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A B S T R A C T

Following the Guide to the expression of uncertainty in measurement (GUM), the slope and intercept in
straight-line regression tasks can be estimated and their uncertainty evaluated by defining a measurement
model. Minimizing the weighted total least-squares functional appropriately defines such a model when both
regression input quantities (𝑿 and 𝒀 ) are uncertain.

This paper compares the uncertainty of the straight line evaluated by propagating distributions and by
the law of propagation of uncertainty (LPU). The latter is in turn often approximated because the non-linear
measurement model does not have closed form. We reason that the uncertainty recommended in the dedicated
technical specification ISO/TS 28037:2010 does not fully implement the LPU (as intended) and can understate
the uncertainty. A systematic simulation study quantifies this understatement and the circumstances where
it becomes relevant. In contrast, the LPU uncertainty may often be appropriate. As a result, it is planned to
revise ISO/TS 28037:2010.
. Introduction

Estimating the straight-line relationship between two quantities is
fundamental task in metrology and other disciplines. For example,

nsuring metrological traceability may involve the calibration of obser-
ations against a measurement standard over a certain range. Usually
oth quantities, say 𝑿 and 𝒀 , are uncertain and often the relationship
etween them is described by a straight line or even close to the identity
ine. Without evaluating the uncertainty, tasks such as calibrations,
alidations and performance evaluations are incomplete in metrology.

This research focuses on straight-line errors-in-variables regression,
hat is on estimating a straight line when the two quantities determin-
ng the regression line are both uncertain. More precisely, the focus
ill be on evaluating the uncertainty of the slope and intercept in

traight-line errors-in-variables regression.
The Guide to the expression of uncertainty in measurement (in short

UM, [1–3]) builds on the formulation of a measurement model to
erive estimates, associated uncertainties and possibly distributions for
he output quantities. The uncertainties of the input quantities of this
odel and possible correlations between them must be known in ad-

ance. The measurement model relates the input quantities (𝑿 and 𝒀 )
o the output quantities (slope and intercept here), and for regression

∗ Corresponding author.
E-mail address: katy.klauenberg@ptb.de (K. Klauenberg).

problems its definition depends on the estimation method [4–6]. In
straight-line errors-in-variables regression, various methods are avail-
able to estimate the slope and intercept, such as least-squares, finite-
sample adjusted, inequality-constrained or structured least-squares,
least median of squares, maximum likelihood, method of moments
and Bayesian methods (e.g. [7–13]). Even more algorithms exist to
determine their solution. Different measurement models could thus
be formulated for these regression problems. In Section 2.1, we will
define the measurement model based on the weighted total least-
squares (WTLS) method, which is the appropriate least-squares method
(e.g. [14–17]) and is recommended in ISO publications [16,18]. Evalu-
ating uncertainties based on the measurement model is regarded as the
GUM perspective here and commonplace for regression applications
in metrology. Alternative statistical approaches deriving asymptotic,
resampling, subjective or other uncertainties will not be the focus.

Following the GUM, the uncertainty of measurands can be evaluated
by applying the (linear) law of propagation of uncertainty (LPU) to the
input quantities, i.e. by employing [1] or generalizing it to multiple
and possibly implicitly defined output quantities [3]. This process of
propagating uncertainties involves evaluating the partial derivatives
of the measurement model at the estimates of the input quantities. It
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is described in Section 2.2 for WTLS-based measurement models, and
explicit, closed form and approximate approaches are reviewed briefly.
Alternatively, the uncertainty of measurands and other summary in-
formation can be evaluated by propagating probability distributions
of input quantities, mainly by applying the Monte Carlo (MC) method
in [2] or generalizing it to multiple output quantities [3], as described
in Section 2.3.

Since the WTLS-based measurement model is generally not linear
in the input quantities, it is not evident how different the uncertain-
ties according to the LPU are compared to those according to MC.
Moreover, the evaluation of uncertainties for the slope and intercept
according to the LPU is difficult for the general WTLS-based measure-
ment model, as derivatives of an implicit model and matrix inversions
are involved [19]. Approximating the uncertainties according to the
LPU is prevalent (cf. Section 2.2), and this research will scrutinize
the uncertainty recommended in the technical specification ISO/TS
28037:2010 [16], which is based on the Jacobian of the residuals.
Which properties does this uncertainty have? Is it close to the uncer-
tainty evaluated according to the LPU? And is the latter in turn close to
the uncertainty evaluated by applying MC? Section 3 will answer the
above questions for the most common WTLS cases.

The ISO technical specification [16] addresses straight-line cali-
bration problems having very general classes of uncertainty structure
and offers algorithms for their solution. It was the first time such a
comprehensive capability had been offered in an ISO publication. The
technical specification claims to evaluate uncertainties according to the
LPU even for the most general WTLS-based measurement model (see
clauses 5.5.1 and 8.2.2 as well as Note 7 in clauses 7.2.1 and 10.2.2
in [16]). Section 3.1 pinpoints the theoretical relationship between the
uncertainty evaluated according to the LPU and according to [16]. It
shows that these uncertainties differ from each other — for the general
model just as when explicit or closed formulae exist. While for the most
general classes of calibration problems, the technical specification [16]
acknowledges in clause 5.5.1 that its methods will be more accurate for
data having small associated uncertainties, this paper shows that they
are not a faithful implementation of the LPU. To ensure that the LPU is
fully implemented, the (second-derivative) Hessian matrix must be used
in addition to the Jacobian (first-derivative matrix) of the residuals and,
moreover, the latter matrix should be evaluated at the observed rather
than the fitted (modelled) points.

Section 3.2 then quantifies the difference between the uncertain-
ties according to the LPU, the approximated LPU in [16] and MC
for common WTLS-based models. An extensive simulation study for
settings where the uncertainty according to the LPU can be evaluated
explicitly shows that it is roughly 170𝐾 % larger for the slope than
the uncertainty evaluated according to the technical specification [16].
The latter is roughly 230𝐾 % smaller than the uncertainty derived by
MC, where 𝐾 is the minimum of the variance in either input quantity
divided by the variance of its fitted values. The simulation shows
that the ISO/TS 28037:2010 routinely understates the uncertainty in
straight-line errors-in-variables regression by several percent.

