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A B S T R A C T   

A framework is proposed for assessing the physical consistency between two terrestrial Essential Climate Vari
ables (ECVs) products retrieved from Earth Observation at global scale. The methodology assessed the level of 
agreement between the temporal variations of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically 
Active Radiation (FAPAR). The simultaneous changes were classified according to their sign, magnitude and 
level of confidence, whereby the respective products uncertainties were taken into consideration. A set of pro
posed agreement metrics were used to identify temporal and spatial biases of non-coherency, non-significance, 
sensitivity and the overall level of agreement of the temporal changes between two ECVs. We applied the 
methodology using the Joint Research Center (JRC) Two-stream Inversion Package (TIP) products at 1 km, those 
provided by the Copernicus Global Land Service (CGLS) based on the SPOT/VGT and Proba-V at 1 km, and the 
MODIS MCD15A3 at 500 m. In addition, the same analysis was applied with aggregated products at a larger scale 
over Southern Africa. We found that the CGLS LAI and FAPAR products lacked consistency in their spatial and 
temporal changes and were severely affected by trends. The MCD15A3 products were characterized by the 
highest number of non-coherent changes between the two ECVs but temporal inconsistencies were mainly 
located over the eastern hemisphere. The JRC-TIP products were highly consistent. The results showed the 
advantages of physically-based retrieval algorithms, in both JRC-TIP and MODIS products, and indicated also 
that, except for MODIS over forests, aggregated products using an uncertainty-based weighted average led to 
higher agreement between the ECVs changes.   

1. Introduction 

Essential Climate Variables (ECVs) were defined in 2003 by the 
Global Climate Observing System (GCOS), and endorsed by the United 
Nations Framework Convention on Climate Change (UNFCCC) as “a 
physical, chemical, or biological variable, or a group of linked variables, 
that critically contribute to the characterization of Earth’s climate” 
(GCOS, 2011, 2016). ECVs derived from Earth Observation (EO) are now 
operationally delivered and they could be used in various policy and 
scientific domains emphasizing the need to provide full uncertainty 
budgets for them (Bojinski et al., 2014; Nightingale et al., 2019). Among 
terrestrial ECVs, the Leaf Area Index (LAI), defined as one half of the leaf 
area in the plant canopy within a given area, is one of the driving forcing 
parameters of net primary production, water and nutrient use, and 
carbon balance. FAPAR represents the fraction of photosynthetically 
active radiation absorbed by live/green vegetated elements (Sellers 

et al., 1997). They were used to monitor the state of the vegetation 
(Gobron et al., 2010; Polgar and Primack, 2011; Chen et al., 2019; 
Gobron, 2020), ecosystem productivity (Seixas et al., 2009) and to 
simulate a range of ecological responses to changes in climate and 
chemical composition of the atmosphere, including changes in the dis
tribution of terrestrial plant communities across the globe in response to 
climate change (Wu et al., 2016). They are crucial to quantify the 
terrestrial sink sequestration on the global carbon budget (Cai et al., 
2005). 

Global dynamics of terrestrial processes can only be quantitatively 
and accurately assessed using long-term measurements over every re
gion of the Earth. Since the early 2000s, optical sensors aboard satellites 
have been collecting spectral imagery from which LAI and FAPAR have 
been estimated. For example, data measured by Multi-angle Imaging 
Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradi
ometer (MODIS), Advanced Very-High-Resolution Radiometer 
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(AVHRR), Visible Infrared Imaging Radiometer Suite (VIIRS), PROBA-V, 
SPOT-VEGETATION, MEdium Resolution Imaging Spectrometer 
(MERIS) and more recently Sentinel-3 Ocean Land Colour Instrument 
were used to estimate globally LAI and FAPAR (Knyazikhin et al., 1998a, 
1998b; Gobron et al., 1999, 2019; Myneni et al., 2002; Pinty et al., 
2011a, 2011b; Baret et al., 2013; Zhu et al., 2013; Xiao et al., 2014; 
Claverie et al., 2016; Yan et al., 2018). 

Comprehensive studies to validate these products, mostly under the 
framework of the Land Product Validation (LPV) subgroup of the Com
mittee on Earth Observation Satellites (CEOS), have been conducted 
performing product inter-comparisons at global scale and at regional 
scale (Gobron et al., 2007; Weiss et al., 2007; McCallum et al., 2010; 
Ogutu et al., 2011; Fang et al., 2012, 2013; Camacho et al., 2013; Clav
erie et al., 2013; Martínez et al., 2013; Serbin et al., 2013; D’Odorico 
et al., 2014; Pickett-Heaps et al., 2014; Stern et al., 2014; Yan et al., 
2016b; Zhang et al., 2020; Fuster et al., 2020; Bayat et al., 2020). These 
products were compared with several ground field measurements 
(Gobron et al., 2007; Camacho et al., 2013; Tao et al., 2015; Xiao et al., 
2015; Gobron et al., 2019, 2021; Brown et al., 2020; Fang et al., 2019; 
Fuster et al., 2020). Many global multi-temporal ECV land products based 
on the same, or combinations of, sensor imagery have been released and 
are now available as Climate Data Records (CDR). Considering that they 
are essential to characterise the earth system and to constrain land, 
biosphere or crops models, cross consistency of ECV products must be 
guaranteed. Recent efforts to identify the three-main cross-ECV incon
sistency types (technical, retrieval and scientific level) were highlighted 
in Popp et al., 2020. The level of scientific soundness was crucial between 
ECVs that strongly interact, as do LAI and FAPAR. There was a strong 
need to check for physical consistency between land ECVs to ensure 
energy conservation when used in climate or land models (Sellers et al., 
1997; Pinty et al., 2011a; Wang and Zender, 2010; Yuan et al., 2017). 

