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Surface determination is a critical image processing step in X-ray Computed Tomography that uses algorithms
based on local thresholding methods, such as Canny and Steinbess, to detect the surface of metallic components
with intricate designs and complex topographies. In most of the cases, these algorithms require trial-and-error
tests to optimise the threshold operation, leading to unreliable and, at times, erroneous inspection results.
This paper demonstrates the ability of marker-controlled watershed algorithm to automate the surface deter-

mination process and to maintain its robustness in the presence of beam hardening and complex topographies,
outperforming the current commercial and non-commercial software implementations.

1. Introduction

The automotive and aerospace sectors and, recently, additive
manufacturing (AM) increasingly employ X-ray computed tomography
(XCT) as a nondestructive technique (NDT) to inspect the internal and
external features (geometry, topography and defects) of modern com-
ponents, which in some cases are impossible to assess using conven-
tional measurement techniques [1-3].

XCT instruments capture a series of radiographic projections of an
object/component at multiple angular positions that are subsequently
used to reconstruct a three-dimensional (3D) representation of that
object, as shown in Fig. 1-A. The 3D representation associated with the
object consists of a cluster of voxels with different grey values compared
to the intensity of the voxels corresponding to the background. In the
example shown in Fig. 1-A, dark grey shade voxels represent the back-
ground and the light grey shade voxels represent the object (or fore-
ground). The geometrical measurements are derived from the surface of
the object, which has to be established from the 3D representation of the
object.

From the initial projections to the final geometrical evaluation, there
are various factors that affect the measurement results, such as instru-
ment alignment, focus spot stability, user-defined scanning parameters,
material, geometry, photon-material interaction, orientation of the
component, reconstruction and surface determination (SD) algorithm
[4,5]. SD plays a critical role in the XCT measuring model as it impacts
on the effect of the other factors on the geometrical measurements, i.e.,
their associated sensitivity coefficients [6]. The role of SD algorithms is
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to find, often with sub-voxel resolution, the boundary situated in the
transition area between the background and the object (the white line in
Fig. 1-B) that is associated with the surface of the object. Hence, any
errors introduced by SD algorithms lead to significant errors in the
measurement [5,7-16].

XCT inspection of porosity [13,17-19], surface roughness [3,13,
20-24] and dimensional conformity [12,13,25-29] require accurate
spatial location of the surface, therefore, the reliability of SD algorithm
has gained extensive attention. Lifton [19] and Carvalho [2] pointed out
that unproper SD algorithm can result in unwanted pores to be detected
due to the presence of noise. Townsend [30,31] compared the impact of
different SD algorithms on surface texture analysis using XCT and found
that for the same volume reconstructed, Sa deviation under iterative
method within VGStudio MAX 2.2, a proprietary software most used in
practice, was 20% off compared to global threshold method (Otsu).
Lifton [32] showed that in the case of AM components the global and
local SD methods can lead to 25 pm difference in diameter measure-
ment. Whereas, the bi-directional distance measurements of
multi-material samples can be affected by errors as large as 12.04 pm
and 126.5 pm when the SD uses Canny and local thresholds algorithms,
respectively [8].

Despite the importance of the SD process, commercial software does
not provide sufficient transparency —i.e., SD is regarded as a black box,
impeding the development of complete uncertainty models. To under-
stand the impact of SD algorithms, an example of a real measurement of
two closely positioned spheres and the associated SD process performed
with VGStudio MAX version 3.2.5 in “advanced mode” is shown in
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Fig. 2. VGStudio, like Steinbess algorithm [33], computes global surface
at the first stage, and find the vertex location with maximal gradient
magnitude along each point of global surface normal, subject to search
distance setting. Under the influence of beam hardening, ‘streak’ arte-
facts [34] occur causing severe deviations of the surfaces (inset B and C
for 2D case and inset D for 3D case). The operators can increase the
search distance to minimize this effect, but this can lead to unrepeatable
results and will not mitigate the effect of beam hardening on the
roughness measurements. Most importantly, rough SD should consider
low spatial resolution (or high spatial frequency). By increasing the
search distance, the norm of search vector can exceed the spatial reso-
lution of desired rough surface, hence not detecting small spatial surface
wavelengths.

