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A B S T R A C T   

Surface determination is a critical image processing step in X-ray Computed Tomography that uses algorithms 
based on local thresholding methods, such as Canny and Steinbess, to detect the surface of metallic components 
with intricate designs and complex topographies. In most of the cases, these algorithms require trial-and-error 
tests to optimise the threshold operation, leading to unreliable and, at times, erroneous inspection results. 
This paper demonstrates the ability of marker-controlled watershed algorithm to automate the surface deter
mination process and to maintain its robustness in the presence of beam hardening and complex topographies, 
outperforming the current commercial and non-commercial software implementations.   

1. Introduction 

The automotive and aerospace sectors and, recently, additive 
manufacturing (AM) increasingly employ X-ray computed tomography 
(XCT) as a nondestructive technique (NDT) to inspect the internal and 
external features (geometry, topography and defects) of modern com
ponents, which in some cases are impossible to assess using conven
tional measurement techniques [1–3]. 

XCT instruments capture a series of radiographic projections of an 
object/component at multiple angular positions that are subsequently 
used to reconstruct a three-dimensional (3D) representation of that 
object, as shown in Fig. 1-A. The 3D representation associated with the 
object consists of a cluster of voxels with different grey values compared 
to the intensity of the voxels corresponding to the background. In the 
example shown in Fig. 1-A, dark grey shade voxels represent the back
ground and the light grey shade voxels represent the object (or fore
ground). The geometrical measurements are derived from the surface of 
the object, which has to be established from the 3D representation of the 
object. 

From the initial projections to the final geometrical evaluation, there 
are various factors that affect the measurement results, such as instru
ment alignment, focus spot stability, user-defined scanning parameters, 
material, geometry, photon-material interaction, orientation of the 
component, reconstruction and surface determination (SD) algorithm 
[4,5]. SD plays a critical role in the XCT measuring model as it impacts 
on the effect of the other factors on the geometrical measurements, i.e., 
their associated sensitivity coefficients [6]. The role of SD algorithms is 

to find, often with sub-voxel resolution, the boundary situated in the 
transition area between the background and the object (the white line in 
Fig. 1-B) that is associated with the surface of the object. Hence, any 
errors introduced by SD algorithms lead to significant errors in the 
measurement [5,7–16]. 

XCT inspection of porosity [13,17–19], surface roughness [3,13, 
20–24] and dimensional conformity [12,13,25–29] require accurate 
spatial location of the surface, therefore, the reliability of SD algorithm 
has gained extensive attention. Lifton [19] and Carvalho [2] pointed out 
that unproper SD algorithm can result in unwanted pores to be detected 
due to the presence of noise. Townsend [30,31] compared the impact of 
different SD algorithms on surface texture analysis using XCT and found 
that for the same volume reconstructed, Sa deviation under iterative 
method within VGStudio MAX 2.2, a proprietary software most used in 
practice, was 20% off compared to global threshold method (Otsu). 
Lifton [32] showed that in the case of AM components the global and 
local SD methods can lead to 25 μm difference in diameter measure
ment. Whereas, the bi-directional distance measurements of 
multi-material samples can be affected by errors as large as 12.04 μm 
and 126.5 μm when the SD uses Canny and local thresholds algorithms, 
respectively [8]. 

Despite the importance of the SD process, commercial software does 
not provide sufficient transparency – i.e., SD is regarded as a black box, 
impeding the development of complete uncertainty models. To under
stand the impact of SD algorithms, an example of a real measurement of 
two closely positioned spheres and the associated SD process performed 
with VGStudio MAX version 3.2.5 in “advanced mode” is shown in 
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Fig. 2. VGStudio, like Steinbess algorithm [33], computes global surface 
at the first stage, and find the vertex location with maximal gradient 
magnitude along each point of global surface normal, subject to search 
distance setting. Under the influence of beam hardening, ‘streak’ arte
facts [34] occur causing severe deviations of the surfaces (inset B and C 
for 2D case and inset D for 3D case). The operators can increase the 
search distance to minimize this effect, but this can lead to unrepeatable 
results and will not mitigate the effect of beam hardening on the 
roughness measurements. Most importantly, rough SD should consider 
low spatial resolution (or high spatial frequency). By increasing the 
search distance, the norm of search vector can exceed the spatial reso
lution of desired rough surface, hence not detecting small spatial surface 
wavelengths. 