LAI and FAPAR are physically linked by the radiation absorption 
theory as LAI, a state variable, represents the optical depth of the canopy 
in which radiation is absorbed by the leaves, i.e. the scattering elements 
(Ross, 1981). It is therefore expected that when LAI changes occur, FAPAR 
will also vary in the same direction (Myneni et al., 1989). The magnitudes 
of both changes must also be proportional. The exception to this rule 
occurs during the senescence period before the fall of autumn leaves, 
where FAPAR could decrease with a constant LAI (The single scattering 
albedo value of senescence leaves differ from the green ones (Houborg and 
Anderson, 2009)). This implies that the necessary condition for a signifi
cant FAPAR change to happen is a significant change in LAI. We proposed 
a framework to check for the physical changes consistency between these 
two ECVs taken into account their uncertainties. Fang et al. (2013) noted 
that some EO product uncertainties are only based on theoretical pre
cisions that represent the algorithm’s weakness and therefore are unable 
to fully represent the error propagation. Uncertainties cannot simply offer 
an indication as to whether the products meet the user requirements but 
are also key for the data assimilation within land surface models (Barbu 
et al., 2014; Boisier et al., 2014). It is within this context that the product 
uncertainties can offer an indication as to the significance of a temporal 
change and therefore be used to set a confidence level of any change. 

Mota and Gobron (2017), Mota et al. (2019) proposed a framework 
that can be used for any combination of physically linked ECVs and we 
adapted the methodology to assess cross-ECV consistency between LAI 
and FAPAR. 

In the present paper, we evaluated the level of agreement between 
LAI and FAPAR changes from three products: the MODIS products 
(Myneni et al., 2015), the Joint Research Centre Two-stream Inversion 
Package Products (Pinty et al., 2011a, 2011b) based on MODIS Collec
tion 6 surface albedo, and the Copernicus Global Land Service products 
based on SPOT-VEGETATION and PROBA-V data (Verger et al., 2014). 
We analysed the results for each product and assessed the spatial and 
temporal consistency, based on land cover types. We also explored the 
impact of spatial resolution. 

In the next section, we detailed the three products and their retrieval 

algorithms, and described the methods used to evaluate their changes 
agreement. In Section 3, we summarized the results and in Section 4, we 
discussed and highlighted the main conclusions of the study. 

2. Data 

2.1. The Copernicus Global Land Service (CGLS) products 

The CGLS LAI/FAPAR products were derived from top of canopy 
reflectances in visible, near infrared and shortwave infrared bands using 
Neural Network (NN) tools (Verger et al., 2014). The products were 
supplied every decadal (10 days) period at global scale with a spatial 
resolution of 1/112◦. The dataset was based on SPOT-VEGETATION 
imagery and when the mission ended in May 2014, the retrieval algo
rithms were adapted to PROBA-V imagery by applying a spectral con
version on PROBA-V Top Of Canopy (TOC) reflectances to get SPOT/ 
VGT-compatible ones, and rescaling the PROBA-V neural network 
(NN) outputs to SPOT/VGT ones (Baret et al., 2016). The processing of 
version 2 products also used a temporal smoothing and gap filling pro
cess based on the version-1 climatology to ensure temporal continuity 
and consistency (Verger et al., 2015). The NN algorithm capitalized on 
previous products (such as CYCLOPES Version 3.1 and MODIS Collec
tion 5 ones) and was calibrated with VEGETATION reflectance values. In 
the CGLS products, the FAPAR values correspond to instantaneous 
values at 10:00, solar time. The uncertainties associated with these 
products were estimated using the root mean square values between the 
dekadal value and the valid daily estimates within the 10 days period 
excluding the climatological filled values. We used 20 years (January 
1999 to December 2018) of valid data to ensure that only the higher 
quality observations were analysed (Smets et al., 2018). This means that 
each variable, i.e. LAI and FAPAR, has their own and separate retrieval 
algorithm. The potential physical link between the state variables were 
in the source of inputs data used in the NN, per se. 

2.2. The MODIS products (MCD15) 

The MODIS LAI/FPAR Collection 6 products, retrieved from data 
acquired from the combined TERRA and AQUA platforms (MCD15A2H), 
were generated every 8 days at 500 m spatial resolution over the globe 
(Myneni et al., 2015). The main algorithm used the daily surface 
reflectance data by inverting a 3-D radiative transfer model through a 
look-up table (LUT) (Knyazikhin et al., 1998a, 1998b). The method 
essentially searched the solutions in the LUT that best fit the observed 
bidirectional reflectance factors (BRFs) in the MODIS red and near- 
infrared bands based on predefined biome type, using MODIS land 
cover maps. Eight biome types were used as a priori information to 
constrain the vegetation optical and structural parameter spaces (Yan 
et al., 2016a). The outputs were the mean values of LAI and FAPAR 
averaged over all acceptable solutions, and the standard deviation served 
as uncertainty. The intrinsic physical link between LAI and FAPAR is 
therefore assured through the 3D-RT model computations. In addition, 
the products supplied a quality control mask indicating whether the 
values were derived from the main method or from a backup solution 
based on an empirical relation with Normalized Difference Vegetation 
Index (NDVI) for different biomes (Myneni and Williams, 1994; Knya
zikhin et al., 1998a, 1998b). We used 16-years of data from January 2003 
to December 2018. To ensure the best quality of observations, we 
excluded the pixels classified as affected by significant or mixed clouds 
and those derived by the back-up algorithm using the quality layer (htt 
ps://lpdaac.usgs.gov/documents/624/MOD15_User_Guide_V6.pdf). 