The SD algorithms used for XCT measurement can be classed as: (i)
global threshold methods [14] and (ii) local adaptive threshold methods
[15].

i. Global threshold methods: Otsu [14] and ISO50 [16] are the most
common global threshold methods used to separate the background
from the object. Both methods, represented pictorially in Fig. 3, are
histogram-based algorithms that return a single grey threshold value
situated between the background and object. Otsu’s threshold value
(Toesw) relies on the minimization of the between-class variance for the
background and foreground [14], whereas ISO50 returns the threshold
value (Tisps0) at the midpoint between peaks of the object and back-
ground histograms (T1 and T2 in Fig. 3). The voxels with the grey values
higher than the threshold value are classified as foreground, i.e. the
object, and the rest as background. However, both methods are sensitive
to the image artefacts. For example, Otsu method is affected by beam
hardening [5,35] and scattering that can lead to measurement errors as
large as 9% [36]. Meanwhile, a single threshold value may not be able to
determine the surface accurately (low adaptation) in some areas of the
3D representation of the object, due to the voxels’ intensity variation
along the boundary between the foreground and the background [5].

ii. Local adaptive threshold methods: In contrast to the global methods,
local adaptive algorithms calculate the maximum local gradient [13].
Examples include Canny [9], Steinbess algorithm [33] and Heinzl
method [37].

Firstly, the Canny algorithm [9] uses the non-maximum suppression
technique to find all local maxima, which then are labelled as
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pre-determined edge. In a following step, two thresholds, low and high,
are set to select the desired edge from the pre-determined edge. To begin
with, the pixels of the pre-determined edge that have an intensity
greater than the high threshold value will be marked as the edge (hard
edge). Then, the pre-determined edge pixels with an intensity smaller
than the low threshold will be discarded. The pre-determined edge
pixels between the high and low threshold values are marked as ‘soft
edge’ in the following step. Lastly, the soft edge connecting with the
hard edge will be marked as the hard edge; otherwise, those soft edges
will be discarded. However, relevant thresholds have to be appropri-
ately chosen to avoid broken-up and noisy surfaces [9]. For example,
inappropriate threshold selection could result in omitting edges, as
shown in Fig. 4. The threshold for selecting the inner and outer cylinder
surface can differ.

The Steinbess algorithm [33] is equivalent to the ‘local adaptive
threshold’ method used in VGStudio. The Steinbess algorithm computes
the global threshold surfaces (initial surface), then generates the grey
value profiles along the normal vectors of the initial surface and calcu-
lates the maximum gradient values, which make final surface points.
The Steinbess algorithm can be affected by noise [37] and rough
surfaces.

The Heinzl [37,38] algorithm applies an anisotropic diffusion filter, a
gradient filter, and a watershed filter sequentially. The anisotropic
diffusion filter reduces noise while preserving the specific image fea-
tures, such as edges [39]. The gradient filter is employed to calculate the
gradient data at each voxel by computing the directional derivative. The
watershed filter segments the reconstructed data into groups based on
the regional maximum gradient model to generate the edge data (for
more details, see section 2). ‘Flooding level’ is controlled manually to
avoid over-segmentation. However, the manual selection of the flooding
level makes the Heinzl algorithm ‘less robust’.

Local adaptive methods have been proven to be more accurate than
the global thresholding method [5,12,28,37,40]. However, some of the
local adaptive methods, such as the Canny algorithm, are sensitive to
noise [28]. Thus, most local adaptive algorithms employ various
smoothing filters to reduce the noise effect [5,9,32,37,41,42] and to
obtain smooth surfaces, which also leads to errors associated with the
operator. Korner and Staude et al. [41,42] applied and compared several
smoothing filters (e.g., 2D and 3D median filters implanted within Fiji,
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Fig. 1. A: The reconstruction of the National Physical Laboratory’s (NPL) AM measurement standard; B. The cross section of the sample showing the position of the

determined edge relative to the background and the object.
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VGStudio and CT Pro) using the calotte cube reference (material: tita-
nium alloy Ti-6Al-4V) to increase the signal-to-noise ratio and high-
lighted a depreciation in the resolution while applying a smoothing
filter.

The evidence reviewed here highlights the need for the development
of SD algorithms that are robust in the presence of noise and beam
hardening artefacts. In response to these issues, the marker-control
watershed (MCW) algorithm reduces over-segmentation (see section 2
for more details) and has been used successfully in the medical field
[43-45] to extract the features of interest, often organs, and evaluate
their dimensions. So far, there are only a few studies related to the MCW
algorithm applied in the XCT inspection of components with higher
density, hence requiring higher penetration energy, leading to addi-
tional errors, such as beam hardening. Moreover, previous studies [22,
46] mainly focused on using watershed to segment surface features,
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including freeform surfaces. However, the ability of using watershed to
detect the surface from raw volume data, especially detecting inner
features and surface textures, has not been thoroughly explored.