In Section 4 we draw conclusions for metrology and briefly discuss
alternatives to measurement-model-based inference.

2. Evaluating uncertainty for the weighted total least-squares
method

2.1. The measurement model

Let 𝑿 = (𝑋1,… , 𝑋𝑁 )⊤ and 𝒀 = (𝑌1,… , 𝑌𝑁 )⊤ be the two quantities
determining the straight line and 𝒙 = (𝑥1,… , 𝑥𝑁 )⊤, 𝒚 = (𝑦1,… , 𝑦𝑁 )⊤

the estimates available for them. In addition, let 𝑼 be the symmet-
ric, positive definite covariance matrix containing the known uncer-
tainties and correlations associated with 𝒙 and 𝒚. That is, the di-
gonal diag(𝑼 ) =

(

𝑢2(𝑥1),… , 𝑢2(𝑥𝑁 ), 𝑢2(𝑦1),… , 𝑢2(𝑦𝑁 )
)⊤ contains the
2

variances. The off-diagonal elements 𝑼 𝑖,𝑗 = 𝑟𝑖,𝑗𝑢(𝑥𝑖)𝑢(𝑥𝑗 ) as well as c
𝑼𝑁+𝑖,𝑁+𝑗 = 𝑟𝑁+𝑖,𝑁+𝑗𝑢(𝑦𝑖)𝑢(𝑦𝑗 ) contain the correlations 𝑟𝑖,𝑗 and 𝑟𝑁+𝑖,𝑁+𝑗
among the quantities, and the elements 𝑼 𝑖,𝑁+𝑗 = 𝑟𝑖,𝑁+𝑗𝑢(𝑥𝑖)𝑢(𝑦𝑗 ) com-
prise the correlations 𝑟𝑖,𝑁+𝑗 between them for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 = 1,… , 𝑁 .
Repeated observations are not considered.

Straight-line errors-in-variables regression then aims at estimating
the intercept 𝛽0 and slope 𝛽1 best fitting the observations 𝒙, 𝒚 while
considering all uncertainties and covariances in 𝑼 . The appropriate
least-squares method is based on the WTLS functional

𝑄 =
(

𝒙 − 𝒙∗
𝒚 − 𝒚∗

)⊤

𝑼−1
(

𝒙 − 𝒙∗
𝒚 − 𝒚∗

)

(1)

(e.g. [14–17]), which describes a sum of weighted squared residuals
between the observations and the unknown true values 𝒙∗, 𝒚∗. The latter
are linearly related:

𝒚∗ = 𝛽0𝟏 + 𝛽1𝒙∗,

where 𝟏 denotes a vector of ones. The vector minimizing functional
(1) with respect to 𝛽0, 𝛽1 and 𝒙∗ defines the solution (𝛽0, 𝛽1,𝒙∗

⊤
) of the

WTLS method.
For straight-line errors-in-variables regression, the measurement

model required by the GUM [1–3] can then be defined based on the
WTLS method by replacing the estimates 𝒙 and 𝒚 in the minimiza-
tion of 𝑄 by the underlying quantities 𝑿 = (𝑋1,… , 𝑋𝑁 )⊤ and 𝒀 =
(𝑌1,… , 𝑌𝑁 )⊤, respectively. (C.f. e.g. [5,15,17,20].) That is,
(

𝛽0, 𝛽1,𝑿∗⊤
)⊤

= argmin
𝛽0 ,𝛽1 ,𝒙̃

𝑄(𝑿, 𝒀 ), with (2)

𝑄(𝑿, 𝒀 ) =
(

𝑿 − 𝒙̃
𝒀 − 𝛽0𝟏 − 𝛽1𝒙̃

)⊤

𝑼−1
(

𝑿 − 𝒙̃
𝒀 − 𝛽0𝟏 − 𝛽1𝒙̃

)

.

Usually the intercept 𝛽0 and the slope 𝛽1 are of primary interest. Then
(𝛽0, 𝛽1) define the measurand and 𝑿∗ are auxiliary output quantities.

We will call Eq. (2) the WTLS-based (measurement) model here.
he model is multivariate, and usually non-linear and implicit. That is,
odel (2) is linear in 𝑿 and 𝒀 only when, for example, the uncertainty

n one of the two input quantities is zero, where it reduces to a
eighted least-squares (WLS)-based measurement model. In addition,

he model is not available as a closed form expression in 𝑿 and 𝒀 except
or special cases. Table 1 lists some well-known special WTLS cases
nd properties of their measurement models. Many other cases [21]
nd names are in use. For example, WTLS regression is also called
eneralized least-squares regression [15], generalized Gauss–Markov
egression [21], or confusingly, just total least squares (TLS). Also
ase C may not be called Deming regression in some communities.

The general WTLS-based model requires iterative procedures to
erive the estimates 𝛽0, 𝛽1 (see e.g. [14] for a review, [24] for numerical
spects or the technical specification [16]). The estimated straight line
s invariant when interchanging the quantities 𝑿 and 𝒀 (due to the
ymmetry of model (2) except for 𝛽1 = 0) and 𝛽0, 𝛽1 are maximum
ikelihood estimators under normality assumptions [14].

Let us now focus on evaluating uncertainties associated with the
lope and intercept of the straight line under measurement model (2).
ollowing the GUM [3], this evaluation can be carried out by a linear
ropagation of uncertainties (described below) or by a propagation of
istributions (Section 2.3).

.2. Uncertainty according to the law of propagation of uncertainty

The LPU implies that uncertainties of all input quantities are propa-
ated through a linearized measurement model [1,3]. Since the WTLS-
ased model (2) is non-linear in general, the uncertainties derived
ccording to the LPU only approximate the uncertainty.