The SD algorithms used for XCT measurement can be classed as: (i) 
global threshold methods [14] and (ii) local adaptive threshold methods 
[15]. 

i. Global threshold methods: Otsu [14] and ISO50 [16] are the most 
common global threshold methods used to separate the background 
from the object. Both methods, represented pictorially in Fig. 3, are 
histogram-based algorithms that return a single grey threshold value 
situated between the background and object. Otsu’s threshold value 
(TOtsu) relies on the minimization of the between-class variance for the 
background and foreground [14], whereas ISO50 returns the threshold 
value (TISO50) at the midpoint between peaks of the object and back
ground histograms (T1 and T2 in Fig. 3). The voxels with the grey values 
higher than the threshold value are classified as foreground, i.e. the 
object, and the rest as background. However, both methods are sensitive 
to the image artefacts. For example, Otsu method is affected by beam 
hardening [5,35] and scattering that can lead to measurement errors as 
large as 9% [36]. Meanwhile, a single threshold value may not be able to 
determine the surface accurately (low adaptation) in some areas of the 
3D representation of the object, due to the voxels’ intensity variation 
along the boundary between the foreground and the background [5]. 

ii. Local adaptive threshold methods: In contrast to the global methods, 
local adaptive algorithms calculate the maximum local gradient [13]. 
Examples include Canny [9], Steinbess algorithm [33] and Heinzl 
method [37]. 

Firstly, the Canny algorithm [9] uses the non-maximum suppression 
technique to find all local maxima, which then are labelled as 

pre-determined edge. In a following step, two thresholds, low and high, 
are set to select the desired edge from the pre-determined edge. To begin 
with, the pixels of the pre-determined edge that have an intensity 
greater than the high threshold value will be marked as the edge (hard 
edge). Then, the pre-determined edge pixels with an intensity smaller 
than the low threshold will be discarded. The pre-determined edge 
pixels between the high and low threshold values are marked as ‘soft 
edge’ in the following step. Lastly, the soft edge connecting with the 
hard edge will be marked as the hard edge; otherwise, those soft edges 
will be discarded. However, relevant thresholds have to be appropri
ately chosen to avoid broken-up and noisy surfaces [9]. For example, 
inappropriate threshold selection could result in omitting edges, as 
shown in Fig. 4. The threshold for selecting the inner and outer cylinder 
surface can differ. 

The Steinbess algorithm [33] is equivalent to the ‘local adaptive 
threshold’ method used in VGStudio. The Steinbess algorithm computes 
the global threshold surfaces (initial surface), then generates the grey 
value profiles along the normal vectors of the initial surface and calcu
lates the maximum gradient values, which make final surface points. 
The Steinbess algorithm can be affected by noise [37] and rough 
surfaces. 

The Heinzl [37,38] algorithm applies an anisotropic diffusion filter, a 
gradient filter, and a watershed filter sequentially. The anisotropic 
diffusion filter reduces noise while preserving the specific image fea
tures, such as edges [39]. The gradient filter is employed to calculate the 
gradient data at each voxel by computing the directional derivative. The 
watershed filter segments the reconstructed data into groups based on 
the regional maximum gradient model to generate the edge data (for 
more details, see section 2). ‘Flooding level’ is controlled manually to 
avoid over-segmentation. However, the manual selection of the flooding 
level makes the Heinzl algorithm ‘less robust’. 

Local adaptive methods have been proven to be more accurate than 
the global thresholding method [5,12,28,37,40]. However, some of the 
local adaptive methods, such as the Canny algorithm, are sensitive to 
noise [28]. Thus, most local adaptive algorithms employ various 
smoothing filters to reduce the noise effect [5,9,32,37,41,42] and to 
obtain smooth surfaces, which also leads to errors associated with the 
operator. Korner and Staude et al. [41,42] applied and compared several 
smoothing filters (e.g., 2D and 3D median filters implanted within Fiji, 

Fig. 1. A: The reconstruction of the National Physical Laboratory’s (NPL) AM measurement standard; B. The cross section of the sample showing the position of the 
determined edge relative to the background and the object. 
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VGStudio and CT Pro) using the calotte cube reference (material: tita
nium alloy Ti–6Al–4V) to increase the signal-to-noise ratio and high
lighted a depreciation in the resolution while applying a smoothing 
filter. 

The evidence reviewed here highlights the need for the development 
of SD algorithms that are robust in the presence of noise and beam 
hardening artefacts. In response to these issues, the marker-control 
watershed (MCW) algorithm reduces over-segmentation (see section 2 
for more details) and has been used successfully in the medical field 
[43–45] to extract the features of interest, often organs, and evaluate 
their dimensions. So far, there are only a few studies related to the MCW 
algorithm applied in the XCT inspection of components with higher 
density, hence requiring higher penetration energy, leading to addi
tional errors, such as beam hardening. Moreover, previous studies [22, 
46] mainly focused on using watershed to segment surface features, 

including freeform surfaces. However, the ability of using watershed to 
detect the surface from raw volume data, especially detecting inner 
features and surface textures, has not been thoroughly explored. 