This paper reports the 2D implementation of the MCW algorithm in
XCT measurement to determine the surface of smooth and rough com-
ponents. The work has been established with both simulation and
experimental data considered. Section 2 introduces the workflow of
MCW algorithm in detail; Section 3 proposes the methodology and
methods behind the simulation experiments used to validate and
compare the algorithms using a CAD reference sample; Section 4 pre-
sents summary results and analysis of the effects of beam hardening and
noise on the MCW surface; Section 5 is a discussion of the effect of
markers selection and interpolation ratio. The last section, Section 6,
provides summaries and conclusions, and signposts the future work.

-0.00406

Fig. 2. Measurement results of two spheres standard using the advanced threshold algorithm in VGStudio Max 3.2.5, ‘Streak’ artefacts are present on side of

the spheres.
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Fig. 3. The histogram of a reconstructed XCT image with a total number of pixels N, showing the calculation of Otsu threshold and ISO50 threshold. The grey value is

shown in ‘float 32’ format.

Undetected edge due to
inappropriate threshold

selection

Fig. 4. Canny edge detection with inappropriate threshold selection.

2. MCW algorithm implementation

A significant drawback of conventional watershed-based algorithms
is over-segmentation, which appears in the presence of a large number
of minima in the gradient image [37,38]. An example of image
over-segmentation is shown in Fig. 5, where the large amount of local
catchment basins is caused by noise. Beucher [47] developed the MCW
algorithm by introducing marker labels and geodesic transformation,
and it successfully reduced the over-segmentation.

In Step 1, the original image is used to compute the foreground and
background markers automatically. At Step 2, a high-resolution gradient
image is obtained from the original image that is subsequently filtered at
Step 3 using the geodesic transformation. The foreground and back-
ground markers define the image region on which the geodesic

Fig. 5. Over-segmentation after watershed without any pre-processing.

transformation is not applied. Finally, at Step 4, the watershed trans-
formation takes place on the filtered gradient image to identify the
surface points. These steps are detailed below.

Step 1. Foreground (material) and background (air) markers

The marker selection was performed automatically using an opening-
closing reconstruction algorithm, as described in Ref. [48]. An initial
threshold is calculated based on ISO50 [12], then a closing operator and
erosion morphology transformation [47] is applied on the regions above
and below the initial threshold to establish the foreground and back-
ground marker, respectively. The closing operator eliminates the smaller
pores within the marker region. The erosion transformation shrinks the
marker region to assure that markers do not overlap the edges and
eliminates the regions outside the desired foreground marker. Both
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closing operator and erosion transformation include a structuring
element in the shape of disk with a radius r.

With reference to Fig. 6, the value of 1 is assigned to the pixels of the
original image (A) whose positions are within the material region of the
foreground marker image (the green region in B), and 0 is assigned to the
remaining pixels of the foreground marker image (black region in B).
Conversely, the values of pixels that belong to the background region are
set to 1 in the background marker image (yellow region in C) and 0 for
the remaining pixels. The size of the markers was reduced using an
erosion algorithm so that the markers do not cover the pixels sur-
rounding the edges.

For comparison, the manual selections of the foreground and back-
ground markers were shown to demonstrate their roles in the geodesic
transformation and their influence on the determined watershed edge.
As shown in Fig. 7, the foreground and background markers can be
chosen manually with various sizes and positions.

Step 2. Interpolation and image gradient transformation.

Spline interpolation is applied to the 2D reconstructed images to
obtain an image with sub-pixel resolution that preserves the character-
istics of the original image [49]. Here, we define p as the ratio between
the length of the side of the pixel after interpolation and before
interpolation.

Subsequently, the Sobel gradient operator [50] was applied over the
interpolated reconstructed slice image and the result is shown in
Fig. 8-A. In Fig. 8-B and C, foreground and background markers are
superimposed on the gradient image respectively.

Step 3. Geodesic transformation over gradient of reconstructed slice

To overcome the over-segmentation problem, a geodesic trans-
formation [47] was applied to the gradient image produced at step 2 to
reduce the number of minima [47] as a result of noise. The geodesic
transformation process is illustrated in Fig. 9 (2D), Fig. 10 and Fig. 11
(3D). The black dash box marks the size and position of the marker; blue
solid and green dash lines indicate the original plot (f) and geodesic
transferred plot ("), respectively. All the data points within the black
dashed regions in Fig. 9 were set to negative infinite, indicating the
regions of minima.