Let 𝑼LPU(𝑿∗, 𝛽0, 𝛽1) be the covariance matrix of the output derived
y the LPU, i.e. containing the squared standard uncertainties and
ovariances after linearizing model (2). This matrix is derived via the
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Table 1
Overview of some well-known special WTLS cases and the properties of their measurement models.
Case Name Definition Measurement model

A WLS 𝑢(𝑥𝑖) = 0 for all 𝑖 linear (Appendix A)

B orthogonal regression, also known as TLS 𝑼 = 𝑐𝑰 explicit

C Deming regression 𝑟𝑖𝑗 = 0, 𝑢(𝑦𝑖) = 𝑐𝑢(𝑥𝑖) for 𝑖 ≠ 𝑗 explicit (Eqs. (9) and (10))

D cross correlation only 𝑟𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗 +𝑁 implicit, 1-d optimization [22,23]
implicit function theorem because the measurement model (2), also
restated as
𝜕𝑄(𝑿, 𝒀 )
𝜕(𝒙̃⊤, 𝛽0, 𝛽1)

= 𝟎,

generally depends on the input 𝑿, 𝒀 and the output 𝛽0, 𝛽1,𝑿∗. Formally,
the covariance matrix can be expressed as

𝑼LPU(𝑿∗, 𝛽0, 𝛽1) =
(

𝜕𝛽𝛽𝑄
)−1 (𝜕𝛽𝑋𝑄

)

𝑼
(

𝜕𝛽𝑋𝑄
)⊤ (

𝜕𝛽𝛽𝑄
)−1 (3)

(see clause 6.3 in [3] for implicit models, [25] for minimization-based
and [18,26] for errors-in-variables regression), where

𝜕𝛽𝛽𝑄 ∶=
𝜕2𝑄(𝑿, 𝒀 )

𝜕(𝒙̃⊤, 𝛽0, 𝛽1) 𝜕(𝒙̃
⊤, 𝛽0, 𝛽1)⊤

and

𝛽𝑋𝑄 ∶=
𝜕2𝑄(𝑿, 𝒀 )

𝜕(𝒙̃⊤, 𝛽0, 𝛽1) 𝜕(𝑿⊤, 𝒀 ⊤)⊤

enote the Hessian of 𝑄(𝑿, 𝒀 ) with respect to the output and the
Jacobian of the model with respect to the input quantities, respectively.
All derivatives are evaluated at the estimates 𝒙∗, 𝛽0, 𝛽1 and 𝒙, 𝒚. An
algorithm to evaluate (3) exactly up to numerical errors is described
in [19,27] for WTLS-based models without cross correlation, and this
could be extended to the general case.

The covariance matrix (3) can be given in closed form for special
cases only. For cases B to D in Table 1 (or clauses 7 and 8 in the
technical specification [16]), [22,28] state the measurement model for
the slope as an implicit ‘cubic’ function, apply the implicit function
theorem and derive the LPU variances as

𝑢2(𝛽1)LPU =
∑

𝑖 𝑊 2
𝑖

(

𝑈 2
𝑖 𝑢

2(𝑦𝑖) + 𝑉 2
𝑖 𝑢

2(𝑥𝑖) − 2𝑟𝑖,𝑛+𝑖𝑉𝑖𝑈𝑖𝑢(𝑥𝑖)𝑢(𝑦𝑖)
)

𝐷2
, (4)

𝑢2(𝛽0)LPU = 1
∑

𝑖 𝑊𝑖
+
(

2 ̄̂𝑥
∗
− 𝑥̄

)2
𝑢2(𝛽1)LPU +

2
(

2 ̄̂𝑥
∗
− 𝑥̄

)(

̄̂𝑥
∗
− 𝑥̄

)

𝐷
, with

(5)
𝐷 = 1∕𝛽1

∑

𝑖
𝑊𝑖𝑈𝑖𝑉𝑖 + 4

∑

𝑖
𝑊𝑖𝑈

∗
𝑖

(

𝑥∗𝑖 − 𝑥𝑖
)

− 1∕𝛽1
∑

𝑖
𝑊 2

𝑖 (𝛽1𝑈𝑖 − 𝑉𝑖)2𝑟𝑖,𝑛+𝑖𝑢(𝑥𝑖)𝑢(𝑦𝑖),

where 𝑊𝑖 =
(

𝛽21𝑢
2(𝑥𝑖) + 𝑢2(𝑦𝑖) − 2𝛽1𝑟𝑖,𝑛+𝑖𝑢(𝑥𝑖)𝑢(𝑦𝑖)

)−1
, 𝑧̄ =

(
∑

𝑖 𝑊𝑖𝑧𝑖
)

∕
(
∑

𝑖 𝑊𝑖
)

denotes the weighted average of a vector, 𝑉𝑖 = 𝑦𝑖−𝑦̄, 𝑈𝑖 = 𝑥𝑖−𝑥̄
and 𝑈∗

𝑖 = 𝑥∗𝑖 −
̄̂𝑥
∗. For constant variance ratios without correlation (cases

B and C in Table 1), 𝛽1 can be stated explicitly (see Section 3.2), the
uncertainties 𝑢(𝛽1)LPU, 𝑢(𝛽0)LPU (termed LPU uncertainties here) become
explicit as well, and the covariance is easily calculated:

𝑢(𝛽0, 𝛽1)LPU = −𝑥̄𝑢2(𝛽1)LPU.

For TLS-based models (case B in Table 1 assuming equal uncer-
tainties and no correlation) whose line passes through the origin, [25]
derived the exact LPU uncertainty for the angle of the line (see sec. 7
and equ. (38) in [25]), which can be transformed to an exact LPU
uncertainty of the slope (see Appendix C).

For the WTLS-based model with cross correlation only (case D in
Table 1) and an angle parametrization of the line, [23,29] derive the
inverse Hessian. However, the implicit dependence of the solution on
the input quantities is not accounted for (see Appendix D).

The literature provides additional approximations of the LPU uncer-
tainty, and [19,30] review some of them. For general WTLS-based mea-
surement models, the technical specification ISO/TS 28037:2010 [16]
3

and also [15] recommend the uncertainty

𝑼 ISO(𝑿∗, 𝛽0, 𝛽1) =
(

𝑱⊤𝑼−1𝑱
)−1 , with 𝑱 =

(

−𝑰 0 0
−𝛽1𝑰 −𝟏 −𝒙̃∗

)

(6)

being the Jacobian of the unweighted residuals. However, how does
this prevalent approximation compare to the application of the LPU
for the general WTLS-based model? Is the difference important? The
next section compares the LPU uncertainty with the approximation in
the technical specification. We do so theoretically in Section 3.1 and
quantify the differences empirically in Section 3.2.