This paper reports the 2D implementation of the MCW algorithm in 
XCT measurement to determine the surface of smooth and rough com
ponents. The work has been established with both simulation and 
experimental data considered. Section 2 introduces the workflow of 
MCW algorithm in detail; Section 3 proposes the methodology and 
methods behind the simulation experiments used to validate and 
compare the algorithms using a CAD reference sample; Section 4 pre
sents summary results and analysis of the effects of beam hardening and 
noise on the MCW surface; Section 5 is a discussion of the effect of 
markers selection and interpolation ratio. The last section, Section 6, 
provides summaries and conclusions, and signposts the future work. 

Fig. 2. Measurement results of two spheres standard using the advanced threshold algorithm in VGStudio Max 3.2.5, ‘Streak’ artefacts are present on side of 
the spheres. 
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2. MCW algorithm implementation 

A significant drawback of conventional watershed-based algorithms 
is over-segmentation, which appears in the presence of a large number 
of minima in the gradient image [37,38]. An example of image 
over-segmentation is shown in Fig. 5, where the large amount of local 
catchment basins is caused by noise. Beucher [47] developed the MCW 
algorithm by introducing marker labels and geodesic transformation, 
and it successfully reduced the over-segmentation. 

In Step 1, the original image is used to compute the foreground and 
background markers automatically. At Step 2, a high-resolution gradient 
image is obtained from the original image that is subsequently filtered at 
Step 3 using the geodesic transformation. The foreground and back
ground markers define the image region on which the geodesic 

transformation is not applied. Finally, at Step 4, the watershed trans
formation takes place on the filtered gradient image to identify the 
surface points. These steps are detailed below. 

Step 1. Foreground (material) and background (air) markers 

The marker selection was performed automatically using an opening- 
closing reconstruction algorithm, as described in Ref. [48]. An initial 
threshold is calculated based on ISO50 [12], then a closing operator and 
erosion morphology transformation [47] is applied on the regions above 
and below the initial threshold to establish the foreground and back
ground marker, respectively. The closing operator eliminates the smaller 
pores within the marker region. The erosion transformation shrinks the 
marker region to assure that markers do not overlap the edges and 
eliminates the regions outside the desired foreground marker. Both 

Fig. 3. The histogram of a reconstructed XCT image with a total number of pixels N, showing the calculation of Otsu threshold and ISO50 threshold. The grey value is 
shown in ‘float 32’ format. 

Fig. 4. Canny edge detection with inappropriate threshold selection.  Fig. 5. Over-segmentation after watershed without any pre-processing.  
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closing operator and erosion transformation include a structuring 
element in the shape of disk with a radius r. 

With reference to Fig. 6, the value of 1 is assigned to the pixels of the 
original image (A) whose positions are within the material region of the 
foreground marker image (the green region in B), and 0 is assigned to the 
remaining pixels of the foreground marker image (black region in B). 
Conversely, the values of pixels that belong to the background region are 
set to 1 in the background marker image (yellow region in C) and 0 for 
the remaining pixels. The size of the markers was reduced using an 
erosion algorithm so that the markers do not cover the pixels sur
rounding the edges. 

For comparison, the manual selections of the foreground and back
ground markers were shown to demonstrate their roles in the geodesic 
transformation and their influence on the determined watershed edge. 
As shown in Fig. 7, the foreground and background markers can be 
chosen manually with various sizes and positions. 

Step 2. Interpolation and image gradient transformation. 

Spline interpolation is applied to the 2D reconstructed images to 
obtain an image with sub-pixel resolution that preserves the character
istics of the original image [49]. Here, we define p as the ratio between 
the length of the side of the pixel after interpolation and before 
interpolation. 

Subsequently, the Sobel gradient operator [50] was applied over the 
interpolated reconstructed slice image and the result is shown in 
Fig. 8-A. In Fig. 8-B and C, foreground and background markers are 
superimposed on the gradient image respectively. 

Step 3. Geodesic transformation over gradient of reconstructed slice 

To overcome the over-segmentation problem, a geodesic trans
formation [47] was applied to the gradient image produced at step 2 to 
reduce the number of minima [47] as a result of noise. The geodesic 
transformation process is illustrated in Fig. 9 (2D), Fig. 10 and Fig. 11 
(3D). The black dash box marks the size and position of the marker; blue 
solid and green dash lines indicate the original plot (f) and geodesic 
transferred plot (f’), respectively. All the data points within the black 
dashed regions in Fig. 9 were set to negative infinite, indicating the 
regions of minima. 