Starting from point A, which is the point of intersection between the
boundary of the left-hand side marker and the line f, the geodesic
transformation draws the line f” to point B, which has the same altitude
as point A but is on the opposite side of the valley. The line f’ takes the
same values as f until the original plot reaches the peak point C. From
point C, the line f* maintains the same value until it reaches point D at
the opposite side of the valley. Concurrently, the same process is started
from the background marker and the moves towards the left. The line f’
started from foreground marker boundary goes up until point G in the
graph, where joins the plot started from the background marker. Thus,
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the line f’ contains only the regional minima whose locations overlap
with markers’ location. All other regional minima in the line f disappear,
i.e. the valleys E and F will not be seen in the final line f".

In the 2D range, the figures in the next two pages described the
comparison of the 2D gradient image before and after geodesic trans-
formation in topographic relief. The figures in the second page are the
zoom-in of the section in the first page labelled by red rectangle.
Markers, or the local minima, are labelled to describe that after geodesic
transformation, the regions labelled by markers are set as negative
infinite. According to the zoomed in figures, before geodesic trans-
formation, there are numerical local minima within the topographic
relief. After geodesic transformation, local minima are reduced to the
region labelled by markers in previous step, while all other pre-local
minima regions are replaced by the plains. In other words, in topo-
graphic relief, every droplet in a random location within a catchment
basin (e.g., the green dashed region in the figure on next page) related to
the local minima can flow to the local minima region without the need of
climbing up a hill.

Step 4. Watershed transformation

The watershed transformation [51] is applied on the gradient image
(f) to separate the object from the background and extract the co-
ordinates of point cloud corresponding to the edge data. The basic
watershed algorithm, including the concept of geodesic influence zone,
immersion process and related mathematical expressions are detailed in
Ref. [52]. The immersion process simulates the flooding of the topo-
graphic relief, the water being allowed to run in from the regions cor-
responding to the local topographical minima. As the catchment basins
submerge, water from adjacent catchment basins meet together at the
ridge. Here, dams are built to prevent the exchange of the water between
the adjacent catchment basins. The dams form the watershed edge.
When the whole topographic relief is submerged, the watershed trans-
formation segments the image into partitions composed of geodesic in-
fluence zones associated with a single catchment basin. Applying
watershed on f” would not cause the over-segmentation problem. The
peak point of the line f’ can be precisely detected due to the elimination
of all other regional catchment basins. As shown in Fig. 12, when
viewing any image as a topographical map, the set of points where the
water will flow down under gravity to a catchment basin will belong to
that basin. In contrast, the watershed lines are given by a set of points
that do not belong exclusively to any catchment basin. In this way, the
whole topographical map is segmented into different regions, and the
watershed lines denote the determined surface.

Minimum M is a series of connected pixels with the altitude level h.
Lower levels cannot be reached without climbing (see minima M in
Fig. 12). The catchment basin C belonging to M, C(M), includes the set of
pixels from which a drop of water flows down and eventually reaches M
(see catchment basin C(M) in Fig. 12).

Fig. 6. A. Original reconstructed image; B: Foreground marker (higher grey values); C: Background marker (lower grey values) by automatic selection.
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Fig. 7. A. Original reconstructed image; B: Foreground marker (higher grey values); C: Background marker (lower grey values) by manual selection.

Fig. 8. A: The gradient image after applying Sobel operator convolution. B: Gradient image combined with foreground marker. C: Gradient image combined with

background marker. Markers originate from Step 1.
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Fig. 9. The geodesic transformation. The rectangular black dash box indicates the position and size of markers; blue solid plot indicates the original plot (f); green
dotted plot (f°) indicates the plot after geodesic transformation from f. (For interpretation of the references to colour in this figure legend, the reader is referred to the

Web version of this article.)
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Topographic map of gradient image. Left: before geodesic transformation; Right: After geodesic transformation
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Fig. 10. Topographic map of gradient image: Left: before geodesic transformation; Right: After geodesic transformation.

Topographic map of gradient image. Left: before geodesic transformation; Right: After geodesic transformation
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Fig. 11. The zoomed in topographic map of gradient image. The zoom in region is labelled in red rectangular in Fig. 10. (For interpretation of the references to colour

in this figure legend, the reader is referred to the Web version of this article.)