2.3. The Joint Research Centre Two-stream Inversion Ppackage products 
(JRC-TIP) 

The JRC-TIP was developed at the Joint Research Centre (JRC) and 
the products were generated to bridge the gap between remote sensing 
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products and large-scale global climate models (Pinty et al., 2011a, 
2011b). The products were based on an inversion algorithm of a two- 
stream model (Pinty et al., 2006) using the white-sky broadband al
bedo product in the visible and near-infrared domains derived from 
MODIS to infer the probability density functions (PDFs) of the model 
parameters of the vegetation layer, such the effective LAI, the effective 
single scattering albedo, the preferential forward or backward direction 
of scattering and the soil albedo. The data assimilation technique 
assumed constant prior values of these model parameters and their 
uncertainties. In addition, a snow mask was used to prior the back
ground albedo (Pinty et al., 2008). These parameters were then utilized 
together, with their retrieved uncertainties, to estimate the PDFs of the 
broadband (visible and near-infrared) scattered (i.e. canopy albedo), 
absorbed by the vegetation layer (i.e. FAPAR) and transmitted through 
the vegetation layer and absorbed by the background. Uncertainties for 
LAI and FAPAR were the standard deviations relating to the diagonal of 
the posterior covariance matrix derived from prior PDFs, observations 
and model uncertainties. JRC-TIP products were derived from MODIS 
Collection 6 data every 16-days at 0.01◦ globally between 2002 and 
2018. The input data were MCD43D59 (MCD43D60) for the white-sky 
albedo in the visible range, near-infrared) and the MCD43D31 prod
ucts for quality information. Snow status quality layer (MCD43D40) was 
used for background prior information. 

2.4. Global Land Cover map 

Throughout this study, aggregation by land cover type was based on 
the ESA Climate Change Initiative (CCI) land cover product, epochs 
2000, 2005 and 2015 (UCL-Geomatics, 2017). These global land cover 
maps were available at 300 m spatial resolution (http://maps.elie.ucl. 
ac.be/CCI/viewer (last accessed on 1/2/2019)). In our analysis, we 
adopted the global land cover class legend referred to CCI-LC and the 
appropriate aggregation into vegetation structure (see Table S1 in sup
plementary material), and used the different epochs to match the period 
under study (see Fig. S1 in supplementary material). Spatial conformity 
with each ECV product resolution was achieved by spatially aggregating 
the LC maps using a majority filter. 

3. Method: Agreement framework 

As both ECVs are physically linked, temporal consistency between 
these variables must be coherent, i.e., a significant change in one should 
be reflected in the second. The agreement between changes in LAI and 
FAPAR products (∆) is expressed by the following conditions: 

∆γ⟺Δμ (1)  

∆γ > 0⟹Δμ > 0 or∆γ < 0⟹Δμ < 0 (2)  

where ∆γ and ∆μ are LAI and FAPAR consecutive temporal changes, 
respectively. Whereas the first condition establishes the cause-and-effect 
- stating that for any change of LAI (∆γ) a change in the FAPAR value 
(∆μ) should occur - the second condition depicts the radiation absorption 
law – expressed by requirement that if LAI/FAPAR increases (decreases) 
then FAPAR/LAI itself increases (decreases), respectively. 

To analyse the level of agreement between the simultaneous LAI 
and FAPAR changes, we first quantified the frequency of the type of 
changes, i.e. negative and positive, that occurred in both variables 
according to conditions (1,2). In addition to the sign of the change, 
each change was assessed for its significance using the uncertainty to 
determine the level of confidence of the changes of one observation to 
the next. The confidence level, associated with each change allowed us 
to classify the changes into positive, negative or non-significant cate
gories, was determined by the ratio between the overlapping region 
and the full range of values between two consecutive observations and 
their uncertainties. The full range is the interval of values that are 

possible between observations when considering their uncertainties to 
determine the maximum and minimum range, as depicted in Fig. 1. The 
overlapping range represents only the common values between the two 
intervals and expresses the level of similarity between the 
observations. 

For example, large changes for which the associated ranges (value +
uncertainty) do not overlap, indicate 100% of confidence in the change 
(see Fig. 1a). Changes where an overlap in the observations and their 
uncertainties was observed, highlight a degree of similarity and there
fore a reduced level of confidence in the change (Fig. 1b and c). The 
proportion between the overlap and the full range of values provides the 
degree on how confident the change is: the confidence level. The greater 
the overlap, the lower the significance of the change. For example, if 
both observations have similar uncertainties but are small enough not to 
reach the following observation value, the overlap is below 0.33 
resulting in a confidence level bigger than 66% (see Fig. 1b). When the 
observations have large uncertainties that overlap the change value, the 
resulting ratio is large, indicating a low confidence associated with the 
change. 