Starting from point A, which is the point of intersection between the 
boundary of the left-hand side marker and the line f, the geodesic 
transformation draws the line f’ to point B, which has the same altitude 
as point A but is on the opposite side of the valley. The line f’ takes the 
same values as f until the original plot reaches the peak point C. From 
point C, the line f’ maintains the same value until it reaches point D at 
the opposite side of the valley. Concurrently, the same process is started 
from the background marker and the moves towards the left. The line f’ 
started from foreground marker boundary goes up until point G in the 
graph, where joins the plot started from the background marker. Thus, 

the line f’ contains only the regional minima whose locations overlap 
with markers’ location. All other regional minima in the line f disappear, 
i.e. the valleys E and F will not be seen in the final line f’. 

In the 2D range, the figures in the next two pages described the 
comparison of the 2D gradient image before and after geodesic trans
formation in topographic relief. The figures in the second page are the 
zoom-in of the section in the first page labelled by red rectangle. 
Markers, or the local minima, are labelled to describe that after geodesic 
transformation, the regions labelled by markers are set as negative 
infinite. According to the zoomed in figures, before geodesic trans
formation, there are numerical local minima within the topographic 
relief. After geodesic transformation, local minima are reduced to the 
region labelled by markers in previous step, while all other pre-local 
minima regions are replaced by the plains. In other words, in topo
graphic relief, every droplet in a random location within a catchment 
basin (e.g., the green dashed region in the figure on next page) related to 
the local minima can flow to the local minima region without the need of 
climbing up a hill. 

Step 4. Watershed transformation 

The watershed transformation [51] is applied on the gradient image 
(f’) to separate the object from the background and extract the co
ordinates of point cloud corresponding to the edge data. The basic 
watershed algorithm, including the concept of geodesic influence zone, 
immersion process and related mathematical expressions are detailed in 
Ref. [52]. The immersion process simulates the flooding of the topo
graphic relief, the water being allowed to run in from the regions cor
responding to the local topographical minima. As the catchment basins 
submerge, water from adjacent catchment basins meet together at the 
ridge. Here, dams are built to prevent the exchange of the water between 
the adjacent catchment basins. The dams form the watershed edge. 
When the whole topographic relief is submerged, the watershed trans
formation segments the image into partitions composed of geodesic in
fluence zones associated with a single catchment basin. Applying 
watershed on f’ would not cause the over-segmentation problem. The 
peak point of the line f’ can be precisely detected due to the elimination 
of all other regional catchment basins. As shown in Fig. 12, when 
viewing any image as a topographical map, the set of points where the 
water will flow down under gravity to a catchment basin will belong to 
that basin. In contrast, the watershed lines are given by a set of points 
that do not belong exclusively to any catchment basin. In this way, the 
whole topographical map is segmented into different regions, and the 
watershed lines denote the determined surface. 

Minimum M is a series of connected pixels with the altitude level h. 
Lower levels cannot be reached without climbing (see minima M in 
Fig. 12). The catchment basin C belonging to M, C(M), includes the set of 
pixels from which a drop of water flows down and eventually reaches M 
(see catchment basin C(M) in Fig. 12). 

Fig. 6. A. Original reconstructed image; B: Foreground marker (higher grey values); C: Background marker (lower grey values) by automatic selection.  
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Fig. 7. A. Original reconstructed image; B: Foreground marker (higher grey values); C: Background marker (lower grey values) by manual selection.  

Fig. 8. A: The gradient image after applying Sobel operator convolution. B: Gradient image combined with foreground marker. C: Gradient image combined with 
background marker. Markers originate from Step 1. 

Fig. 9. The geodesic transformation. The rectangular black dash box indicates the position and size of markers; blue solid plot indicates the original plot (f); green 
dotted plot (f’) indicates the plot after geodesic transformation from f. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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3. Methodology 

3.1. Reference sample and XCT simulation conditions 

A 3D CAD model of a reference sample was used for the MCW 
benchmarking. Similar to previous studies that used calibrated objects 
[10,12,16,32,53], the design of the reference sample, presented in 
Fig. 13, consists of cylinders with the following characteristics:  

• The outer cylinder radius of the smaller tube is equal to the inner 
cylinder radius of the larger tube, allowing comparison of the results 
for inner and outer features,  

• the reference sample has a simple structure with symmetry around 
the vertical axis [54], and  

• the material considered is aluminium. 

