8

VIZ/JinYang 33,721 1.5

Taiyuan GTS1-1/GFE(L) 13,409 0.6

Nanjing GTS1-2/GFE(L) 17,406 0.8

Meteolabor 436 0.0

Meisei 16,179 0.7

Beijing Changfeng CF-06 36,393 1.7

M10, Modem 121,446 5.5

Vaisala RS92/RS41 1,893,805 85.9

Intermet 26,505 1.2

Total 2,205,183 100

Note. The total number of soundings available within IGRA from 2004 for the 
stations adjusted using RHARM is 4,785,543. These include 55,325 balloon 
launches with a Vaisala RS41 sonde, currently not adjusted within RHARM.

Table 4 
Number and Percentage of the Radiosonde Launches Available Since 2004 
Adjusted Using the RHARM Approach
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The second equation also enables the conversion of the wind vector to the meteorological convention of the di-
rection the wind is coming from.

The estimated u and v uncertainties are then propagated to obtain the w and 𝐴𝐴 𝐴𝐴 uncertainties using the following 
formulas (based on the trigonometric definition of the partial derivatives of the function atan2):

𝜎𝜎𝑊𝑊 = 2

√

𝑢𝑢2

𝑢𝑢2 + 𝑣𝑣2
𝜎𝜎𝑢𝑢

2
+

𝑣𝑣2

𝑢𝑢2 + 𝑣𝑣2
𝜎𝜎𝑣𝑣

2
+ 2

𝑢𝑢𝑢𝑢

(𝑢𝑢2 + 𝑣𝑣2)
2

𝜎𝜎𝑢𝑢𝑢𝑢 (22)

�� = 180
�

(
√

(

− ��
�2 + �2

)2
��2 +

( ��
�2 + �2

)2
��2 − 2

( ��
�2 + �2

)2
���

)

(23)

In Appendix A, Figure A1 shows an example of a wind time series (for the both the u and v components) reporting 
also the uncertainties calculated according to the approach discussed in this section.

The RHARM data set is calculated assuming that adjustments of systematic effects do not affect the total uncertainty 
budget and, therefore, when false positives are detected, the uncertainty might be underestimated. The autocorrelation 
between the data, at night and day separately, of each time series has been estimated and found to be generally small at 
all pressure levels (<0.35). Therefore, autocorrelation has not been included in the estimation of trends.

The use of smoothed time series may affect the precise identification of the break timing. RHARM has been 
tuned to find a balance among the appropriate allowance value of the CUSUM, the LOESS smoothing window, 
and the timing ambiguity in the identification of breaks in the time series. Section 4.3 provides an assessment 
of the discrepancy between the breakpoints detected in the RHARM time series and the incomplete metadata 
available since 2000.

Finally, the RHARM algorithm cannot distinguish two consecutive systematic effects generating a monotonic 
increase of the CUSUM functions: these situations are adjusted as one single period affected by the mean of the 
real systematic errors. RHARM is currently run independently for each pressure level: correlations in breakpoint 
detection at different levels are discussed in Section 4.3.

4. Results
4.1.  Overall Adjustments

The statistical properties of the adjusted records, that is, merged Stage I and Stage II time series (Figure 6), show 
that RHARM is warmer than the IGRA in the NH, by 0.6 K on average (difference of median values), while in 
the tropics RHARM is slightly cooler than IGRA by 0.1 K. For the most recent observations (since 2004), the 

Figure 5.  Left panel, relative humidity monthly time series for the station of Sodankyla (World Meteorological Organization [WMO] index = 2,836, 67.3667 N 
26.6289 E, 179 m asl) as available from Integrated Global Radiosonde Archive (IGRA), reporting the radiosonde pictures used in different periods delimited by blue 
lines. Right panel, adjustments applied by the Radiosounding HARMonization (RHARM) algorithm (IGRA minus RHARM) with blue lines indicating sensor changes 
as in the left panel.
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magnitude of the RHARM adjustments for temperature is typically small, which is expected due to the enhanced 
quality of recent radiosonde data compared to historical observations (Thorne et al., 2011). This result is also 
consistent with existing comparisons (e.g., Dirksen et al., 2014).

For RH, RHARM is drier by 2.1% than IGRA in the NH, while in the tropics the profiles are moister by 0.3%. The 
adjustments are most noticeable for RH values below 20%–30% and above 52%, both in the NH and the tropics. 
For wind speed, as anticipated, the systematic effects have a smaller magnitude than for temperature and RH. Ta-

bles 5 and 6 further summarize the main characteristics of adjustments. The 
first and third quartiles for RHARM temperatures are 0.9 and 0.3 K higher 
than IGRA, respectively, revealing the predominance of cold biases in the 
IGRA data since 1978; for RH, the first and third quartiles of the RHARM 
probability density function (pdf) are 1.9% RH and 2.5% RH smaller than 
IGRA, respectively, corresponding to the predominance of a moist bias in 
IGRA.

In terms of the results at 850 hPa (Figure S5 in Supporting Information S1) 
corresponding roughly to the top of the planetary boundary layer except in re-
gions of high topography, the comparison of temperature trends (per decade, 
abbreviated as “da”) shows enhanced homogeneity for RHARM, especially 
in Europe and South America. The general tendency is for a warming in NH 
and tropics and for moderate cooling in SH. For relative humidity, the varia-
bility of the trends is larger than for temperature: the adjustments applied by 
RHARM reduces heterogeneity, in particular in Europe and the tropics. The 

Figure 6.  Probability density functions (pdfs) calculated in the northern hemisphere (NH) and in the tropics (±25° latitude) at 300 hPa for the Integrated Global 
Radiosonde Archive and Radiosounding HARMonization (RHARM) datasets of temperature (top panels), RH (middle panels), wind speed (bottom panel) for matching 
ascents at all the 697 stations shown in Figure 1. RHARM data refers to the merged time series (Stage I + Stage II time series). The median, the first and third quartiles 
of the pdfs are reported in Tables 5 and 6 for convenience.