3. Methodology
3.1. Reference sample and XCT simulation conditions

A 3D CAD model of a reference sample was used for the MCW
benchmarking. Similar to previous studies that used calibrated objects
[10,12,16,32,53], the design of the reference sample, presented in
Fig. 13, consists of cylinders with the following characteristics:

e The outer cylinder radius of the smaller tube is equal to the inner
cylinder radius of the larger tube, allowing comparison of the results
for inner and outer features,

e the reference sample has a simple structure with symmetry around
the vertical axis [54], and
e the material considered is aluminium.

The radii of each cylinder were determined at three positions (L1 to
L3 and H1 to H3 in Fig. 13 B). The least square circle fitting method
(Pratt method) [55] was used here.

This study used simulated XCT projections to evaluate the quality of
the MCW algorithm and investigate the influence of various parameters.
The XCT projections of the reference sample were simulated using a
commercial software package aRTist 2.10.4 [56], which is based on
ray-tracing method. The parameters of simulations listed in Table 1 are
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Fig. 12. The diagram of the watershed segmentation process.
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Fig. 13. The overlapped tube reference sample: A. The drawing of radius of the CAD model B. Positions of 2D cross-section images considered along the vertical axis.

Table 1
Settings of simulation.
Voltage Current ~ Number of Magnification ~ Voxel Multi-
kv HA projections size in sampling
pm
100 80 3143 8 25 3x3

commonly used in experimental work.
This study considered three sets of XCT simulations:

e Set 1: Monochromatic scan, i.e. without beam hardening and noise,
etc.

e Set 2: A scan that accounted for beam hardening (polychromatic)
effects without noise.

e Set 3: A scan that included the effects of both beam hardening and
noise.

To mimic experimental results, the signal-to-noise ratio of a real
system has been studied. The XCT system considered is a Nikon XT H
225 M cone beam system with a reflection target. The noise of the in-
strument has been evaluated, ranging between (75-150) kV and
(60-100) pA, respectively. For 100 kV and 80 pA, the value of the SNR is
approximately 155, which was subsequently used in simulations. It
should be noted that this work did not consider scattering, as there is
only slight scatter effect when X-ray penetrates aluminium.

3.2. Data processing

The simulation projections were reconstructed with Feldkamp, Davis
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and Kless (FDK) algorithm [57] using CT Pro 3D version 5.4. For poly-
chromatic simulation data, beam hardening correction was neglected as
it can cause reduction of signal-to-noise ratio [58]. For sub-pixel reso-
lution purpose, a spline interpolation algorithm was used to subdivide
the voxel in three interpolation ratios 0.1, 0.2, 0.5. p = 1 denotes that no
interpolation was conducted before applying the watershed. In the case
of p = 0.1, each pixel was subdivided into 10 x 10 pixels using spline
interpolation. The MCW implementation was implemented in MATLAB
2019b. While applying MCW algorithm, the structuring element for
closing and erosion transformation was set as a disk with a radius of 20
pixels.

For comparison with the MCW algorithm, a MATLAB [48] function
that implements the Canny algorithm was used in this work to segment
the 2D cross-section of reconstructed data. The threshold input variable is
a two-element vector [low, high] which takes values in the range of [0,1]
and is used to establish the final edges. The low value provides the
threshold below which all edges are discarded (weak edge) while the
high value is the threshold above which all edges are preserved (strong
edge). To ensure that all defined (strong) edges are connected, the edges
situated between these two threshold values are labelled as strong edges
if they are connected with a strong edge pixel and discarded otherwise.
The low and high values are set by the operator using a trial-and-error
method, as there are still no robust methods for the selection of the
threshold input variable.

4. Summary of results

4.1. Benchmarking - monochromatic and polychromatic (beam
hardening) case

The results of benchmarking test are shown in Fig. 14. The errors (¢)
were displayed in pixels to show the error relative to voxel size. For
monochromatic (simulation set 1, no beam hardening) and poly-
chromatic (simulation set 2, with beam hardening) cases, at p = 0.1. The
errors are calculated as the difference between the measured radius and
the nominal radius defined in the CAD model.

The monochromatic case shows that there is little difference between
the outputs of the MCW and Canny algorithms, which demonstrates that
both algorithms are equally effective in ideal measurement conditions. It
is important to note that the error of the radii fitted to the inner and
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outer cylinders have different sign and magnitude, approximately
+0.4% and - 1.1% of pixels, respectively.