The radii of each cylinder were determined at three positions (L1 to 
L3 and H1 to H3 in Fig. 13 B). The least square circle fitting method 
(Pratt method) [55] was used here. 

This study used simulated XCT projections to evaluate the quality of 
the MCW algorithm and investigate the influence of various parameters. 
The XCT projections of the reference sample were simulated using a 
commercial software package aRTist 2.10.4 [56], which is based on 
ray-tracing method. The parameters of simulations listed in Table 1 are 

Fig. 10. Topographic map of gradient image: Left: before geodesic transformation; Right: After geodesic transformation.  

Fig. 11. The zoomed in topographic map of gradient image. The zoom in region is labelled in red rectangular in Fig. 10. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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commonly used in experimental work. 
This study considered three sets of XCT simulations:  

• Set 1: Monochromatic scan, i.e. without beam hardening and noise, 
etc.  

• Set 2: A scan that accounted for beam hardening (polychromatic) 
effects without noise.  

• Set 3: A scan that included the effects of both beam hardening and 
noise. 

To mimic experimental results, the signal-to-noise ratio of a real 
system has been studied. The XCT system considered is a Nikon XT H 
225 M cone beam system with a reflection target. The noise of the in
strument has been evaluated, ranging between (75–150) kV and 
(60–100) μA, respectively. For 100 kV and 80 μA, the value of the SNR is 
approximately 155, which was subsequently used in simulations. It 
should be noted that this work did not consider scattering, as there is 
only slight scatter effect when X-ray penetrates aluminium. 

3.2. Data processing 

The simulation projections were reconstructed with Feldkamp, Davis 

Fig. 12. The diagram of the watershed segmentation process.  

Fig. 13. The overlapped tube reference sample: A. The drawing of radius of the CAD model B. Positions of 2D cross-section images considered along the vertical axis.  

Table 1 
Settings of simulation.  

Voltage 
kV 

Current 
μA 

Number of 
projections 

Magnification Voxel 
size in 
μm 

Multi- 
sampling 

100 80 3143 8 25 3x3  

X. Yang et al.                                                                                                                                                                                                                                    
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and Kless (FDK) algorithm [57] using CT Pro 3D version 5.4. For poly
chromatic simulation data, beam hardening correction was neglected as 
it can cause reduction of signal-to-noise ratio [58]. For sub-pixel reso
lution purpose, a spline interpolation algorithm was used to subdivide 
the voxel in three interpolation ratios 0.1, 0.2, 0.5. p = 1 denotes that no 
interpolation was conducted before applying the watershed. In the case 
of p = 0.1, each pixel was subdivided into 10 × 10 pixels using spline 
interpolation. The MCW implementation was implemented in MATLAB 
2019b. While applying MCW algorithm, the structuring element for 
closing and erosion transformation was set as a disk with a radius of 20 
pixels. 

For comparison with the MCW algorithm, a MATLAB [48] function 
that implements the Canny algorithm was used in this work to segment 
the 2D cross-section of reconstructed data. The threshold input variable is 
a two-element vector [low, high] which takes values in the range of [0,1] 
and is used to establish the final edges. The low value provides the 
threshold below which all edges are discarded (weak edge) while the 
high value is the threshold above which all edges are preserved (strong 
edge). To ensure that all defined (strong) edges are connected, the edges 
situated between these two threshold values are labelled as strong edges 
if they are connected with a strong edge pixel and discarded otherwise. 
The low and high values are set by the operator using a trial-and-error 
method, as there are still no robust methods for the selection of the 
threshold input variable. 

4. Summary of results 

4.1. Benchmarking - monochromatic and polychromatic (beam 
hardening) case 

The results of benchmarking test are shown in Fig. 14. The errors (ε) 
were displayed in pixels to show the error relative to voxel size. For 
monochromatic (simulation set 1, no beam hardening) and poly
chromatic (simulation set 2, with beam hardening) cases, at p = 0.1. The 
errors are calculated as the difference between the measured radius and 
the nominal radius defined in the CAD model. 

The monochromatic case shows that there is little difference between 
the outputs of the MCW and Canny algorithms, which demonstrates that 
both algorithms are equally effective in ideal measurement conditions. It 
is important to note that the error of the radii fitted to the inner and 

outer cylinders have different sign and magnitude, approximately 
+0.4% and - 1.1% of pixels, respectively. 