NH 1st quartile (Q1) Median 3rd quartile (Q3)

T IGRA (K) 223.2 228.4 234.1

T RHARM (K) 224.1 229.0 234.4

RH IGRA (%) 19.6 35.1 53.5

RH RHARM (%) 18.0 33.0 51.0

w IGRA (m s−1) 13.4 22.0 33.3

w RHARM (m s−1) 13.6 22.6 34.1

Note. IGRA, Integrated Global Radiosonde Archive; RHARM, Radiosounding  
HARMonization.

Table 5 
First, Second (Median), and Third Quartiles of the Northern Hemisphere 
Pdfs Shown in Figure 7
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overall tendencies show a moderate positive trend in the NH which becomes 
stronger in the SH. For wind speed, RHARM generally improves the estima-
tion for several isolated and obviously spurious large station trends.

At 300  hPa (Figure  7), improvements in the homogeneity of temperature 
trends are mainly visible in parts of the NH and South America. For RH, im-
provements are observed mainly in Europe and in the tropics. For both tem-
perature and RH, overall trends in the NH and SH observed at 300 hPa agree 
with trends at 850 hPa. In the most recent decades, a positive trend in RH was 
also identified by Madonna, Tramutola, et al. (2020) in Europe, in the SH and 
the tropics. Wind speed shows improvements especially in the NH.

Finally at 100 hPa (Figure S6 in Supporting  Information S1), temperature 
trends are more homogeneous globally (in particular in the NH) and cooler 
than IGRA data. For wind speed, RHARM adjustments bring the major im-
provement in the NH with an overall negative trend in the NH and Australia 
and from neutral to moderately positive trend in the tropics. RH trends are not 
reported because these are not available from RHARM (limited at 250 hPa).

To support the interpretation of global trend maps, especially where improvements in spatial homogeneity are 
small, in Table 7 standard deviations of the distribution of trend values for the RHARM stations in NH, tropics, 
SH, and globally are reported. The aim is to provide a dispersion indicator of the trend values around the related 
zonal mean trend and, therefore, of their homogeneity. Due to the small number of stations, polar stations are in-
cluded in the NH and SH, respectively. Cells in Table 7 are colored according to the outcome of an F test applied 
to assess the equality of variance estimates (homoscedasticity) of IGRA and RHARM for each latitude belt. A 
Levene's test has been also applied to confirmed results from the F test and because the assumption of independ-
ent datasets needed for the F test, is not respected for IGRA and RHARM. It is important to note that results from 
the F test are valid for the trends homogeneity within each latitude belt or globally, which does not exclude that 
homogeneity can be greater in specific regions, as discussed above.

For all the variables, the values of the global standard deviation of trends show improvements in the spatial homo-
geneity with RHARM data for all the variables, although they are larger for RH and wind speed. For RH, there is 
an overall enhanced homogeneity with a significant difference between the IGRA and RHARM variances at all 
latitudes and pressures. For wind, the variance difference is significant at all pressures in the NH and globally. For 
temperature, the difference in the variances is significant at 300 hPa in the tropics and at 100 hPa in the NH. In the 
SH, the homogeneity of RHARM is lower than IGRA: this is mainly due to the difference between the trends of 
the Australian stations and all the others in the SH. This difference will be further investigated in future releases 
of RHARM. In the Figures S7–S12 in Supporting Information S1, examples of anomalies at three pressure levels 
(850, 500, 300 hPa) for a few stations, selected among those with the longer data records in RHARM, are shown.

To illustrate the temporal evolution of the datasets considered, we further discuss tropospheric interannual vari-
ations and trends of temperature, relative humidity and wind for the period 1979–2018 obtained by aggregating 
data at different latitudes. For temperature (Figure 8) in the NH, IGRA, RHARM, and ERA5 show a similar 
positive trend of 0.38, 0.39 and 0.43 K da−1, respectively, while in the tropics at 300 hPa the trend is of 0.17, 
0.25, 0.20 K da−1, with a more pronounced trend increase starting around 1997. Similar results have been ob-
tained considering European stations only (Madonna,  2020). In the NH, the comparison of the anomalies at 
300 hPa shows the evident adjustment applied by RHARM on the IGRA data over 1996–2005 (corresponding 
to the period of RS80 and RS90 Vaisala radiosondes) which reduces the difference from ERA5 results. Differ-
ences between RHARM and ERA5 are generally smaller than 0.5 K in absolute value. In late 1990, RHARM 
successfully adjusts a clear shift affecting the IGRA data in the tropics: this is evident from the comparison with 
ERA5 anomalies revealing a smaller difference with RHARM than with IGRA in the same period (Figure 8d). 
The shift is likely related to the mass adoption of RS80 sondes. An issue for a few tropical stations in late 90s 
was also discussed by Angell (2003). At 500 hPa (Figure S12 in Supporting Information S1) the situation is very 
similar although in the NH the differences are smaller, while in the tropics results are in line with those for the 
300 hPa pressure level.

Tropics 1st quartile (Q1) Median 3rd quartile (Q3)

T IGRA (K) 240.2 242.1 243.4

T RHARM (K) 240.2 242.0 243.2

RH IGRA (%) 15.5 28.9 50.7

RH RHARM (%) 13.9 29.2 52.4

w IGRA (m s−1) 6.0 10.2 17.6

w RHARM (m s−1) 6.0 10.2 17.6

Note. IGRA, Integrated Global Radiosonde Archive; RHARM, Radiosounding  
HARMonization.