Recall that the LPU uncertainty in turn is only an approximation
of the true uncertainty. The linearization may lead to smaller or larger
uncertainties. Section 3.2 will empirically quantify this difference as
well.

2.3. Uncertainty according to the Monte Carlo method

The GUM provides an alternative to approximating uncertainties by
the LPU, namely the propagation of distributions, usually via the MC
method [3]. While the LPU requires estimates and uncertainties, but no
distributional assumptions, the MC method inherently does. In return,
the MC method provides a joint distribution for the output, i.e. more
information than just estimates, standard uncertainties and correlation.

We follow the GUM (clause 6.4.8 in [2]) and assign a multivariate
Normal distribution
(

𝑿
𝒀

)

∼ 𝑁
((

𝒙
𝒚

)

,𝑼
)

(7)

to the input quantities, assuming that no other knowledge is available
except for the input estimates, their standard uncertainties and corre-
lations. Different assumptions lead to different distributions (such as
in [31]) and to conclusions to be researched in future but are suspected
to differ from ours. The joint distribution of the input quantities is then
propagated through the WTLS-based measurement model (2) applying
MC. That is, new observations (𝒙′⊤, 𝒚′⊤)⊤ are sampled from (7) repeat-
edly and model (2) is applied to each. The resulting solutions

(

𝛽′0, 𝛽
′
1
)

and possibly 𝒙∗′ are then samples from the joint distribution of output
quantities and form a discrete representation thereof (clause 7.5 in [3]).
Depending on the number of samples drawn for the input quantities,
the samples of the output quantities approximate the distribution arbi-
trarily closely. Consequently, the mean and (co)variance of the output
sample (c.f. clause 7.6 in [3]) can be used to approximate the estimate
and its uncertainty. Likewise, additional summary information may be
derived from the sample, such as coverage intervals or regions. Under
the assumption that any differences due to drawing only a finite sample
are small, we will treat the uncertainties derived by MC as the reference
here. MC methods are seen, at least by Bayesian statisticians, as a ‘gold
standard’ for the numerical calculation of uncertainties [32].

For WTLS-based measurement models, the MC method is also de-
scribed in [17,31,33]. In contrast, [19,22,34] draw samples centred
around the output estimates 𝒙∗, 𝒚∗ instead of the input estimates 𝒙, 𝒚,
which describes a kind of bootstrap [35]. Even though [36] draws sam-
ples around 𝒙, 𝒚, a WLS-based measurement model is used. These sim-
ulations do not implement the MC method described in the GUM [2,3]
for the WTLS-based model (2) and hence are not used for comparisons
here.
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3. Comparing uncertainty approximations for the weighted total
least-squares method

3.1. Theoretical properties of linearized uncertainties

Let us compare the exact LPU uncertainty (3) with its prevalent
approximation in the technical specification ISO/TS 28037:2010 [16].
The latter recommends 𝑼 ISO(𝑿∗, 𝛽0, 𝛽1) in (6) as the covariance matrix
for the slope and intercept in errors-in-variables regressions, based on
the Jacobian 𝑱 of the unweighted residuals 𝒓, evaluated at the esti-
mates (𝒙∗⊤, 𝛽0, 𝛽1). We can observe a list of properties of 𝑼 ISO(𝑿∗, 𝛽0, 𝛽1)
compared to 𝑼LPU(𝑿∗, 𝛽0, 𝛽1).

Firstly, when one of the quantities 𝑿, 𝒀 is known exactly (case A
in Table 1), the uncertainty derived in the technical specification coin-
cides with the LPU uncertainty, as one would expect. (See Appendix A.)

Secondly, the approximated uncertainty is equivalent to evaluating
the exact LPU uncertainty at the fitted points 𝒙∗, 𝒚∗ instead of at the
observed ones 𝒙, 𝒚. In [22] this was shown for case D in Table 1, where
the uncertainty in Eqs. (4) and (5) reduces to

𝑢2(𝛽1)ISO = 1
∑

𝑖 𝑊𝑖

(

𝑥∗𝑖 −
̄̂𝑥
∗)2

, 𝑢2(𝛽0)ISO = 1
∑

𝑖 𝑊𝑖
+
(

̄̂𝑥
∗)2

𝑢2(𝛽1)ISO (8)

nd is identical to the uncertainties recommended in clause 8 of the
echnical specification [16]. Appendix B extends this finding to the gen-
ral WTLS-based model and shows that replacing 𝒙, 𝒚 in the covariance
atrix (3) with 𝒙∗, 𝒚∗ reduces to the matrix (6).

Furthermore, the covariance matrix (6) can be viewed as an ad-
itional linearization of the LPU covariance matrix (3) in 𝛽1 and
∗. That is, if the unweighted residuals 𝒓 were linear in 𝛽1,𝑿∗, then

𝛽𝛽𝑄 would collapse into 𝑱⊤𝑼−1𝑱 (see (B.1) in Appendix B) and thus
ISO(𝑿∗, 𝛽0, 𝛽1) = 𝑼LPU(𝑿∗, 𝛽0, 𝛽1). However, 𝒓 is not linear in 𝛽1 or 𝑿∗.

Along the same lines, the uncertainty recommended in techni-
al specification [16] can be viewed as the uncertainty of the step
=
(

𝑱⊤𝑼−1𝑱
)−1 𝑱⊤𝑼−1𝒓 performed by the Gauss–Newton minimiza-

ion algorithm (c.f. equ. (4) in [25]). This counter-intuitive dependence
f the uncertainty on the minimization algorithm was observed in [25]
nd can be solved by replacing the step direction

(

𝑱⊤𝑼−1𝑱
)−1 by the

nverse Hessian 2
(

𝜕𝛽𝛽𝑄
)−1.

In a nutshell, the uncertainty evaluated in the technical specifica-
ion [16] differs from the LPU uncertainty. This difference will be large
henever 𝒙 or 𝒚 are far from 𝒙∗ or 𝒚∗, or when 𝛽1𝑿∗ is markedly
on-linear. Since the data 𝒙, 𝒚 are more variable than the fitted values
∗̂, 𝒚∗, we suspect [16] to underrate the LPU uncertainty. For TLS-based
odels (case B in Table 1) with independent and identical normally
istributed residuals, this underrating was shown in [25, sec. 6].