Compared with monochromatic results, the beam hardening effect 
had a marginal effect on the radius of the inner cylinders (less than 
0.02% of the error), which corroborates with the work of Lifton [32] and 
Villarraga-Gómez [13]. However, for the outer cylinders, the difference 
between monochromatic and polychromatic measurement results are as 
large as 3.3% of pixels, which suggests that during the reconstruction 
process the beam hardening effect significantly altered the value of the 
pixels surrounding the edge of outer cylinders. It appears that the grey 
value can vary with different material thickness, but this assumption 
needs further attention. 

The results for polychromatic case, i.e. beam hardening, agrees with 
Villarraga-Gómez [13] findings, which concluded that the beam hard
ening shifts the surface point clouds of the external surfaces toward the 
background side. This explains the differences between radii calcula
tions of the inner and outer cylinders in different XCT measurement 
conditions, that is to say, monochromatic and polychromatic. 

4.2. Noise effect on the MCW 

Fig. 15 allows comparison of the surface point cloud distribution 
without (left) and with (right) noise at p = 0.1. The solid red line rep
resents the surface based on nominal data. In both cases, the MCW al
gorithm generated closed surfaces with no scattered points. In the 
absence of noise (Fig. 15-C) the surface’s point cloud remains within 
±10% of the pixel away from the nominal data, whereas in the presence 
of noise (Fig. 15-D) the point cloud errors from the nominal ranges 
within ±20% of the pixel size. This suggests that noise affects the 
gradient image, which consequently alters local maximum grey values 
detected by the watershed algorithm. The geodesic transformation 
eliminates most of the local minima in the gradient image and reduces 
over-segmentation, however, the magnitude and x and y position of the 
gradient maxima could still be affected by noise. 

The error chart presented in Fig. 16 indicates that the mean radii of 
the inner cylinder measured with and without noise do not deviate by 
more than 0.5% of pixels from their nominal size and the mean radius 
error of the outer cylinder is approximately +2.5% of pixels. The stan
dard deviation associated with the radius measurement of the inner 
cylinders of the tube is larger than the results on the outer cylinder. 

Fig. 14. The error of radius for simulation set 1 (benchmark, monochromatic, no beam hardening) and simulation set 2 (polychromatic, beam hardening), noise 
factor = 0, Interpolation ratio p = 0.1, mean radius value and error bars are based on five individual MCW and Canny applications over five slices within the range of 
±10 layers around each benchmark (L3-H3) layers. 
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Fig. 15. Surface point clouds and residual histogram determined by MCW under simulation set 2: Polychromatic. Left column: Without noise. Right column: with 
noise. Slice height index: L2, Interpolation ratio p = 0.1. 

Fig. 16. The radius error result for simulation set 2 (SNR = inf) and simulation set 3 (SNR = 155), polychromatic, Interpolation ratio p = 0.1, mean radius value and 
error bars are based on 5 individual MCW and Canny applications over 5 slices within the range of ±10 layers around each benchmark (L3-H3) layers. Error bars 
indicate the standard deviation for each radius value. 
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Whilst the outer diameter measurement results are affected by a larger 
bias, we observe a better overall measuring accuracy of the inner 
diameters. 

5. Discussions of MCW algorithm parameters 

5.1. Influence of marker size and position 

According to Fig. 17 A and B, both automatic [48] and manual MCW 
method generated closed surfaces. Both methods have the following 
typical results:  

• There is only one marker that labels the foreground.  
• As the background is divided into two parts by the foreground, two 

markers label the background.  
• Each marker is entirely within the range of the proposed segment: 

none of the marker intersects with the proposed watershed surface.  
• The markers do not contain any gaps. 

However, differences in computational time are significant. Table 2 
describes the computational time of the MCW algorithm in comparison 
to the Canny and ISO50 methods. According to Table 2, computing time 
based on manual selection was six times longer than the automatic se
lection. Smaller markers resulted in larger areas to assess during the 
geodesic and watershed transformations, increasing the computing 
time. Compared with the ISO50 algorithm, which only searches the 
pixels with the pre-defined single threshold value, the MCW’s compu
tation time drastically increased due to multiple image computations: 
marker generation, interpolation, gradient transformation, geodesic 
transformation, etc. Also, the Canny algorithm computation time is only 
half of the automatic watershed. This study is yet to optimise the 
watershed computation time, and future work is mentioned in 
conclusion. 

5.2. Influence of interpolation ratio 

Fig. 18 depicts the voxels surrounding a portion of the outer cylinder 
surface from which outer cylinder was calculated and the point cloud 
associated with the cylinder surface at different interpolation ratios. 
Without interpolation, as p = 1, the radius calculations were affected by 
errors as large as 0.7 of the size of the pixel. For p = 0.1, most of the 
estimated surface points were distributed within a narrow band from the 
CAD data. 