The level of confidence is therefore given by: 

Cf
⃒
⃒t+1

t = 100∙
(

1 −
Ol

fl

)

(3) 

Where Ol is the change overlapping range, given by: 

Ol =

{
(vt+1 + ut+1) − (vt + ut), vt+1 < vt
(vt + ut) − (vt+1 − ut+1), vt+1 > vt

(4) 

and fl the full range is given by: 

fl =

{
(vt + ut) − (vt+1 − ut+1), vt+1 < vt
(vt+1 + ut+1) − (vt − ut), vt+1 > vt

(5)  

where v is either LAI or FAPAR and u is the associated uncertainty for 
consecutive observations at t and t + 1. 

All changes for LAI and FAPAR were analysed and classified ac
cording to the type of changes that occurred simultaneously. The three 
possible change classifications were: 1) an increase, 2) a decrease or 3) 
no confidence in the change. A change, to be considered as increase or 
decrease, must have at least a Cf value above 50%. Elsewhere, it was 
classified as a non-significance change (NC). In total, when considering 
the ECV simultaneous changes, nine possible classification combinations 
can occur. 

To evaluate the agreement between product changes, all nine 
possible types of intra-product changes were counted and used to 
populate the contingency table as framed in Fig. 2. This contingency 
table, also known as a confusion matrix, was used to derive the agree
ment and bias metrics. Physically coherent situations can assume three 
forms:  

● Significant increase in LAI leading to a significant increase in FAPAR, 
depicted in n33,  

● the inverse significant change leading to a decrease depicted in n11 
and, 

● the cases for which both changes in LAI and FAPAR are simulta
neously classified by a low confidence level and therefore considered 
non-significant, depicted in n22. 

Physical non-coherence was represented by the contradicted cases 
where significant LAI increase/decrease led to significant FAPAR 
decrease/increase, represented by n13/n31, respectively. 

The agreement between LAI and FAPAR changes was based on 
metrics developed for classification accuracy assessment (Story and 
Congalton, 1986). Overall accuracy, renamed hereafter as overall 
agreement (OA), is determined by the total percentage of coherent 
simultaneous changes, represented by the diagonal elements of the 
confusion matrix (Fig. 2), given by: 
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OA =

∑3

i=1
nii

N
(6) 

where nii is the number of cases that fell into each coherent change 
classification type (i = 1, 2, 3) and N is the total number of considered 
cases. 

Producer and user accuracy, also known as omission and commission 
errors (Janssen and Vanderwel, 1994), are combined into a single metric 
known as dice coefficient (Dice, 1945; Forbes, 1995). This coefficient 
has a probabilistic interpretation that if a given LAI product identified a 
change, the dice coefficient (DC) is equal to the conditional probability 
that the FAPAR product will also identify the corresponding coherent 
event (Fleiss et al., 2003). The dice coefficient is hereafter referred to as 
an increase sensitivity (Si) for the growing season, or a decrease sensi
tivity (Sd) for senescence period. These are respectively given by Eqs. 
(7), (8): 

Si =
2∙n33

2∙n33 + n32 + n31 + n23 + n13
(7)  

Sd =
2∙n11

2∙n11 + n12 + n13 + n21 + n31
(8) 

The non-coherent bias (Bnc) provides the information on the degree 

of balance between the two types of significant non-coherent cases. This 
bias refers to the percentage of all cases of the difference between the 
significant changes where LAI and FAPAR vary incoherently (Eq. (9)). 

Bnc =
n13 − n31

N
(9) 

The non-matching non-significant bias (Bns) evaluates the degree of 
balance between both non-significant changes between the ECVs. It is 
given by the percentage of all cases of the number of non-matching non- 
significant LAI changes and the ones associated with FAPAR (Eq. (10)). 

Bns =
(n21 − n23) − (n12 − n32)

N
(10)  

3.1. Temporal and spatial consistency evaluation 

We determined the level of changes agreement of the three EO 
products, applying the framework described in the previous section. The 
level of agreement was evaluated for its spatial and temporal consis
tency based on the following approaches:  

● Temporal consistency was assessed using a map approach where, for 
each temporal change, the simultaneous changes, for specific conti
nent and land cover type were classified and used to determine the 
level of agreement and biases. The integration with respect to time of 
the agreement and bias metrics results in a time-series from which 
one can evaluate the temporal consistency. Short-term consistency 
was assessed using the monthly climatological averages of the 
agreement metrics and the long-term consistency was evaluated by 
testing for a monotonic trend in the agreement metrics, using the 
Seasonal Mann-Kendall test (Hirsch et al., 1982, Hirsch and Slack, 
1984)  

● Spatial consistency was evaluated using a pixel based approach 
where the time-series of simultaneous classification changes, 
throughout the full period that occurred for each pixel, were used to 
determine the level of agreement, resulting in a map of agreement 
and bias metrics. These maps were used to estimate for spatial con
sistency within and between each land cover type by continent. The 
consistency was calculated by testing for mean and distribution 
differences between the products using the Welsh two-way (Welch, 
1947) and the Kolmorov-Smirnov two-way tests. 