Empirically, [19,27] observed differences for the uncertainties of
he slope and intercept for a single data set and [37], for 10 data sets.

e will expand these observations in a systematic simulation study.

.2. Empirical properties – Simulations

Simulations will empirically quantify the differences between the
ncertainties according to MC, the LPU and the approximated LPU as
n [16]. We examine case C in Table 1, assuming no correlation and
onstant variance ratios 𝑢2(𝑦𝑖) = 𝑐𝑢2(𝑥𝑖). This setting has the advantage
hat explicit formulas for the estimates of the slope and intercept as
ell as their uncertainties are available. That is, the comparison of
ncertainties will not be masked by numerical errors due to an iterative
lgorithm for the estimates. In particular, the estimates are calculated
ollowing [38], with the slope and intercept being

1̂ =
𝐵

2
∑

𝑖 𝑈𝑖𝑉𝑖𝑢−2(𝑥𝑖)
+

(

𝐵2 + 4𝑐
(
∑

𝑖 𝑈𝑖𝑉𝑖𝑢−2(𝑥𝑖)
)2
)1∕2

2
∑

𝑖 𝑈𝑖𝑉𝑖𝑢−2(𝑥𝑖)
(9)

0̂ = 𝑦̄ − 𝛽1𝑥̄, where 𝐵 =
∑

𝑉 2
𝑖 𝑢

−2(𝑥𝑖) − 𝑐
∑

𝑈2
𝑖 𝑢

−2(𝑥𝑖), (10)
4

𝑖 𝑖
nd their uncertainties are evaluated according to the LPU (Eqs. (4), (5))
s well as the approximated LPU (Eq. (8)). In addition, the estimates
nd uncertainties were evaluated from 105 MC draws according to (7),

where for each MC draw, the estimates were calculated. See Appendix E
for validations of the programming code. Systematic simulation studies
for more complex settings are desirable, but are computationally more
demanding and probably need to be restricted to (application) specific
settings due to the sheer variety.

The simulation study covers small as well as large data sets and
regressions with a variety of different slopes. The uncertainty in 𝑥
covers a range from tiny to considerable, and either the uncertainty
of both quantities is roughly equal to 𝑢(𝑥) ≈ 𝑢(𝑦) or 𝑢(𝑥)|𝛽1| ≈ 𝑢(𝑦), or
either uncertainty dominates. In particular, the simulation includes all
combinations of 𝛽1, 𝑢2(𝑦) = 𝑢2(𝑦𝑖) and 𝑁 listed in Table 2 and a grid
of values 𝑢2(𝑥) = 𝑢2(𝑥𝑖) smaller than 0.25Var (𝒙∗). For each setting in

able 2, 𝑁 true values 𝑥∗𝑖 were randomly drawn from 𝑈 (0, 1). Without
oss of generality, the intercept 𝛽0 = 0 did not vary during simulations
but was estimated). One data set 𝒙, 𝒚 was then drawn from the Normal
istribution
(

𝒙
𝒚

)

∼ 𝑁
((

𝒙∗
𝛽0𝟏 + 𝛽1𝒙∗

)

,𝑼
)

. (11)

or comparison purposes, 100 data sets were simulated for the setting
= 500, 𝛽1 = 1, 𝑢(𝑦) = 0.1, 𝑢(𝑥)∕sd(𝒙∗) = 0.2 and a 95% interval of the

esults has a half-width below 0.0071 in Fig. 1 and 0.0047 in Fig. 2,
here sd denotes the standard deviation and Var the variance).

The difference between the estimates derived from the exact for-
ula (9) and from the MC draws is tiny compared with the difference to

he simulated values and compared with the uncertainty. (Cf. Figure F.1
n the supplement.) Estimates are not considered further.

Fig. 1 displays on the left-hand side the differences between the
tandard uncertainty for the slope evaluated according to the LPU (for-
ula (4)) and the approximated LPU as in [16] (formula (8)). On the

ight-hand side Fig. 1 displays the differences between the uncertainty
valuated according to MC (see Section 2.3) and the approximated LPU
s in [16] (formula (8)). The ratios between these uncertainties are
isplayed for data sets of size 𝑁 = 500 and discussed subsequently. The
upplement displays these ratios for fewer observations of 𝑁 = 100 and
= 20.
Let us first quantify the approximated LPU uncertainty in terms

f the LPU uncertainty. The LPU uncertainty is always larger than its
pproximation, and their ratio is roughly given by

𝑢(𝛽1)LPU

𝑢(𝛽1)ISO ≈ 1 + 1.7min(𝐾), with 𝐾 =

(

𝑢2(𝑥)
Var

(

𝒙̂∗
) ,

𝑢2(𝑦)
Var

(

𝒚∗
)

)

(12)

(displayed by the pink and dashed lines in the left graph of Fig. 1). This
empirical approximation works well when roughly 𝑢(𝑦) ∉ (1∕2, 2) 𝑢(𝑥)|𝛽1
nd when 𝑁 is large. For small 𝑁 , data sets from the same sim-
lation setting will differ more, and we observe more variability
round the approximate ratio (12); compare Figure F.3 in the sup-
lement for 𝑁 = 20. For 𝑢(𝑦) ≈ 𝑢(𝑥)𝛽1 (marked by the open cir-
les in Fig. 1), the approximated LPU uncertainty will be slightly
loser to the exact LPU uncertainty than in (12). Altogether, the
ncertainty in the technical specification [16] will be more than 5%
maller than the LPU uncertainty it seeks to approximate, whenever
in
(

𝑢(𝑥), 𝑢(𝑦)∕|𝛽1|
)

∕
√

Var
(

𝒙̂∗
)

> 0.2 (dotted lines in Fig. 1). This
difference is due to the technical specification [16] evaluating the
involved derivatives at the fitted data points instead of the observed
ones (see Section 3.1).