Table 6 
First, Second (Median), and Third Quartiles of the Tropics Pdfs Shown in 
Figure 7
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For relative humidity (Figure 9), in the NH the substantive adjustment applied to IGRA by RHARM at 300 hPa 
before 1986 (up to 10%RH) largely improves the agreement with ERA5. In 1986, a few major changes occurred 
in the global radiosounding data, the most relevant of which are: changes in several radiosonde models, such for 
MARS/MRZ and VIZ radiosondes; the adoption of new manufacturers at some stations, mainly changes from 
another manufacturer to Vaisala, and changes in the dewpoint depression algorithm, for example, at UK stations; 
and, maybe the most important, the introduction of “pre-baselined” radiosondes, that is, removal of the practice 
of applying a manual baseline lock for all temperature and RH profiles which was discovered to be prone to 
producing a wet bias in all the RH values smaller than 60% (more details at https://library.wmo.int/doc_num.
php?explnum_id=9592). Since 2004 the adjustment applied by RHARM is smaller and further improves the 
agreement with ERA5 and shows a negative trend of −0.8% RH da−1. In the last decade, the trends show a change 
with a slight increase which has been already quantified in the European domain (Madonna, 2020). At 500 hPa 
(Figure S13 in Supporting Information S1) the situation is very similar although the adjustments are much smaller.  

Figure 7.  Global maps of the trends (per decade) at 300 hPa of temperature (top), relative humidity (middle) and wind speed 
(bottom) estimated from Integrated Global Radiosonde Archive (left panels) and Radiosounding HARMonization (right 
panels) stations. Trends have been estimated for each station in the period 1978–2000.

 

https://library.wmo.int/doc_num.php?explnum_id=9592
https://library.wmo.int/doc_num.php?explnum_id=9592
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In the tropics, the adjustments applied by RHARM at 300 and 500 hPa are 
smaller than in the NH. The comparison with ERA5 shows that the largest 
differences are at 500 hPa (up to 4–5%RH). The comparison highlights major 
differences in three periods: before 1990, where ERA5 negative anomalies are 
smaller; after 2005, with RHARM anomalies larger than those of ERA5; and 
after 2015, when differences increase especially at 500 hPa.

The strong positive humidity anomalies observed in the tropics for the period 
2015–2019 appear to be correlated with significant positive anomalies of the 
bi-monthly multivariate El Niño/Southern Oscillation (ENSO) index (Hu & 
Fedorov, 2017, available at https://www.esrl.noaa.gov/psd/enso/mei) which 
started in January 2015 and reaches within the same year values larger than 
2.0. Boosted by the major El Niño event, 2015 was the first of five consecu-
tive years among the six warmest years in the 140-year observational record 
(e.g., https://www.ncdc.noaa.gov/sotc/global), which may be related to the 
observed strong positive anomalies of relative humidity in the tropics and in 
the SH. A possible positive trend in upper-tropospheric absolute humidity 
has been noted in previous work (e.g., Dessler & Davis, 2010).

For wind speed, the comparison between observational data and ERA5 (Fig-
ures S12 and S13 in Supporting Information S1) shows a in the NH at 300 hPa 
positive trends of 0.34, 0.33, and 0.07 m s−1 da−1 for IGRA, RHARM, and 
ERA5, respectively. In the tropics, trends at 300 hPa are negative, but with a 
narrower difference than in the NH, with values of −0.06, −0.10, 0.06 m s−1 
da−1. Similar considerations can be made for the anomalies at 500 hPa. In the 
NH, there is a good agreement also in the long-term variability and peak val-
ues. In the tropics, IGRA and RHARM exhibit larger variability than ERA5 
although with significant differences for the extreme values.

In the Southern Hemisphere (SH), where 66 stations are available in RHARM, 
the comparison (not shown) results are similar to the tropics, with the same 
strong positive humidity anomalies after 2015.

Despite a degree of non-independence, the comparison with ERA5 reveals discrepancies in the monthly anom-
alies and trends with both IGRA and RHARM, although the adjustments applied in the RHARM data serves to 
somewhat reduce the differences between ERA5 and the observations, especially for temperature and RH in the 
NH. ERA5 performances in reproducing the observed atmospheric variability appear to be higher in the NH than 
in the tropics, likely due to the stronger observational constraints.

4.2.  Comparison of Trend Profiles

In this section, the comparison of the trend profiles for IGRA, RHARM, and ERA5 is discussed for the NH and 
the tropics, at all mandatory levels from 850 hPa to 10 hPa for the three ECVs (temperature, RH, and wind speed).

4.2.1.  Temperature

In the NH, the comparison for temperature shows a very good agreement overall at pressure levels up to 200 hPa 
(Figure 10, left), with relative differences within 0.1 K da−1. At pressure above 200 hPa, all the datasets agree 
within 0.1 K da−1. In the tropics (25°S–25°N), the shape of the trend vertical profiles (Figure 10, right panel) is 
similar for all datasets, with IGRA the coldest. Up to 300 hPa, trends are positive (tropospheric warming) and 
their difference does not exceed 0.2 K da−1. In the range 300–70 hPa cooling trends for RHARM and ERA5 are 
very close, within 0.1 K da−1, while at lower pressures ERA5 is warmer than both IGRA and RHARM.