3.2. Agreement sensitivity to the change confidence level 

As the confidence level associated with each temporal change is a key 
parameter to determine its significance, we evaluated the impact of 
different Cf thresholds on agreement between the ECV’s changes. We 
first looked at the overall agreement (OA) results by varying the Cf 
threshold value (25%, 50% and 75%) but by applying the same values to 

Fig. 1. Change confidence level at a) 100%, b) greater than 66% and c) lower than 66%. Change confidence level is based on the overlap area (in grey) between two 
observations. Product uncertainties around the values represent the extent of possible observations and the ratio between the overlapping area and the total extent of 
two consecutive observations determines the confidence of change. 

Fig. 2. Contingency table representing the LAI and FAPAR change classifica
tions based on the significance of change observed simultaneously within each 
product. Diagonal elements represent coherent cases of increase (n33), decrease 
(n11) events and no-confidence changes in both products (n22). 
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both LAI and FAPAR changes. This was done at global scale for the entire 
period of the datasets. We then focused on a particular year and area, 
and evaluated the impact on non-significant bias between the ECVs, 
using different Cf thresholds (at 1% scale steps) applied independently to 
each ECV. This analysis indirectly allowed us to examine how, and if, the 
relation between LAI and FAPAR uncertainties varies within each 
product. We restricted our analysis over Southern Africa, characterized 
by the presence of the four dominant land cover classes representing the 
main vegetation structures -croplands, forests, shrubs, grasslands- and 
during the 2012 representing an average season, selected randomly from 
the middle period of the ECV datasets. 

3.3. Spatial resolution impact on the ECV agreement 

To assess the spatial resolution impacts on the level of agreement, the 
framework was applied at four coarser resolutions (0.05◦, 0.10◦, 0.25◦

and 0.50◦) for 2012 over Southern Africa [0–35◦S; 8–43◦W]. The 
method for aggregating the products to a coarser resolution is based on a 
weighted average (Rs) approach, where the weights are calculated based 
on the associated product uncertainties. 

The weighted average for each grid-cell was given by Eq. (11) 

Rs =

∑
wiαi

wi
,wi =

1
δ2

i
(11) 

where δi were the uncertainties associated to each ECV value αi 
within each grid cell ith, and wi the associated weights. 

Ultimately, the uncertainty associated to Rs, σs is given by Eq. 12. 

σs =

̅̅̅̅̅̅̅̅̅̅̅
1

∑
w2

i

√

(13)  

4. Results 

4.1. Confidence threshold impact 

The level of agreement between the products’ changes was depen
dent on the chosen confidence threshold Cf associated with the ECV 
temporal changes. Choosing a smaller or larger threshold may result in 
different strengths of agreement. This was highlighted in Fig. 3 dis
playing the overall agreement zonal average (OAz) values when 
applying a 25%, 50% and 75% confidence threshold for the MODIS 
products aggregated at 0.5◦ spatial resolution. 

The figure showed that on average a higher overall agreement was 
obtained by applying a higher threshold. This meant that by setting a 

higher threshold requirement (i.e. requiring a larger change signifi
cance), higher OAz were obtained. The same effect was observed for the 
other products (not shown here). 

However, as shown in Fig. 4, this relation was non-linear and 
dependent on land cover. 

Depending on the land cover type, each dataset follows a specific 
dynamic between agreement and confidence threshold. Fig. 4 illustrates 
how the agreement metrics vary with the confidence threshold, for each 
dataset over forests in southern Africa during 2012. The upper panels 
related to the variation in agreement metrics that resulted from applying 
equal confidence thresholds for individual ECV, and the lower panels to 
the non-significant bias (Bns) when choosing independent confidence 
thresholds for each ECV. In the bottom panels, the red line indicated the 
same threshold level applied to the LAI and FAPAR changes that resulted 
in the upper panel metrics. 

Matching non-significant changes always increased with confidence 
threshold (grey line in top panels). Its rate of increase varied with 
product: it was higher for the JRC-TIP (Fig. 4a) and lower for the MCD15 
(Fig. 4b). This was due to the JRC-TIP’s larger uncertainties values 
relative to the ECV absolute values. Indeed, the prior value (uncertainty) 
for LAI was set to 1.5 (5). For both MCD15 and CGLS, relative un
certainties were smaller compared to the JRC-TIP ones, as they do not 
correspond to actual standard deviations of PDFs, and therefore led to 
more changes being classified as significant. However, as non-significant 
changes contributed positively to OA if they were simultaneous, these 
contributed positively to OA. In case of the sensitivities to increase (Si) 
and decrease (Sd), the growth in the number of matching non- 
significance can have a high impact due to the reduction of coherent 
changes classified as significant (n11 or n33, in Fig. 2). 

The example also showed a decrease in the number of non-coherent 
changes (n13 + n31) for larger confidence thresholds (brown line top 
panels). Although this was common to all products, for the JRC-TIP 
product non-coherence cases were not observed for this case, whereas 
the CGLS and MCD15 required a Cf threshold of 25% and 75%, 
respectively, to result in less than 1% of changes being classified as non- 
coherent (brown line top panels). This showed that non-coherence was 
more frequent in the MCD15 than in the CGLS or the JRC-TIP product, 
indicating that the lower relative uncertainties allowed for non-coherent 
changes to be classified as significant. 