Moreover, we quantify the approximated LPU uncertainty in [16] in
terms of the uncertainty evaluated by MC. The MC uncertainty is larger
than the approximated LPU uncertainty, and their ratio is roughly given
by

𝑢(𝛽1)MC

ISO ≈ 1 + 2.3min(𝐾), with 𝐾 =

(

𝑢2(𝑥)
( ∗) ,

𝑢2(𝑦)
( ∗)

)

(13)

𝑢(𝛽1) Var 𝒙̂ Var 𝒚
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Table 2
Overview of all combinations of the slope 𝛽1, the uncertainty 𝑢2(𝑦) and the number of observations 𝑁 for the simulation study. For each such setting and for a grid of uncertainties
2(𝑥) ≤ 0.021, one data set (𝐱⊤, 𝐲⊤) was drawn at random from (11).
𝑢2(𝑦) 𝑢(𝑦)∕sd(𝐱∗) 𝛽1 = −1 𝛽1 = 0.1 𝛽1 = 1 𝛽1 = 2 𝛽1 = 10

0.01 0.35 𝑁 = 100 20, 100, 500 100, 500 100, 500 20, 100, 500
0.05 0.77 𝑁 = 100 20, 100, 500 100, 500 100 20, 100
0.1 1.1 𝑁 = 100 20, 100, 500 20, 100, 500 20, 100, 500 20, 100, 500
0.2 1.5 𝑁 = 100 20, 100, 500 100, 500 100 20, 100
Fig. 1. Ratios of the standard uncertainty for the slope evaluated according to the LPU and the approximated LPU as in [16] (left), as well as evaluated according to MC and the
approximated LPU (right) for 𝑁 = 500 observations and for the settings in Table 2. See text for details.
displayed by the pink and dashed lines in the right graph of Fig. 1).
gain, this empirical approximation works well when
(𝑦) ∉ (1∕2, 2) 𝑢(𝑥)|𝛽1| and when 𝑁 is large. Small numbers of ob-

servations (such as 𝑁 ≈ 20) need further examination, as the ratio
𝑢(𝛽1)MC∕𝑢(𝛽1)ISO seems to be better approximated by
1+2.3min(𝐾)+0.2max(𝐾) when min(𝐾) = 𝑢2(𝑦)∕Var

(

𝒚∗
)

, cf. Figure F.3
n the supplement. In addition, for small 𝑁 and noisy data sets, the
umber of MC draws may need to exceed 105 by far.1 Altogether, the
ncertainty in the technical specification [16] will be more than 5%
maller than the MC uncertainty, whenever
in
(

𝑢(𝑥), 𝑢(𝑦)∕|𝛽1|
)

∕
√

Var
(

𝒙̂∗
)

> 0.15 (dotted lines in Fig. 1). This
ifference is due to the technical specification [16] linearizing the
easurement model and evaluating the involved derivatives at the

itted data points instead of the observed ones (see Section 3.1).
Likewise, the ratio of the uncertainty evaluated by MC and by the

PU is displayed in Fig. 2 (left) and can be approximated. The LPU
ncertainty is usually smaller and will be more than 5% smaller than
he MC uncertainty only when min

(

𝑢(𝑥), 𝑢(𝑦)∕|𝛽1|
)

∕
√

Var
(

𝒙̂∗
)

> 0.4.
o ease comparison, all three ratios 𝑢(𝛽1)MC∕𝑢(𝛽1)ISO, 𝑢(𝛽1)LPU∕𝑢(𝛽1)ISO

nd 𝑢(𝛽1)MC∕𝑢(𝛽1)LPU are displayed in Fig. 2 (right) for the setting
1 = 1, 𝑢2(𝑦) = 0.1 and 𝑁 = 500. While propagating uncertainties
hrough a linearized model may approximate the uncertainty of the

1 We observed unreasonably large MC uncertainty ratios, i.e.
(𝛽1)MC> 3𝑢(𝛽1)ISO, for 𝑁 = 20, 𝛽 = 0.1, few 𝑢2(𝑥)∕Var

(

𝒙̂∗) ≈ 0.452 and
all simulated values 𝑢(𝑦). These 6 out of 360 data sets are not displayed in
Figure F.3 in the supplement.
5

slope well, the approximated LPU as in [16] shows marked discrep-
ancies for most of these data sets.

These conclusions and the results shown in Figs. 1, 2, F.2, F.3
are representative for arbitrary values of the intercept 𝛽0 and for
values of 𝑁, 𝛽1, 𝑢(𝑦) in the range of those in Table 2 as well as for
values 𝑢(𝑥) up to half the standard deviation of the true values 𝒙∗.
The randomness of each simulated data set contributes little. In ad-
dition, the results scale to settings with other ranges of true values,
as first simulations for 𝑥∗ ∼ 𝑈 (0, 2) and 𝑥∗ ∼ 𝑁(1, 1∕12) indicate.
Furthermore, simulating data sets with 𝛽1 = 1, 𝑁 = 500 and varying
squared uncertainties 𝑢2(𝑦𝑖) ∼ 𝑁(0.1, 0.022) for a range of variance ra-
tios 𝑐 = 𝑢2(𝑦𝑖)∕𝑢2(𝑥𝑖) ≤ 0.21 shows very similar results compared to the
data sets with 𝑢2(𝑦) = 0.1. It is therefore likely that the above results
extend to the general setting C in Table 1 with explicit formulas for
estimates and uncertainties.