4.2.2.  Relative Humidity

In Figure 11, the comparison of the vertical profiles of RH trends, between 850 hPa and 300 hPa in the NH (left 
panel) shows that RHARM and ERA5 have a similar shape with relative differences around 1% RH/da through-
out the entire vertical range, although RHARM is the only with positive values (near zero) at pressures higher 

IGRA 
T

RHARM 
T

IGRA 
RH

RHARM 
RH

IGRA 
W

RHARM 
W

100 hPa

  NH 0.56 0.48 N/A N/A 0.91 0.77

  TRO 0.77 0.73 N/A N/A 0.89 0.86

  SH 0.64 0.70 N/A N/A 1.02 0.95

  Global 0.51 0.48 N/A N/A 0.99 0.90

300 hPa

  NH 0.39 0.37 4.17 2.98 1.25 1.07

  TRO 0.57 0.52 3.99 3.58 0.78 0.73

  SH 0.32 0.37 4.49 4.15 1.02 0.94

  Global 0.40 0.37 4.94 3.77 1.01 0.97

850 hPa

  NH 0.42 0.41 2.15 1.74 0.40 0.37

  TRO 0.23 0.21 2.48 2.53 0.36 0.32

  SH 0.25 0.30 3.00 2.68 0.33 0.29

  Global 0.32 0.29 2.79 2.24 0.46 0.42

Note. Pairs of cells with significant differences in their variances are in 
bold. At 100 hPa RH values from Radiosounding HARMonization are not 
available.

Table 7 
Standard Deviation of the Distributions of Trend Values for Different 
Latitude Belts and Globally

 

https://www.esrl.noaa.gov/psd/enso/mei
https://www.ncdc.noaa.gov/sotc/global
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Figure 8.  Upper tropospheric interannual variations of 300 hPa temperature for the period 1979–2018 for Integrated Global Radiosonde Archive (black), 
Radiosounding HARMonization (red), and ERA5 reanalysis (blue) in the Northern Hemisphere and in the tropics. Anomalies are shown in the panels a and c, while 
in panels b and d differences (to ERA5) are shown. For ERA5 the nearest grid-point to each station and simultaneous vertical profiles on 12 UTC and 00 UTC are 
selected.
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Figure 9.  Same as Figure 8 but for relative humidity.
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than 500 hPa. Both datasets significantly differ from the unadjusted IGRA data for pressures below 500 hPa. In 
the tropics, RHARM and ERA5 shows a similar shape despite a difference up to 1.5% RH da−1, increasing with 
height. Differently from temperature, ERA5 RH assimilated data are not bias adjusted. It must be remarked that 

Figure 10.  Profiles of temperature trends at mandatory pressure level between 850 and 10 hPa for the period 1979–2018, in 
the northern hemisphere (left panel) and in the tropics (right panel) for the unadjusted Integrated Global Radiosonde Archive 
(black line), Radiosounding HARMonization (red), ERA5 (blue) datasets. The ordinate is logarithmic, and the abscissa 
differs between the two panels.

Figure 11.  Profiles of relative humidity trends at mandatory pressure level between 850 and 300 hPa, in the period from 1979 to 
2018, in the northern hemisphere (left panel) and in the tropics (right panel) for unadjusted Integrated Global Radiosonde Archive 
(black line), Radiosounding HARMonization (red), ERA5 (blue). The ordinate is logarithmic, and the abscissa differs between the 
two panels. The comparison is limited to 300 hPa, as water vapor measurements are not always reliable for lower pressures.
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the comparison cannot ascertain which of the datasets provides the best option to assess RH trends. Fundamen-
tally, the paucity of available estimates makes it difficult to assess structural uncertainties.

4.2.3.  Wind Speed

In the NH, below 70 hPa and above 300 hPa the comparison shows differences among the datasets (Figure 12) within 
0.5 m s−1 da−1with a better agreement between the observational datasets below 70 hPa. Between 70 and 300 hPa, 
IGRA and RHARM show trends larger than 1.0 m s−1 da−1, with a small adjustment applied by RHARM. In the 
tropics, the shape of the trend vertical profiles is almost the same for all datasets from 850 to 300 hPa, while at lower 
pressures the observational datasets shows similar positive trends, around 0.1 m s−1 da−1, differently from ERA5 which 
is negative with values up to −0.6 m s−1 da−1 Note that observational constraints in the reanalysis are weaker in this 
region (e.g., Kawatani et al., 2016), and artefacts due to changes in assimilated observations cannot be excluded.

4.3.  Statistics of Early Period Breakpoints and Their Vertical Coherency in Stage II

The homogenization of the Stage II time series for each station, that is, data before 2004, is applied at each mandatory 
pressure level separately. Therefore, it is informative to study the distribution per year of the breakpoints detected in 
the Stage II time series for the measured ECVs as well as the correlation of the percentage of breakpoints per ECV at 
different pressure levels. For the latter purpose, the 100, 300, and 500 hPa levels have been selected as representative 
of different atmospheric regions (lower stratosphere, upper troposphere, free troposphere, respectively) where different 
types of biases and resulting adjustments, either height-dependent (solar radiation correction, time-lag correction) or 
correlated within the entire vertical profile (e.g., sensor calibration), are applied in the data processing.

The decrease in breakpoint detection after 2004 (Figure 13) is due to the progressive introduction of the most 
recent radiosonde types for which the Stage I RHARM approach can be applied. Furthermore, the percentage of 
breakpoints decreases going toward the past and this may be both related to a reduction in the number of stations 
and data available as well as to the adoption of the same type of measurement sensors for longer time periods. It 
can be noted that Sherwood et al. (2008), instead, showed a decrease of the number of detected breakpoints after 

Figure 12.  Profiles of wind speed trends at mandatory pressure level between 850 and 10 hPa, in the period from 1979 to 
2018, in the northern hemisphere (left panel) and in the tropics (right panel) for unadjusted Integrated Global Radiosonde 
Archive (black line), Radiosounding HARMonization (red), ERA5 (blue). The ordinate is logarithmic, and the abscissa 
differs between the two panels.
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1990–1995, using data from IGRA until 2000, while Haimberger (2005) showed a slight decrease in the number 
of detected breakpoints after 1990 at 500 hPa but an increase during the same period at 10 hPa. Figure 13 also 
reveals the good agreement in the percentage of breakpoints identified across the different ECVs.