In terms of non-matching and non-significant changes, e.g. the lack of 
balance in the confidence of changes between the ECVs, the JRC-TIP 
product shows consistency by having a higher number associated with 
LAI (n21 + n23) than FAPAR (n12 + n32) throughout all Cf thresholds 
(magenta and yellow lines, left upper panel). The exception (n12 + n32 

Fig. 3. Hovmöller diagram of the overall agreement between the MCD15 LAI and FAPAR products using a) 25%, b) 50% and c) 75% confidence threshold of change 
between 2001 and 2018 at 0.5◦ spatial resolution. 
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> n21 + n23) is only at very low Cf that upon inspection showed that 
these are associated with very low LAI and FAPAR values. For the 
MCD15, the opposite is observed. More changes in FAPAR than in LAI 
are classified as non-significant above the Cf thresholds of 40% (middle 
upper panel). As for the CGLS, the results show that independently of the 
chosen Cf, non-significant changes are always higher for FAPAR than for 
LAI (right upper panel). 

Choosing independent Cf thresholds for each ECV led to different Bns 
and therefore allowed us to identify the kind of relation between the 
ECV’s uncertainties. Fig. 4 showed the Bns distribution for all possible Cf 
for the three products. A negative bias for the JRC-TIP product, meaning 
more non-significant FAPAR changes than LAI ones, only occurred when 
considering low Cf for both LAI and FAPAR. In the case of the MCD15 
product, this only occurred for the higher Cf, mainly associated with 
FAPAR changes (Fig. 4e). For the CGLS, a negative bias dominated all Cf 
between 20 and 65% associated with LAI (Fig. 4f). These results re
flected the type of relation between each ECV uncertainty. For the JRC- 
TIP product, in relative terms, uncertainties tended to be always lower 
for FAPAR than for LAI. This was a direct consequence of how error 
propagated within the two-stream model characterized by a negative 
power exponential between FAPAR and LAI. In the case of the MCD15 
product, the results showed a contrasting relation, where FAPAR un
certainties tended to be higher, in relative terms, than the LAI ones. In 
addition, the MCD15 products were characterized by the biggest bias 
values among the three products and by a lower number of precision 
units leading to the unsmooth patterns shown in the Bns distribution. In 
the case of the CGLS, positive bias only occurred for the lower or higher 
end of Cf thresholds associated with the LAI changes, indicating a 
dichotomous relation between the ECV’s uncertainties. 

The best compromise between LAI and FAPAR changes, the one that 
showed balance between the number of significant cases occurring 
simultaneously in both ECVs, was the one that led to zero non-significant 

bias. For this forest case, this can only happen when a Cf around 16%, 
33% and 80% is applied to the JRC-TIP, MCD15 and CGLS datasets, 
respectively. For other land cover types, these values changed (not 
shown), and could be susceptible to change of study area and time 
period. Although one can find the Cf value that optimized all possible 
cases (spatially and temporally), it would prevent a proper consistency 
analysis study. Here, the objective was to analyse the product’s consis
tencies under equal terms. Therefore, it was for this reason that we chose 
a Cf of 50%, to be applied throughout the rest of study, representing the 
standard statistical threshold for decision making. 

4.2. Spatial consistency 

The level of agreement between the ECVs changes was determined 
using the 50% confidence threshold, and its spatial consistency was 
evaluated for each product. To highlight the differences between the 
product’s results, we plotted the mean of their metrics and the associ
ated standard deviations in Fig. 5. 

In terms of overall agreement (OA) (Fig. 5a), large spatial variations 
were found with high values associated with areas where vegetation is 
more active and low values over deserts and sparsely vegetated areas. 
The same pattern can also be observed for both sensitivity metrics 
(Fig. 5d and e), except over tropical forests characterized by sensitivities 
as low as the ones over sparsely vegetated areas. Over these areas, ECV 
changes were relatively small or constant compared to their un
certainties in the three products. This resulted in a larger number of non- 
significant cases leading to lower sensitivities. The results also showed 
that, on average the products exhibited higher sensitivity to decrease 
(Sd)than to increase (Si). 

As indicated by the larger standard deviation values (right panels), 
discrepancies between the products are also observed. These, in terms of 
OA, were larger over deserts and sparsely vegetated areas (Fig. 5b). In 

Fig. 4. Change classification and overall agreement variation with confidence threshold (upper panels) and non-coherent bias (bottom panels), between the LAI and 
FAPAR products changes (JRC-TIP, MCD15 and CGLS on the left, middle and right panels, respectively) for the tropical forests over Southern Africa for 2012. Top 
panels variation was represented by the red line in the bottom panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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terms of sensitivities, discrepancies were observed over tropical forests 
and sparsely vegetation for both sensitivities (Fig. 5d and e), and over 
Boreal forests for only Si (Fig. 5e). 

In terms of error metrics, non-coherence bias (Bnc) is positive over 
agricultural and sparsely vegetated areas and negative over forests 
(Fig. 5g). Except for deserts and sparsely vegetated areas - where the 
difference is higher - mean non-coherence bias and associated standard 
deviation is small indicating consistency between the products (Fig. 5h). 
In terms of non-significant bias (Bns), a similar spatial pattern to Bnc was 
observed but characterized by higher values and, as the standard devi
ation values shown, by larger intra-product differences (Fig. 5j). 