4. Discussion and conclusions

This research reviewed how straight-line errors-in-variables regres-
sion can be approached by closely following the internationally recog-
nized GUM. When the uncertainties of the two quantities involved in
the regression are known, it is straightforward and standard to base
the measurement model on the weighted total least-squares functional.
Estimates and uncertainties for the slope and intercept can then be
evaluated either by propagating estimates and uncertainties of the
input quantities through the linearized model or by propagating their
distributions through the full model.
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Fig. 2. Ratios of the standard uncertainty for the slope evaluated according to the LPU and MC for 𝑁 = 500 observations and for the settings in Table 2 (left graph). For
comparison, all three ratios for the uncertainty of the slope (evaluated according to the LPU, approximated LPU and MC) are displayed to the right for a single simulation setting
(𝛽1 = 1, 𝑢2(𝑦) = 0.1, 𝑁 = 500).
While the latter requires a numerical approach, namely the Monte
Carlo method, the analytic expressions for the former are generally
difficult. They include the evaluation and derivatives of an implicit
function as well as matrix inversion methods. The uncertainties evalu-
ated by the (linear) law of propagation of uncertainty differ from those
evaluated by propagating distributions because the weighted total least-
squares based measurement model is non-linear. This research is the
first to quantify this difference in a systematic simulation study. In par-
ticular, for uncorrelated input quantities each with constant variance,
the uncertainty for the slope evaluated by the linear law will be more
than 5% smaller than the Monte Carlo uncertainty when both input
uncertainties are larger than 0.4 times the spread of their fitted values.
Such settings may be rare in metrology, but could occur, for instance,
when comparing two methods with similar, considerable uncertainty.
The difference between propagating distributions and uncertainties
may also become relevant when an uncertainty underrated by 3% to
4% is unacceptable.

In addition, the uncertainties are often not evaluated directly by the
linear law but approximated again. This research focused on the uncer-
tainty based on the Jacobian of the residuals, as recommended in the
technical specification ISO/TS 28037:2010 dedicated to straight-line
fitting. For the general weighted total least-squares based measurement
model, it was shown that the covariance matrix from the linear law
is only equal to its approximation if the involved derivatives were
evaluated at the fitted data points instead of the observed ones. The un-
certainties recommended in the technical specification therefore differ
from ones evaluated by the law of propagation of uncertainty, which
was shown for special cases before. For the first time, the difference
was quantified in a systematic simulation study. In particular, for un-
correlated input quantities each with constant variance, we empirically
determined the ratio of the approximation to the uncertainties from
the linear law and to the Monte Carlo uncertainties for the slope. The
uncertainty recommended in the technical specification will underrate
the true uncertainty by more than 5% when both input uncertainties
are larger than 0.15 times the spread of their fitted values. For many of
these settings, uncertainties from the linear law will still be appropriate.
6

Weighted total least squares is devised particularly to estimate
the straight-line relationship when the uncertainty for both quantities
is non-negligible; and for these settings, the discrepancy of the un-
certainty following ISO/TS 28037:2010 from the true uncertainty is
pronounced.

Propagating uncertainties by the linear law seems to be adequate
for the weighted total least-squares based measurement model, at least
for most metrological straight-line settings without correlation and
constant variance ratios. Correlation, other uncertainty structures and
linear settings occur in practice and should be accounted for (e.g. [39–
41]). The current simulation study can only caution against evaluating
the uncertainty following ISO/TS 28037:2010, unless the range of ei-
ther input quantity is large compared to its uncertainty. We recommend
revising the technical specification or limiting its scope. In general, we
recommend evaluating uncertainties of the straight line for weighted
total least-squares based models by propagating distributions.

The technical specification ISO/TS 28037:2010 evaluates the deriva-
tive of the measurement model at the fitted points. Future research
may explore the general relationship of such an approach to statistical
inferences. That is, instead of basing uncertainty evaluations on a
measurement model, a statistical model with distributional assumptions
would be formulated, which is described amongst other places in the
recent, less restrictive GUM document [33] (especially clause 11.4).
For errors-in-variables models, distributions are then assigned to the
residuals and estimators can be derived according to various princi-
ples. Maximum likelihood is one of these principles and the Bayesian
method, a further one. The Bayesian approach is flexible and attractive
when additional information is available prior to collecting the data.
For errors-in-variables models, [6,17,42] describe such an approach for
the metrology community. However, the choice of a prior distribution
for the fitted values seems to be problematic when no information is
available [13,43,44].
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Appendix A. The weighted least-squares (WLS) case

When the uncertainty in one of the input quantities, say 𝑿, vanishes
and any cross correlation with it, the WLS estimate

(𝛽0, 𝛽1)⊤ =
(

𝑫⊤𝑼−1
𝑦 𝑫

)−1
𝑫⊤𝑼−1

𝑦 𝒚

coincides with the WTLS estimate, where 𝑫 = (𝟏,𝒙⊤) denotes the
acobian or design matrix and 𝑼 𝑦, the covariance matrix for 𝒚. The
erived measurement model is a linear function in its input 𝒀 , and thus
he covariance matrix of the slope and intercept is known to be

(𝛽0, 𝛽1) =
(

𝑫⊤𝑼−1
𝑦 𝑫

)−1
𝑫⊤𝑼−1

𝑦 𝑼 𝑦𝑼−1
𝑦 𝑫

(

𝑫⊤𝑼−1
𝑦 𝑫

)−1

=
(

𝑫⊤𝑼−1
𝑦 𝑫

)−1
.

ot surprisingly, this covariance matrix coincides with the implicit
ormula (3) as 𝜕𝛽𝑋𝑄 = −2𝑫⊤𝑼−1

𝑦 and 𝜕𝛽𝛽𝑄 = 2𝑫⊤𝑼−1
𝑦 𝑫, which

an also be inferred from [25, sec. 5] with 𝑄(𝒀 ) = 𝜖⊤𝑼−1
𝑦 𝜖 and

= 𝒀 −𝑫 (𝛽0, 𝛽1)⊤.

ppendix B. The Jacobian-based uncertainty

The algorithm in clause 10 of the technical specification ISO/TS
8037:2010 [16] approximates the covariance matrix (3) according to
he LPU by

ISO(𝑿∗, 𝛽0, 𝛽1) =
(

𝑱⊤𝑼−1𝑱
)−1 ,

here 𝑱 = 𝜕𝒓
𝜕(𝒙̃,𝛽0 ,𝛽1)

=
(

−𝑰 0 0
−𝛽1𝑰 −𝟏 −𝒙̃∗

)

is the Jacobian of the

nweighted residuals 𝒓 that is evaluated at the estimates 𝒙∗, 𝛽0, 𝛽1, and
here 𝒓⊤=