Compared with monochromatic results, the beam hardening effect
had a marginal effect on the radius of the inner cylinders (less than
0.02% of the error), which corroborates with the work of Lifton [32] and
Villarraga-Gomez [13]. However, for the outer cylinders, the difference
between monochromatic and polychromatic measurement results are as
large as 3.3% of pixels, which suggests that during the reconstruction
process the beam hardening effect significantly altered the value of the
pixels surrounding the edge of outer cylinders. It appears that the grey
value can vary with different material thickness, but this assumption
needs further attention.

The results for polychromatic case, i.e. beam hardening, agrees with
Villarraga-Gomez [13] findings, which concluded that the beam hard-
ening shifts the surface point clouds of the external surfaces toward the
background side. This explains the differences between radii calcula-
tions of the inner and outer cylinders in different XCT measurement
conditions, that is to say, monochromatic and polychromatic.

4.2. Noise effect on the MCW

Fig. 15 allows comparison of the surface point cloud distribution
without (left) and with (right) noise at p = 0.1. The solid red line rep-
resents the surface based on nominal data. In both cases, the MCW al-
gorithm generated closed surfaces with no scattered points. In the
absence of noise (Fig. 15-C) the surface’s point cloud remains within
+10% of the pixel away from the nominal data, whereas in the presence
of noise (Fig. 15-D) the point cloud errors from the nominal ranges
within +£20% of the pixel size. This suggests that noise affects the
gradient image, which consequently alters local maximum grey values
detected by the watershed algorithm. The geodesic transformation
eliminates most of the local minima in the gradient image and reduces
over-segmentation, however, the magnitude and x and y position of the
gradient maxima could still be affected by noise.

The error chart presented in Fig. 16 indicates that the mean radii of
the inner cylinder measured with and without noise do not deviate by
more than 0.5% of pixels from their nominal size and the mean radius
error of the outer cylinder is approximately +2.5% of pixels. The stan-
dard deviation associated with the radius measurement of the inner
cylinders of the tube is larger than the results on the outer cylinder.

The radius error comparison between MCW and Canny without noise and with noise
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%, % %% % % 7,
_ . . . o o
0.015 7 %% % 7 7 %
_ o 0 o 0 o .
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Fig. 14. The error of radius for simulation set 1 (benchmark, monochromatic, no beam hardening) and simulation set 2 (polychromatic, beam hardening), noise
factor = 0, Interpolation ratio p = 0.1, mean radius value and error bars are based on five individual MCW and Canny applications over five slices within the range of

+10 layers around each benchmark (L3-H3) layers.
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Fig. 15. Surface point clouds and residual histogram determined by MCW under simulation set 2: Polychromatic. Left column: Without noise. Right column: with
noise. Slice height index: L2, Interpolation ratio p = 0.1.

The radius error comparison between MCW and Canny without noise and with noise
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Fig. 16. The radius error result for simulation set 2 (SNR = inf) and simulation set 3 (SNR = 155), polychromatic, Interpolation ratio p = 0.1, mean radius value and
error bars are based on 5 individual MCW and Canny applications over 5 slices within the range of +10 layers around each benchmark (L3-H3) layers. Error bars
indicate the standard deviation for each radius value.
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Whilst the outer diameter measurement results are affected by a larger
bias, we observe a better overall measuring accuracy of the inner
diameters.

5. Discussions of MCW algorithm parameters
5.1. Influence of marker size and position

According to Fig. 17 A and B, both automatic [48] and manual MCW
method generated closed surfaces. Both methods have the following
typical results:

o There is only one marker that labels the foreground.

e As the background is divided into two parts by the foreground, two
markers label the background.

e Each marker is entirely within the range of the proposed segment:
none of the marker intersects with the proposed watershed surface.

e The markers do not contain any gaps.

However, differences in computational time are significant. Table 2
describes the computational time of the MCW algorithm in comparison
to the Canny and ISO50 methods. According to Table 2, computing time
based on manual selection was six times longer than the automatic se-
lection. Smaller markers resulted in larger areas to assess during the
geodesic and watershed transformations, increasing the computing
time. Compared with the ISO50 algorithm, which only searches the
pixels with the pre-defined single threshold value, the MCW’s compu-
tation time drastically increased due to multiple image computations:
marker generation, interpolation, gradient transformation, geodesic
transformation, etc. Also, the Canny algorithm computation time is only
half of the automatic watershed. This study is yet to optimise the
watershed computation time, and future work is mentioned in
conclusion.

5.2. Influence of interpolation ratio

Fig. 18 depicts the voxels surrounding a portion of the outer cylinder
surface from which outer cylinder was calculated and the point cloud
associated with the cylinder surface at different interpolation ratios.
Without interpolation, as p = 1, the radius calculations were affected by
errors as large as 0.7 of the size of the pixel. For p = 0.1, most of the
estimated surface points were distributed within a narrow band from the
CAD data.