We also summarized the results by land cover class over South 
America (Fig. 6). Additional plots for other continents are available in 
the Supplement Document. On average, low agreements and error biases 
were normally restricted to the land cover classes with lower vegetation 

content, namely shrubs and grasslands. JRC-TIP products were always 
characterized by the highest agreement, while the CGLS were generally 
associated by the lowest agreement between the ECVs changes (Fig. 6a). 
In terms of sensitivity to decrease, Sd, the MCD15 products on average 
provided higher values over croplands and most forest types (Fig. 6b). 
Exceptions were only observed over Australia where Sd for the JRC-TIP 
was more sensitive to decrease (Fig. S3). CGLS products had the lowest 
sensitivity, with only a few exceptions, over forests. Over shrubs, the 
JRC-TIP products had the highest one over Asia, Australia and Africa 
whereas it was the MCD15 for the remaining continents. Over the two 
grassland types, these same products can show alternating sensitivities, 
depending on the continent. Regarding the sensitivity to increase, Si, the 
results were identical to Sd but characterized by slightly lower values. In 
terms of error bias, the CGLS and JRC-TIP products were characterized 
by positive and negative non-significant bias, respectively (Fig. 6e). In 

Fig. 5. Spatial distribution of the average of the three products agreement metrics for (left panels) and the associated standard deviation (right panels) using the 50% 
confidence threshold of change. 
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contrast, a very small positive bias was associated with the MCD15 
products. Regarding non-coherency, only the CGLS dataset showed 
positive bias over a restrictive set of LCs, such as grasslands over the 
Southern American continent (Fig. 6d). Intra-class spatial consistency, 
illustrated by the error bars associated with Bns variability, tended to be 

higher for grasslands and shrubs independently of the product and 
continent. On average, the MCD15 products were characterized by a 
lower variability and the CGLS by the highest. This meant that the CGLS 
was characterized by a degree of non-coherency spatial heterogeneity. 

Fig. 6. Spatial mean agreement metrics between the three LAI and FAPAR datasets by land cover class over the South American continent using the 50% confidence 
threshold of change (error bar indicates one standard deviation). 
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4.3. Temporal consistency 

4.3.1. Global pattern 
The temporal consistency approach illustrated that the products 

were characterized by considerable differences in terms of magnitude 
and trend, of the agreement and error bias metrics. The results at the 
global scale for the JRC-TIP (left panels), the MCD15 (middle panels) 
and the CGLS product (right panels) are displayed for the three agree
ments and the two-bias metrics in Fig. 7. For the overall agreement (OA), 
the JRC-TIP products had the highest values with a mean value for the 
full period of 98.8% whereas we found 83.1% for MCD15 and 71.0% for 
CGLS. 

There was no significant difference between both sensitivity metrics 
(84.8% and 83.9%) for the JRC-TIP product. In the case of the MCD15, 
the Sd (83.0%) was slightly greater than the Si (80.5%). CGLS products 
was not only characterized by lower mean values (61.0% and 66.7% for 
Sd and Si, respectively) but a clear negative trend was detected for Sd, 
with a drop post mid-2004 (corresponding to the VGT-1 and VGT-2 
transition) and even a greater drop for the post-2014 period (transi
tion from VGT to PROBA-V). 

Non-coherent bias, e.g. Bnc, was not detected for the JRC-TIP prod
ucts and the MCD15 had a small positive mean bias of 0.05%. For the 
CGLS, Bnc variations were not only bigger but their mean magnitude was 
of 0.15%. One can notice also a large peak during the 10-day transition 
period of 2014. The three products had contrasting non-significant bias 
(Bns) results. Whereas the JRC-TIP dataset is characterized by a low 
mean negative bias (− 0.01%), the MCD15 has a mean positive bias 

(0.05%). The CGLS was not only characterized by a much larger mean 
positive bias (0.15%) but also by a larger seasonal variation following a 
positive trend. 

One can also notice that the percentage of processed pixels relative to 
the number of available land pixels (grey shaded areas, upper panels) 
was characterized by the expected seasonal oscillation. The mean value 
over the full period was similar for JRC-TIP and MCD15 (58.7% and 
62.6%, respectively). As for the CGLS, this percentage was smaller, 
reaching mean values below 50% or 85% (pre-or post-2014 period), 
associated with the sensor transition from VGT to PROBA-V. In sum
mary, the agreement and bias metrics for the CGLS product were char
acterized by a larger temporal and seasonal variability. Not only was the 
magnitude of values larger but also the seasonally based oscillation 
clearer. Due to the smaller and noisier oscillations, the seasonal pattern 
was not as apparent for the JRC-TIP and MCD15 products. 

4.3.2. Seasonality – Short term consistency 
Fig. 8 illustrated the average annual variation of the agreement 

metrics over North America for the three products. These represented 
the climatological seasonal variation and, for this continent, with only 
one clear season occurring during the year. For the JRC-TIP, OA and Si 
variations were minimal and a larger variation was only observed with 
Sd (Fig. 8b). Non-significant bias was always negative with larger values 
occurring from April to June (Fig. 8e). As for the MCD15, the annual Sd 
and Si variations were slightly larger than for the JRC-TIP between the 
May–August (Fig. 8b) and April–June (Fig. 8c) period, respectively. 
Non-coherence bias for the MCD15 tended to be always positive, 

Fig. 7. Global temporal profiles of the change agreement metrics (row panels) - Overall Agreement (red), sensitivity to increase (blue) and decrease (green), non- 
significant (magenta) and non-coherent (yellow) biases - between the simultaneous changes of the LAI and FAPAR products (TIP, MCD15 and CGLS on the left, 
middle and right panels, respectively), using the 50% confidence threshold of change. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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meaning significant LAI increase with simultaneous FAPAR decrease. 
The exception occurred during August and September (small negative 
bias) meaning that during this period non-coherence was characterized 
by significant FAPAR increase and LAI decrease. 