Breakpoint percentages (Figure 14) show a similar distribution for RH, u and v, while for temperature the corre-
lation is larger at 300 and 500 hPa. At 100 hPa, instead, in the period 1990–1997 there is a higher occurrence of 
breakpoints than at other levels indicating either a larger effect of the radiation bias for the sonde models operated 

Figure 13.  Percentage of breakpoints per year detected by the Radiosounding HARMonization approach for each of 
temperature, relative humidity, meridional and zonal wind speed, cumulated for all the homogenized time series and at all 
mandatory pressure levels.

Figure 14.  Percentage of breakpoints per year detected by the Radiosounding HARMonization approach for temperature (upper left panel), relative humidity (upper 
right panel), meridional (bottom left panel) and zonal wind speed components (bottom right panel). Each panel reports the frequency of occurrence per year at three 
pressure levels, 100 hPa (except for RH), 300 hPa, 500 hPa.
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in this period, or a larger number of false positives than at other levels. This can be linked to the much smaller 
number of observations available at 100 hPa within IGRA, due to balloon burst which can also impart sampling 
effects (McCarthy et al., 2008; Sy et al., 2021).

To assess the coherence of breaks within individual stations between significant levels, an analysis was carried 
out on the correlation between occurrence dates at 300 hPa with respect to the dates at 100 and 500 hPa. Within a 
window of 2 months, correlation for temperature and RH breakpoints at 500–300 hPa is about 0.2, while it rises to 
0.36 within 6 months and to 0.6 within a year. For wind vector components, within a time difference of 2 months, 
correlation for temperature breakpoints at 500–300 hPa is 0.26, while correlation is 0.52 within 6 months and 
0.81 within 1 year. Very similar values are obtained for 300–100 hPa, except they were somewhat smaller for 
temperature. These results may indicate a temporal mismatch in the detection of the same breakpoint at different 
pressure levels. However, depending on the nature of the systematic effect, more or less significant biases may 
be present in different atmospheric ranges and, therefore, correlation in breakpoint detection among the selected 
levels would not be expected to be perfect. There are homogenization methods assigning a breakpoint to all pres-
sure levels irrespective of whether a break is detected at a given level, assuming biases due to instrumental effects 
are vertically correlated (e.g., Sherwood et al., 2008). Although in previous studies based on monthly averages 
breakpoints at multiple levels were considered to discard false positives (if they only appeared at one or two lev-
els), this choice was not considered for the current version of RHARM.

5. Quantification and Presentation of Uncertainties
A unique value of RHARM compared to other homogenized datasets is that, for the first time, an estimation of 
the uncertainty is provided for each single observation (i.e., at each pressure level). Other existing homogenized 
radiosounding datasets were, instead, mainly focused on estimating trend uncertainties using error models or pro-
viding observation uncertainties using, for example, Desroziers' method (Desroziers et al., 2005). In this section, 
statistics on the RHARM estimated uncertainties are provided.

Considering data at the six stations shown in Table 1 only in the GRUAN era, the uncertainty for RHARM is gen-
erally larger than the uncertainties obtainable using the GRUAN processing as expected given the methodological 
considerations outlined in Section 3. In particular, for temperature (Figure 15, left panel), the median value of the 
GRUAN uncertainty is 0.16 K compared to 0.22 K of RHARM (median values are considered for the analysis, 
given the shape of the pdf). The interquartile range (IQR) for GRUAN is 0.20 K, while for RHARM it is 0.26 K. 
These numbers confirm that on average the uncertainty estimation obtained for RHARM is somewhat greater 
than the GRUAN uncertainty. Nevertheless, due to the nature of the assumptions made within RHARM, in some 
cases its uncertainty may be underestimated compared to that of GRUAN, as seen for values below 0.1 K. These 
values are mainly related to nighttime measurements.

Figure 15.  Comparison of pdfs of the uncertainty calculated using the Global Climate Observing System (GCOS) Reference Upper Air Network data processing and 
the Radiosounding HARMonization approach at the six stations shown in Table 1. Pdfs are relative to temperature (panel a) and relative humidity (panel b).
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For RH (Figure 15, right panel), the median value of the GRUAN uncertainty pdf is about 1.1% versus 3.6% for 
RHARM, with an IQR for GRUAN of 0.1% and 3.0% for RHARM. Maximum values observed with GRUAN are 
less than 8% while RHARM has values larger than 10% and a very few values larger than 20%.

In Figure 16, the density function of the uncertainties estimated for the RHARM data are shown for the NH and 
the tropics. The comparison for the temperature uncertainties shows that the density function in the NH is bi-
modal with modes centered around 0.5 and 1.0 K, with most values smaller than 2.0 K. In the tropics, values are 
smaller than 1.5 K. A large fraction of the values in both regions is around 0.25 K and these values are referring 
to the values of the Stage I time series. For the relative humidity, both the distributions are bimodal with values of 
the uncertainties larger in the tropics than in the NH. A large fraction of the RH uncertainty values is smaller than 
10%, while the second distribution mode is 14%–15% RH uncertainty. Finally, for the wind speed uncertainty the 
distributions overlap in the selected latitude belts.

6. Discussion and Conclusions
RHARM provides a new approach for the homogenization of radiosounding temperature, RH and wind measure-
ments. RHARM differs from previous efforts due to the use of reference measurements to calculate and adjust for 
systematic effects in the most recent portion of the time series, when metadata are available, and used the same 
adjustments as a constraint for homogenizing historical time series. RHARM adjusted fields are not affected by 
cross-contamination of biases across stations and are fully independent on atmospheric reanalysis data. This gives 
the data set independence properties across stations that may not have accrued to previous datasets. A significant 
benefit is that each harmonized time series is provided with an estimation of the uncertainty for each observation. 
The RHARM approach enables a more comprehensive exploration of uncertainties in historical time series.