Fig. 19 shows the relationship between the interpolation ratio p and 
root-mean-square deviation (RMS) value of the residual of the point 

clouds against the fitted circle. Decreasing p value (increasing interpo
lation ratio) reduces the standard deviation associated with circle 
fitting. 

Fig. 20 presents the mean radius errors and the associated standard 
deviations for different interpolation ratios and measurement condi
tions, i.e. with and without noise. The worse results were recorded for p 
= 1, meaning that the bias was significant without interpolation. 

Excluding p = 1 case, for the inner cylinder, the best results calcu
lated from the data without noise were obtained at p = 0.2. In poly
chromatic case, without noise and p = 0.2, the bias of the internal radius 
measurement did not exceed 0.4% of the pixel size, but the outer cyl
inder radius bias was as large as 2.5% of pixel size. The radius of the 
outer diameter was not significantly different for p = 0.1 and p = 0.2. 

According to Fig. 19, increasing interpolation resolution (lower p) 
can reduce the RMS of point cloud residuals. However, the errors of 
inner cylinders’ radii at p = 0.1 for H1, H2 and H3 were larger than the 
bias recorded at p = 0.2 and 0.5. This result shows that the interpolation 
process can introduce additional errors. 

As expected, the standard deviation of the measurement results that 
include noise effects were found to be larger than the one for the sim
ulations without noise. The standard deviation associated with the inner 
cylinder measurements was significantly larger than the one associated 
with outer diameters, suggesting that the interpolation algorithm can 
cause additional systematic errors. 

5.3. Comparison of MCW and Canny algorithm 

Fig. 21 shows the comparison of the determined edges that are 
calculated by automatic MCW and the Canny algorithm. The Canny al
gorithm implementation can lead to different edge positions, which is 
also dependent on the selection of the thresholds. The Canny algorithm 
was run four times before achieving a clean edge for a threshold vector of 
[0.3 0.4]. [0.05 0.1] threshold led to noisy edges, [0.2 0.9] only detected 
the outer circle edge, [0.7 0.9] detected half of the outer edge, [0.4 0.5] 

Fig. 17. A. Watershed surface based on the geodesic transformed representation with auto-selected markers; B. Watershed surface based on the geodesic transformed 
representation with randomly selected marker. 

Table 2 
The comparison of computing time with different marker- 
selection methods (based on 0.1 interpolation ratio). The pro
cessor was Intel Xeon CPU E5-2630 v2 2.60 GHz.  

SD algorithms Computing time (s) 

Automatic MCW 32 
Manual MCW 193 
ISO 50 1 
Canny 15  
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could establish the outer edge but lead to an intermittent inner circle 
edge, demonstrating that the selection of threshold values significantly 
impacts the edge result of the Canny algorithm. 

In contrast, MCW computed a closed edge within a single trial. The 
foreground marker and the background marker were selected auto
matically. The watershed transformation segmented the geodesic 
transformed gradient image into partitions (material and background) 
whose edges are strictly closed. The result shows that the MCW can 
potentially be applied as an automated SD algorithm that does not 
require an educated input from the operator, hence reducing any asso
ciated operator errors. 

Despite the issues related to threshold selection in the Canny algo
rithm, the results presented until this point show that both methods, 
Canny and MCW provide equivalent results. This is because the surface 
of the object used in this research resembles an ideal situation, which is 
rarely met in practice. The difference between the MCW and Canny 
becomes visible when applied to real measurements of objects that are 
characterised by complex surface textures as shown in Fig. 22. 
Compared to the Canny algorithm, which generates disconnected edges 

Fig. 18. Surface point clouds determined by MCW under simulation set 2: Polychromatic, no noise. Outer Circle; Slice height index: L2, Interpolation ratio p = 0.1 
(blue dot), p = 0.2 (orange dot), p = 0.5 (cyan dot) and p = 1 (no interpolation, green dot), red line = nominal circle. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 19. The scatter plot of the relationship between p and RMS of the residual 
against fitted circle, Simulation set 2: Polychromatic, without noise. 
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nearby severe measuring artefacts, MCW successfully provides only 
closed edges surrounding the feature of interests. 

To conclude our discussions, we also present in Fig. 23 the MCW 
results applied on the real measurement of the two spheres, introduced 
in the first section of this paper as an example of ‘streak’ artefacts effect 
(see Fig. 2), highlighting once again the MCW resilience to common XCT 
measurement errors. 