(

𝑿⊤− 𝒙̃⊤, 𝒀 ⊤−
(

𝛽0𝟏 + 𝛽1𝒙̃
)⊤

)

such that 𝑄(𝑿, 𝒀 ) = 𝒓⊤𝑼−1𝒓.
7

u

The parts of the covariance matrix 𝑼LPU(𝑿∗, 𝛽0, 𝛽1) in (3) can be
alculated as

𝜕𝛽𝛽𝑄 = 2 𝜕𝑱⊤𝑼−1𝒓
𝜕(𝒙̃, 𝛽0, 𝛽1)⊤

= 2 𝜕𝑱⊤

𝜕(𝒙̃, 𝛽0, 𝛽1)⊤
𝑼−1𝒓 + 2𝑱⊤𝑼−1𝑱 (B.1)

𝛽𝑋𝑄 = 2 𝜕𝑱
⊤𝑼−1𝒓

𝜕(𝑿, 𝒀 )⊤
= 2𝑱⊤𝑼−1

ecause 𝑱 is constant in the data but not in 𝒙̃∗ and 𝛽1. If we now
valuate the covariance matrix (3) at 𝒙∗, 𝒚∗ and 𝒙∗, 𝛽0, 𝛽1, instead of at
he estimates 𝒙, 𝒚 and 𝒙∗, 𝛽0, 𝛽1, the residuals 𝒓, and with them the first
art of 𝜕𝛽𝛽𝑄, vanish. The covariance matrix (3) would then collapse
o the matrix

(

𝑱⊤𝑼−1𝑱
)−1 recommended in clause 10 of the technical

pecification [16].
That is, the technical specification [16] can be viewed as evaluating

he LPU uncertainty at the fitted instead of at the observed values,
hich extends the observations in [22] to the general WTLS-based
odel.

ppendix C. Linearization of a reparametrized implicit function

Let 𝑎 be the one-dimensional quantity whose linearly approximated
tandard uncertainty is 𝑢(𝑎) and let 𝑄(𝑎) be the implicit functional
hose solution 𝜕𝑎𝑄 = 0 gives the estimate 𝑎. In addition, let 𝑎 = 𝑓 (𝛼)
e some differentiable reparametrization and 𝑄(𝛼) = 𝑄(𝑓 (𝛼)), the
eparametrized functional. We will show that the standard uncertainty
(𝑎) derived from linearizing 𝑄(𝑎) is equivalent to first deriving the
tandard uncertainty 𝑢(𝛼) from linearizing 𝑄(𝛼) and then linearly trans-
orming 𝛼 to 𝑎.

Let 𝑥 be one of the input quantities of 𝜕𝑎𝑄. The contribution of 𝑥 to
he linearly approximated squared standard uncertainty (3) is given by
2
𝑥(𝑎) =

(

𝜕𝑎𝑥𝑄
)2 𝑢2(𝑥)

(

𝜕𝑎𝑎𝑄
)−2 ,

sing the abbreviation for derivatives as in Section 2.2.
Alternatively, the standard uncertainty can be calculated from the

inearly approximated standard uncertainty 𝑢(𝛼) and linearizing 𝑓 . Let
his uncertainty be called 𝑣(𝑎). Then the contribution of 𝑥 to 𝑣2(𝑎) is
2
𝑥(𝑎) = 𝑢2𝑥(𝛼)

(

𝜕𝛼𝑓
)2

=
(

𝜕𝛼𝑥𝑄
)2 𝑢2(𝑥)

(

𝜕𝛼𝛼𝑄
)−2 (𝜕𝛼𝑓

)2

=
(

𝜕𝑎𝑥𝑄𝜕𝛼𝑓 +����𝜕𝑎𝑄𝜕𝛼𝑥𝑓
)2 𝑢2(𝑥)

(

𝜕𝑎𝑎𝑄
(

𝜕𝛼𝑓
)2 +����𝜕𝑎𝑄𝜕𝛼𝛼𝑓

)−2
(

𝜕𝛼𝑓
)2

= 𝑢2𝑥(𝑎).

Similarly, the standard uncertainty with respect to further input quan-
tities can be derived: 𝑣𝑦(𝑎) = 𝑢𝑦(𝑎).

Assuming no correlation between input quantities, the linearization
of 𝑓 and 𝑄(𝛼) in the input quantities is thus equivalent to directly
linearizing 𝑄(𝑎).

Appendix D. The Hessian-based uncertainty

The measurement model in [23,29] is reduced to an implicit for-
mula for the angle parameter 𝛼, which depends neither on the second
parameter nor on the fitted values (cf. (44) and (46) in [23]). For this
functional 𝑄, the mixed derivative with respect to 𝛼 and the second
parameter will be zero, and thus the uncertainty of the angle will be
𝑢2(𝛼)H = 2

(

𝜕𝛼𝛼𝑄
)−1 according to the authors.

According to the LPU however, the squared standard uncertainty is

𝑢2(𝛼)LPU =
∑

𝑖

[

(

𝜕2𝑄
𝜕𝛼 𝜕𝑋𝑖

)2
𝑢2(𝑥𝑖) +

(

𝜕2𝑄
𝜕𝛼 𝜕𝑌𝑖

)2
𝑢2(𝑦𝑖)

]

(

𝜕𝛼𝛼𝑄
)−2

+ 2
∑

𝑖

[

𝜕2𝑄
𝜕𝛼 𝜕𝑋𝑖

𝜕2𝑄
𝜕𝛼 𝜕𝑌𝑖

𝑢(𝑥𝑖, 𝑦𝑖)
]

(

𝜕𝛼𝛼𝑄
)−2 ,

derived from the one-dimensional version of (3) with block-diagonal
structure 𝑼 , which will not be identical to 𝑢2(𝛼)H for arbitrary input

ncertainties.
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Appendix E. Validation of the programming code

The estimate (9) and the LPU uncertainty (4) were validated against
the results from the CCC software release 1.3 [19] for one data set
with the setting 𝑁 = 20, 𝛽1 = 1, 𝑢2(𝑦) = 0.1, 𝑢(𝑥)∕sd(𝒙∗) = 0.21. The
digits displayed by the software all agree with our results. For this
data set, the LPU uncertainty is 14% larger than the approximated LPU
uncertainty. The same data set was used to validate the approximated
LPU uncertainty (8) against an independent implementation following
the algorithm in clause 10 of the technical specification [16]. The first
four significant digits agree.

Appendix F. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.measurement.2021.110340.
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