Results from the analyses about the applied RHARM algorithm show that:

1. �RHARM temperature data distribution is warmer than IGRA in the NH, due to the predominance of cooling
biases affecting the IGRA time series since 1978, while RHARM is slightly cooler than IGRA in the tropics.
For RH, RHARM adjusts the IGRA data dry bias, in particular below 20%–30% RH and above 52% RH, both

Figure 16.  Comparison of the probability density function of the total uncertainties estimated for all the Radiosounding 
HARMonization temperature (T), relative humidity (RH) and wind speed (w) data since 1978 for the stations in the tropics 
and in the Northern Hemisphere (NH).
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in the NH and at the tropics. For wind speed the systematic effects have a smaller magnitude than for temper-
ature and RH, and IGRA and RHARM data distributions are fairly similar.

2. �RHARM increases the spatial homogeneity of trends compared to IGRA (examples are provided at 850, 300,
and 100 hPa) over 1978–2000. The reduction in the geographic spread of trend values is stronger for RH and
wind than for temperature, although in the NH, especially at 100 hPa, and in South America also temperature
trends are more homogeneous.

3. �The comparison of RHARM with GRUAN shows that RHARM-GRUAN temperature difference is much
reduced compared to the GRUAN-IGRA difference at all levels and for all ECVs, as expected given the
RHARM methodology.

4. �The comparison between RHARM, IGRA, and ERA5 shows that the adjustments applied in the RHARM data 
processing reduce the differences between ERA5 and observational data, especially for temperature in the
NH, where the most significant adjustment reduces the differences from 0.5 to 0.1 K in the decade 1996–2005, 
on average, and for relative humidity, where the differences are adjusted from values of more than 10% RH to
less than 5% RH in the decade 1978–1987. Adjustments to wind speed anomalies, although smaller, also show 
the improvement in the times series in comparison with ERA5.

5. �The study of the vertical correlation of the breakpoints identified by RHARM at three mandatory pressure lev-
els (100, 300, 500 hPa) shows that 60% of the changepoints are correlated within 1 year for T and RH, while
this value increases to 81% for wind. RHARM uncertainties are generally larger than GRUAN.

Analyses of interannual variations and trends from RHARM data in the period 1979–2018 shows:

1. �Warming trends of temperature are smaller than 0.5 K da−1 at pressures higher than 250 hPa, while trends are
cooling up to 0.25 K da−1 below that level. In the tropics, trends are smaller 0.25 K da−1 at pressure higher than 
250 hPa, while colling and within 0.5 K da−1 below. Results are in good agreement with ERA5, especially for
pressures higher than 200 hPa in the NH and higher than 50 hPa in the tropics.

2. �For RH, in the NH RHARM shows slightly positive or near-zero trends at pressures higher than 500 hPa,
while trends are negative (up to 0.2% RH da−1) below. In the tropics, trends are positive and higher than to
1.0% RH da−1 over the entire vertical range (larger than 2.0% RH da−1 at 500 hPa). Comparisons with ERA5
show differences probably due also the fact that, differently from temperature, ERA5 RH assimilated data
are not bias adjusted. The increasing humidity anomalies in the period 2015–2019 and the positive RH trend
observed in RHARM data at the tropics appear to be correlated with the warm ENSO event in 2015/16.

3. �For wind speed, trends in the NH are smaller than 0.2 m s−1 da−1 at pressures higher than 300 hPa, whereas
trends are greater below and, in particular, larger than 1.0 m s−1 da−1 in the 100–300 hPa interval. In the trop-
ics, trends are smaller than 0.2 m s−1 da−1 along the entire vertical range. The comparison with ERA5 indicates 
a good agreement in the troposphere, mainly in the tropics.

From a technical point of view, it is useful to remark that wind radiosounding data are processed with proprietary 
software routines from the respective manufacturers which apply distinct smoothing to the data, the RHARM 
wind profile may have a different effective vertical resolution (Iarlori et  al.,  2015). The unavailability of the 
raw (manufacturer pre-processed) data inhibits reprocessing of the data to provide data at a common resolution 
or even at a known resolution, which could be controlled in the RHARM software in order to remove spurious 
effects on the wind measurement between the radiosondes.

In an ideal world, the collection and preservation of raw data by all radiosounding stations would allow to build 
the highest possible quality data set of radiosounding measurements by reprocessing all the data consistently to 
metrologically traceable standards. In the real world, save for GRUAN sites and intercomparison campaigns, we 
do not have such an option. There is an action currently under discussion in GCOS in its most recent Implemen-
tation Plan (personal communication by GCOS secretariat) to explore the possibility to collect and reprocess data 
from those sites who usually hold the original raw count data locally, although the timeline and the resources to 
start the action are still uncertain. The final goal of RHARM is to calculate average adjustments which should 
result in an improved estimation of the climatological variability for temperature, humidity and wind profiles The 
RHARM approach represents an innovative solution that is closer to a “traceable” estimate with uncertainties, in 
particular for the data after 2004. Considering that RHARM is an algorithm aiming at adjusting radiosounding 
time series without using model-based data or ancillary information from neighboring stations, the adjustments 
applied to stations in each climate region may be less homogeneous than for other homogenization approaches. 
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This is certainly one of the main reasons for the small contrast between IGRA and RHARM for temperature (Fig-
ures 6 and 7). The impact of LOESS filtering of each times series, the timeliness of CUSUM in the changepoint 
detection and the ability of RHARM to preserve the natural climate variability are other factors impacting the 
algorithmic efficiency.