Fig. 19 shows the relationship between the interpolation ratio p and
root-mean-square deviation (RMS) value of the residual of the point

NDT and E International 131 (2022) 102697

Table 2

The comparison of computing time with different marker-
selection methods (based on 0.1 interpolation ratio). The pro-
cessor was Intel Xeon CPU E5-2630 v2 2.60 GHz.

SD algorithms Computing time (s)

Automatic MCW 32
Manual MCW 193
1SO 50 1
Canny 15

clouds against the fitted circle. Decreasing p value (increasing interpo-
lation ratio) reduces the standard deviation associated with circle
fitting.

Fig. 20 presents the mean radius errors and the associated standard
deviations for different interpolation ratios and measurement condi-
tions, i.e. with and without noise. The worse results were recorded for p
= 1, meaning that the bias was significant without interpolation.

Excluding p = 1 case, for the inner cylinder, the best results calcu-
lated from the data without noise were obtained at p = 0.2. In poly-
chromatic case, without noise and p = 0.2, the bias of the internal radius
measurement did not exceed 0.4% of the pixel size, but the outer cyl-
inder radius bias was as large as 2.5% of pixel size. The radius of the
outer diameter was not significantly different for p = 0.1 and p = 0.2.

According to Fig. 19, increasing interpolation resolution (lower p)
can reduce the RMS of point cloud residuals. However, the errors of
inner cylinders’ radii at p = 0.1 for H1, H2 and H3 were larger than the
bias recorded at p = 0.2 and 0.5. This result shows that the interpolation
process can introduce additional errors.

As expected, the standard deviation of the measurement results that
include noise effects were found to be larger than the one for the sim-
ulations without noise. The standard deviation associated with the inner
cylinder measurements was significantly larger than the one associated
with outer diameters, suggesting that the interpolation algorithm can
cause additional systematic errors.

5.3. Comparison of MCW and Canny algorithm

Fig. 21 shows the comparison of the determined edges that are
calculated by automatic MCW and the Canny algorithm. The Canny al-
gorithm implementation can lead to different edge positions, which is
also dependent on the selection of the thresholds. The Canny algorithm
was run four times before achieving a clean edge for a threshold vector of
[0.30.4].[0.05 0.1] threshold led to noisy edges, [0.2 0.9] only detected
the outer circle edge, [0.7 0.9] detected half of the outer edge, [0.4 0.5]

Fig. 17. A. Watershed surface based on the geodesic transformed representation with auto-selected markers; B. Watershed surface based on the geodesic transformed

representation with randomly selected marker.
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Fig. 19. The scatter plot of the relationship between p and RMS of the residual
against fitted circle, Simulation set 2: Polychromatic, without noise.
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could establish the outer edge but lead to an intermittent inner circle
edge, demonstrating that the selection of threshold values significantly
impacts the edge result of the Canny algorithm.

In contrast, MCW computed a closed edge within a single trial. The
foreground marker and the background marker were selected auto-
matically. The watershed transformation segmented the geodesic
transformed gradient image into partitions (material and background)
whose edges are strictly closed. The result shows that the MCW can
potentially be applied as an automated SD algorithm that does not
require an educated input from the operator, hence reducing any asso-
ciated operator errors.

Despite the issues related to threshold selection in the Canny algo-
rithm, the results presented until this point show that both methods,
Canny and MCW provide equivalent results. This is because the surface
of the object used in this research resembles an ideal situation, which is
rarely met in practice. The difference between the MCW and Canny
becomes visible when applied to real measurements of objects that are
characterised by complex surface textures as shown in Fig. 22.
Compared to the Canny algorithm, which generates disconnected edges
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noise; B. Simulation set 3, polychromatic, SNR = 155. Mean radius value and error bars are based on five individual watershed surface applications over 5 slices
within the range of +10 layers around each benchmark (L3-H3) layers. Error bars indicate the standard deviation for each radius value.

nearby severe measuring artefacts, MCW successfully provides only
closed edges surrounding the feature of interests.

To conclude our discussions, we also present in Fig. 23 the MCW
results applied on the real measurement of the two spheres, introduced
in the first section of this paper as an example of ‘streak’ artefacts effect
(see Fig. 2), highlighting once again the MCW resilience to common XCT
measurement errors.