6. Conclusions 

In summary, it has been identified that SD algorithms play an 
essential role in XCT measurements [59]. In this paper, we have 
addressed some of the issues encountered with the SD process: algorithm 
transparency, operator induced errors and the ability of the SD algo
rithms to avoid the effect of the noise and beam hardening that can lead 
to false edges. In order to reduce the operator’s errors, an automatic SD 

algorithm based on the MCW algorithm that eliminates the 
over-segmentation issues has been proposed and evaluated for XCT in
spection of samples with smooth and rough surfaces. The MCW algo
rithm consists of four steps: marker selection; gradient transformation; 
geodesic transformation; watershed transformation. The main points to 
highlight here are: 

• The foreground and background markers are determined automati
cally by combining the closing and erosion operators. Closing oper
ator eliminates the small hole within the marker to avoid subsequent 
over-segmentation and erosion shrinks the marker area so that 
markers do not overlap with the pixels adjacent to the edges. 

• The geodesic transformation removes the unwanted regional fea
tures present in the gradient image, which can lead to false edges.  

• The watershed transformation produced a clean and closed surface 
without significant errors. 

Fig. 20. The radius deviation of fitting circle against the nominal radius value under different interpolation ratio p value: A. Simulation set 2, polychromatic, with 
noise; B. Simulation set 3, polychromatic, SNR = 155. Mean radius value and error bars are based on five individual watershed surface applications over 5 slices 
within the range of ±10 layers around each benchmark (L3-H3) layers. Error bars indicate the standard deviation for each radius value. 
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In conclusion, the MCW is an effective SD algorithm that has been 
successfully validated for XCT metrology and inspection purposes using 
simulations and a reference sample. Additionally, we found that: 

• Compared to the Canny algorithm, the MCW algorithm can effec
tively provide closed inner and outer edges and avoids the errors 
attributed to the operator. At the same time, the MCW algorithm is 

easier to use compared to the Canny algorithm because it does not 
need to find the optimal thresholding conditions using ‘trial and 
error’ tests.  

• Both automatic and manual marker selections lead to the same edge 
data. 

Fig. 21. The edge determined using automatic marker-controlled watershed and Canny algorithm. The number in the square brackets indicate the threshold in the 
canny edge determination algorithm in MATLAB, and each number is within (0,1). The image is acquired under the CT simulation with noise. 
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• Interpolation is necessary to achieve sub-pixel (or sub-voxel) surface 
point clouds, however, the are no significant improvements below p 
= 0.2.  

• At p = 0.2 and in polychromatic measurement conditions, the radius 
of the external cylinder is affected by an error that can be as large as 
2.5% of a pixel compared to 0.4% in the case of the inner cylinder.  

• The noise leads to twice as large residual errors associated with the 
circle fitting of the external features than the ones reported for the 
inner features (0.5% and 0.25% of pixel size, respectively).  

• The geodesic transformation only eliminates most of the local 
minima that can lead to false edges. 

Fig. 22. The comparison between 3D MCW and 3D canny surfaces for surface roughness analysis over the experimental reference sample.  
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• The MCW algorithm outperforms the Canny algorithm when used to 
determine the surface of measured objects with complex surfaces. 
Applied on real XCT measurements, MCW generated the closed edges 
around the feature of interests and the results were not affected by 
the surrounding measurement artefacts such as in the Canny algo
rithm case. 

• Compared to commercial VG algorithm, MCW demonstrates resil
ience to common XCT measurement errors such as ‘streak’ artefacts. 

This work only considered 2D implementation of MCW. Further 
application on 3D volume data is possible, but it needs better compu
tational capacity and/or algorithm refinement to decrease the need for 
computer memory. For example, the 2D the interpolation process in
creases the number of pixels from 2000 × 2000 to 20,000 × 20,000, 
which requires 3051 MB of CPU memory. In 3D, interpolating the float 
voxel data from 2000 × 2000 × 2000 to 20,000 × 20,000 × 20,000 
requires 59,604.64 GB. 

Apart from the computer processing capacity, future work should 
take into account in depth consideration of the 3D MCW implementa
tion, experimental samples, reducing the processing time, the effect of 
scattering [53] and on the MCW ability to cope with rough components, 
such as the ones produced by additive manufacturing [20]. Porosity 
related measurement with smaller spatial frequency should be validated 
using MCW. Moreover, the geometry fitting strategy should also be 
considered. 

Data underlying this study can be accessed through the Cranfield 
University repository (CORD) at: https://doi.org/10.17862/cranfield.rd 
.20135006. 

This project contains the following underlying data:  

• Data_file.zip (Reconstructed simulation data, MCW surface point 
clouds, measurement results used for Fig 14 and Fig 16). 

Data are available under the terms of the [Creative Commons 
Attribution 4.0 International (CC BY 4.0)]. 
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