Any future availability of new WMO/CIMO intercomparison data will enhance the capability of the RHARM 
approach to improve the quality of both near-real time and historical radiosoundings data. Moreover, the avail-
ability of the enhanced BUFR data reports (BTEM/BTEF files replacing TEMP and previous BUFR version), 
for radiosounding measurement submitted to the WMO Information System (WIS), to foster the reporting of 
high-resolution vertical profiles with improved metadata, will help reduce the gap between files reported by ref-
erence and baseline networks. These files are made available upon request by ECMWF (P.I. Bruce Ingleby) and 
their metadata are already incorporated in the latest version of RHARM. The availability of metadata from 2016 
onwards, when enhanced BUFR files start to be available, will also improve near real-time data availability. New 
GRUAN data products, such as for the Meisei iMS-100 sonde (Kobayashi et al., 2019) and Vaisala RS41 (von 
Rohden et al., 2021) will be incorporated into subsequent versions of RHARM. This is in line with the design 
of the RHARM algorithm which allows continuous improvements exploiting new improved radiosonde sensors 
technology and processing algorithms as they become available in the future.

Appendix A:  Validation of Uncertainties
A major innovation of the RHARM data set is the estimation of uncertainties for temperature, relative humidity 
and wind measurements for each pressure level of the adjusted IGRA profiles. Uncertainty estimation is funda-
mental for any type of observation, enabling a metrologically consistent comparison with other datasets. To this 
purpose, a proper validation of the uncertainties is also required. In Figure A1, it is shown an example of a wind 
time series (for the both the u and v components) reporting also the uncertainties calculated according to the 
RHARM approach.

Following the principles of metrology, RHARM estimated uncertainties must be also validated. Validation of 
uncertainties means that these must be “evaluated by independent means to establish quantitative realism and the 
credibility of the uncertainty estimates” (Merchant et al., 2017). To provide a validation of the RHARM uncer-
tainties, the methodology of Merchant et al. (2017) has been applied. This is based on the study of the probability 
density function of the ratio:

𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

√

𝑢𝑢2
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

+ 𝑢𝑢2
𝑟𝑟𝑟𝑟𝑟𝑟

+ 𝑢𝑢2
𝑚𝑚𝑚𝑚𝑚𝑚

(A1)

where xRHARM is the RHARM estimate, xref indicates an independent estimate of the measurand, u denotes the 
uncertainty and umis is the geophysical variability arising from temporal, spatial, and definitional mismatch be-
tween RHARM and reference data. A correct quantification of uncertainties and variability should be reflected 
in a normal distribution of the ratio defined in Equation A1, with a standard deviation equal to unity. Deviations 
from zero are due to discrepancies between RHARM and the reference.

Acknowledging that the ideal solution for the validation should be based on independent reference measurements 
(Thorne et al., 2017) of the same measurand, GRUAN data would be the ideal candidate. However, RHARM has used 
information from and mimics part of the GRUAN processing, meaning that circularity considerations preclude its 
use for such a purpose. An alternative solution is adopted, which is to use the ERA5 background (6-hr forecast) as a 
reference value. Whilst this background is likely a reliable estimation of the atmospheric state, it is not a true reference 
measurement in that it is not itself an SI traceable measurement, nor does it have comprehensive uncertainty estimates. 
Observation minus Background (O-B) departures have previously been used as a diagnostic tool for different latitude 
belts (Ingleby, 2017). They also form the basis for the RAOBCORE/RICH family of data set approaches (Haimberger 
et al., 2012). Therefore, the use of the ERA5 background as a reference for the test described in Equation A1 appears 
viable to infer quantitative information for validating the uncertainties. Other candidates exist, such as radio occultation 
(RO) satellite measurements (Bauer et al., 2014), which are a valuable solution for dry temperatures in the UTLS, while 
for the mid and lower troposphere the deconvolution of temperature and RH in the retrieval is dependent on a first guess 
model. Furthermore, RO profiles can rarely provide information all the way down to the surface.
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Using the background as the reference data set in Equation A1, uref has been estimated applying the Leave-One-
Out Cross validation method, LOOCV (Stone, 1974), to the background while umis is evaluated as the standard 
deviation of the O-B climatology at each station. The uncertainty validation is carried out separately for two 
periods: 2004–2019, for which almost all IGRA data have been post-processed using a GRUAN-like adjustment, 
and 1980–2003, for which the uncertainty estimation of RHARM is obtained by constraining the residuals on a 
monthly basis. The validation is focused on temperature and RH uncertainties because there is still limited infor-
mation on the homogeneity of the ERA5 background wind data.

For the period 2004–2019 (Figure A2), in the NH, the ratio for temperature has a mean value of 0.18, while the 
standard deviation is 0.72 indicating that the uncertainty at 300 hPa for temperature is overestimated by about 
28%. The overestimated values of the uncertainty decrease the distribution near the central peak compared to 
the fitted curve, while it is slightly larger toward the tails. In the tropics, a mean value of the ratio of 0.44 and a 
standard deviation of 0.89 indicate that the uncertainty is overestimated by about 11%. For RH, in the NH the 
uncertainty is underestimated with the mean value of the ratio is −1.3 and the standard deviation of 1.2, while the 
uncertainty is overestimated in the tropics the mean value is −0.69 with a standard deviation of 0.78 and a larger 
number of overestimated values than in the NH. For the RH uncertainties, the distributions are negatively skewed 
and almost normally distributed. This might be related to systematic effects on the O-B comparison, possibly due 
to inhomogeneities in the O-B departures within an entire latitude belt, which could broaden the O-B distribution 
and influence the value of the validation using the model forecast as a reference.

Figure A1.  Top panel, zonal wind component (u) time series at 300 hPa (only nighttime) for the Sodankyla station with the 
uncertainties calculated using Radiosounding HARMonization for the period from 01/01/1981 to 01/07/1981. Bottom panel, 
same as top panel but for meridional component (v). The vertical bars show the random uncertainties quantified using the 
statistical method, and their plotting has been reduced to one value each two of the time series.
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Figure A2.  Probability density functions (pdfs) of the ratio reported in Equation A1 calculated using O-B data (Radiosounding HARMonization [RHARM]-minus-
Background) in the NH (left panels) and in the tropics (bottom panels) at 300 hPa for temperature (top panels) and for RH (bottom panels) to validate the uncertainties 
estimated using the RHARM approach. The pdfs refer to the RHARM uncertainty values estimated in the period 2004–2019. Background data are from the ERA5 6-hr 
forecast model. For comparison with ideal uncertainty estimates, the best fitted normal distribution to each data set (blue line) is also shown. In an ideal case where 
uncertainty would be properly estimated with the RHARM algorithm, the distribution should have a standard deviation equal to unity. Deviations from zero are due to 
the O-B discrepancy.