6. Conclusions

In summary, it has been identified that SD algorithms play an
essential role in XCT measurements [59]. In this paper, we have
addressed some of the issues encountered with the SD process: algorithm
transparency, operator induced errors and the ability of the SD algo-
rithms to avoid the effect of the noise and beam hardening that can lead
to false edges. In order to reduce the operator’s errors, an automatic SD
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algorithm based on the MCW algorithm that eliminates the
over-segmentation issues has been proposed and evaluated for XCT in-
spection of samples with smooth and rough surfaces. The MCW algo-
rithm consists of four steps: marker selection; gradient transformation;
geodesic transformation; watershed transformation. The main points to
highlight here are:

e The foreground and background markers are determined automati-
cally by combining the closing and erosion operators. Closing oper-
ator eliminates the small hole within the marker to avoid subsequent
over-segmentation and erosion shrinks the marker area so that
markers do not overlap with the pixels adjacent to the edges.

The geodesic transformation removes the unwanted regional fea-
tures present in the gradient image, which can lead to false edges.
The watershed transformation produced a clean and closed surface
without significant errors.
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Fig. 21. The edge determined using automatic marker-controlled watershed and Canny algorithm. The number in the square brackets indicate the threshold in the
canny edge determination algorithm in MATLAB, and each number is within (0,1). The image is acquired under the CT simulation with noise.

In conclusion, the MCW is an effective SD algorithm that has been
successfully validated for XCT metrology and inspection purposes using
simulations and a reference sample. Additionally, we found that:

e Compared to the Canny algorithm, the MCW algorithm can effec-
tively provide closed inner and outer edges and avoids the errors
attributed to the operator. At the same time, the MCW algorithm is
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easier to use compared to the Canny algorithm because it does not
need to find the optimal thresholding conditions using ‘trial and
error’ tests.

e Both automatic and manual marker selections lead to the same edge
data.
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Fig. 22. The comparison between 3D MCW and 3D canny surfaces for surface roughness analysis over the experimental reference sample.

e Interpolation is necessary to achieve sub-pixel (or sub-voxel) surface e The noise leads to twice as large residual errors associated with the
point clouds, however, the are no significant improvements below p circle fitting of the external features than the ones reported for the
=0.2. inner features (0.5% and 0.25% of pixel size, respectively).

e Atp = 0.2 and in polychromatic measurement conditions, the radius e The geodesic transformation only eliminates most of the local
of the external cylinder is affected by an error that can be as large as minima that can lead to false edges.

2.5% of a pixel compared to 0.4% in the case of the inner cylinder.

15



X. Yang et al.

MCW algorithm

NDT and E International 131 (2022) 102697

Advanced mode algorithm in VGStudio MAX

Fig. 23. The comparison between the MCW and ‘advanced mode’ in commercial VGStudio software in dealing with ‘streak’ artefact caused by beam hardening.

e The MCW algorithm outperforms the Canny algorithm when used to
determine the surface of measured objects with complex surfaces.
Applied on real XCT measurements, MCW generated the closed edges
around the feature of interests and the results were not affected by
the surrounding measurement artefacts such as in the Canny algo-
rithm case.

e Compared to commercial VG algorithm, MCW demonstrates resil-
ience to common XCT measurement errors such as ‘streak’ artefacts.

This work only considered 2D implementation of MCW. Further
application on 3D volume data is possible, but it needs better compu-
tational capacity and/or algorithm refinement to decrease the need for
computer memory. For example, the 2D the interpolation process in-
creases the number of pixels from 2000 x 2000 to 20,000 x 20,000,
which requires 3051 MB of CPU memory. In 3D, interpolating the float
voxel data from 2000 x 2000 x 2000 to 20,000 x 20,000 x 20,000
requires 59,604.64 GB.

Apart from the computer processing capacity, future work should
take into account in depth consideration of the 3D MCW implementa-
tion, experimental samples, reducing the processing time, the effect of
scattering [53] and on the MCW ability to cope with rough components,
such as the ones produced by additive manufacturing [20]. Porosity
related measurement with smaller spatial frequency should be validated
using MCW. Moreover, the geometry fitting strategy should also be
considered.

Data underlying this study can be accessed through the Cranfield
University repository (CORD) at: https://doi.org/10.17862/cranfield.rd
.20135006.

This project contains the following underlying data:

e Data_file.zip (Reconstructed simulation data, MCW surface point
clouds, measurement results used for Fig 14 and Fig 16).

Data are available under the terms of the [Creative Commons
Attribution 4.0 International (CC BY 4.0)].
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