For the period 1980–2003 (Figure A3), in the NH the ratio for temperature is near zero, while the standard de-
viation is 0.97 indicating that the uncertainty at 300 hPa for temperature is well estimated. The same is true for 
the tropics where the mean value of the ratio is 0.06 and the standard deviation is 1.0. In both cases the ratios 
are normally distributed. For RH, both in the NH and at the tropics, the uncertainty is overestimated by 15% and 
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12%, respectively, while the mean value of the ratio is 1.7 and 1.5, revealing a systematic effect affecting the O-B 
comparison like the period 2004–2019. The distribution in the NH is negatively skewed, while in the tropics it 
is positively skewed.

In general, the RHARM uncertainties appear to be a reasonable estimate or a slight overestimate of the theoretical 
distribution, except for the RH in the NH after 2004 where they are an underestimate. It is arguably preferable to 
have an over-dispersive uncertainty estimate than an under-dispersive estimate for most applications. Neverthe-
less, future versions of the RHARM data set will be designed to improve the uncertainty estimation, also through 
the implementation of more sophisticated models, using techniques like kriging or modeling Gaussian processes. 

Figure A3.  Same as Figure A2, but for the period 1980–2003.
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Temperature uncertainties are, in general, better behaved than RH uncertainties but it is unclear whether this 
relates to the uncertainty quantification or O-B field estimate issues.

Appendix B:  RHARM Consistency With GRUAN
Although built to mimic the GRUAN processing, the RHARM algorithm, discussed in Section 3, is not applied to the 
raw unprocessed radiosonde data, because these are not available from any global repository and often not retained 
by the station managers or National Meteorological or Hydrometeorological Services (NMS). This difference with 
the GRUAN data processing may generate discrepancies between the RHARM and GRUAN data, which must be 
quantified. By construction, the RHARM approach is expected to be similar on average to the GRUAN products. For 

Figure B1.  Mean difference profiles of temperature (top panels) and relative humidity (bottom panels) with the 
corresponding standard deviations (horizontal bar) calculated from the comparison of the nighttime (panels a and c) and 
daytime (panels b and d) difference “Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) 
minus Integrated Global Radiosonde Archive” (black lines) and “GRUAN minus Radiosounding HARMonization” (red lines) 
for the profiles available at all GRUAN stations, in the period 2008–2018.
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temperature at night, the difference GRUAN-IGRA is almost constant from the surface up to 300 hPa with a value of 
0.12–0.13 K, while at lower pressure it is a slightly smaller with values of 0.1 K (Figure B1). In this comparison data 
from stations in Table 2 only in the GRUAN era (since 2008) have been considered. Conversely, the GRUAN-RHARM 
difference is close to zero at all levels, with values smaller than 0.05 K up to 250 hPa and close to zero at higher alti-
tudes. During the day, the RHARM-GRUAN difference is near zero at all levels, while the GRUAN-IGRA difference 
is nearly constant at all the pressure levels at c.0.12 K. The standard deviations for both the differences are very similar 
and for both night and day show increasing values toward lower pressures from 0.2 to 0.3 K.

For RH at night, the GRUAN-IGRA difference increases with height from less than 0.5%–2.0% and, during the 
day, from 0.7% to 1.8% (Figure B1). The RHARM adjustments reduce these differences on average near zero, 
both during night and day. The standard deviation of the RH difference is similar for both the difference profile at 
night and day with values ranging between 1.5% and 5.0% RH, increasing with decreasing pressures.

In contrast to temperature and RH, the wind speed mean differences (not shown) for both the GRUAN-IGRA 
and GRUAN-RHARM difference profiles are very close to zero from 1,000 to 300 hPa. Above this altitude, the 
GRUAN-RHARM difference is smaller than IGRA-GRUAN difference and consistently below 0.05 m/s, while 
IGRA shows differences with GRUAN within about ±0.3 m/s. The larger variability of GRUAN-IGRA at alti-
tudes above 250 hPa are due to the different data interpolation carried out in the GRUAN and IGRA profiles in a 
region where the wind speed variability is high (i.e., small differences in the pressure data interpolation are rep-
resentative of large altitude differences and may generate large differences in the wind speed values to compare).

The RHARM RH values become considerably more similar to GRUAN, especially for values higher than 55% 
RH (Figure B2). These results imply that manufacturer data processing applied to the RH radiosounding profiles 
measured by Vaisala RS92 radiosondes is not adequate to compensate for instrumental effects, as it is inducing 
an apparent dry bias compared to the metrologically traceable GRUAN processing. The RHARM procedures are 
able to mimic, at the aggregated level, the GRUAN processing adjustments.

Figure B2.  Top panel, comparison between Global Climate Observing System (GCOS) Reference Upper Air Network 
(GRUAN) (black) and Integrated Global Radiosonde Archive (gray) RH measurements at 300 hPa for the profiles available 
at all GRUAN stations (only RS92 sondes), in the period 2008–2018 The comparison comprises all the night and daytime 
observations on 00:00 and 12:00 UTC. Bottom panel, same as top panel but for GRUAN (black) and Radiosounding 
HARMonization (gray).
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Data Availability Statement
The RHARM dataset is provided in textual format (comma-separated values) and is available through the Cli-
mate Data Store (CDS) at https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-observations-igra-baseline- 
network?tab=overview.
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