The CGLS followed a clearer seasonal variation characterized with 
lower OA, Sd and Si in comparison to the other products. In this region, 
the winter months were always characterized by the lowest agreements 

(OA, Si and Sd). In summary, CGLS exhibited a clear seasonal pattern, 
meaning that the lack of agreement between the ECV’s change was 
highly dependent on the season and therefore, lacked short term tem
poral consistency. The MCD15 products’ change agreement was not as 
affected by seasonality but non-coherence bias can be an issue. Seasonal 
variations over the other continents (not shown) showed similar results. 

Fig. 8. Mean seasonal profiles for the change a) overall agreement, b) sensitivity to decrease, c) sensibility to increase, d) non-coherent and e) non-significant biases 
between the LAI and FAPAR changes products over the North American continent using the 50% confidence threshold of change (shaded area represents one 
standard deviation). 
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4.3.3. Temporal trends – Long term variation 
The trends of both agreement and error bias time-series were ana

lysed at global scale. Fig. 9 shows the spatial distribution of Mann- 
Kendall seasonal score over the areas where it was significant for each 
metric using the JRC-TIP (left panels), MCD15 (middle panels) and CGLS 
(right panels) dataset. 

JRC-TIP depicted significant negative trends for OA and for sensi
tivities over North America and the south Asia region. In contrast, 
positive trends were observed in South America. Trends for Bns were 
always negative and mainly over areas for which OA also had a negative 
trend. The JRC-TIP dataset did not show any Bnc trend. 

For the MCD15, significant OA trends were mainly detected over the 
eastern hemisphere: negative in Southern Africa and Australia and 
positive in Asia. The same trends as OA were detected in Si and Sd values, 
except for a sign change over Australia. Only the regions over south Asia 
and Australia showed trends of opposite sign for Bnc. As for Bns, the 
trends were mainly negative with significant high scores located in India 
and China, that can be associated with irrigated croplands. 

The CGLS dataset was characterized by the highest geographical 
extent over which a significant trend was detected across all metrics. For 
example, trends of OA with significant high positive scores were found 

over most areas covered by vegetation. One exception was the negative 
trends located over sparsely vegetated areas in southern Africa and 
Australia. Contrasting trends for Si and Sd occurred over non-forested 
vegetation in Africa. Over the western hemisphere and Australia Bnc 
were characterized by a positive bias trend whereas a negative trend was 
detected over Asia. As for the Bns, much of the areas were characterized 
by negative trends except for sparsely vegetated areas over Australia and 
southern Africa. 

In summary, the results demonstrated that datasets had significant 
trends in the agreement metrics over different areas, and that these were 
of the same or opposing sign depending on the product. As one example, 
the results over croplands in North America are plotted in Fig. 10. 
Whereas a small but significant negative OA trend was detected for the 
JRC-TIP, a positive trend was detected for CGLS (Fig. 10a). The JRC-TIP 
negative OA trend was associated with a negative Bns trend, meaning 
that over time more FAPAR changes were classified as non-significant in 
comparison with the LAI ones. This caused lower number of simulta
neous changes being classified as non-significant or coherent, thus 
contributing less to the overall agreement. In contrast, the CGLS product 
was categorised by a negative Bns trend of positive bias values, meaning 
that there were less non-significant LAI changes over time in comparison 

Fig. 9. Spatial distribution of the Seasonal Mann-Kendal trend scores for the overall agreement for a) JRC-TIP, b) MCD15 and c) CGLS LAI and FAPAR products using 
the 50% confidence threshold of change. Grey indicates areas for which no significant monotonic seasonal trend was detected. 
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with the FAPAR ones. The second example, over tropical forest in South 
America, also demonstrated opposite trends associated with Sd, where 
the JRC-TIP/CGLS products were characterized by a positive/negative 
trend, respectively (Fig. 10b). The third example showed that trends of 
Bnc were mostly found with the CGLS dataset: over sparsely vegetated 
areas in Australia. In this case, not only was the bias value higher 
compared to the other products, but a significant positive trend was 
detected (Fig. 10c). This meant that the number of changes where LAI 
decreases and FAPAR increases compared to the number of changes 
where LAI increases and FAPAR decreases was growing in time. The 
main contribution to the trend was the transition between the pre-and 
post-2014 period, meaning that the PROBA-V based products were 
more prone to non-coherence. 

The three products also manifested aligned trends over similar areas. 
For example, the Bns negative trend over croplands in India for both JRC- 
TIP and MCD15 (Fig. 10d). Here, the trends meant that the balance 
between the number of non-significant simultaneous LAI and FAPAR 
changes was varying over time. But whereas for the JRC-TIP this dif
ference was becoming more negative, meaning more bias, for the 
MCD15 the difference was becoming less positive, and therefore less 
biased. 

The outcomes also suggested that trends were not dependent on the 
type of vegetation (e.g. the land cover classes), as the trend results for the 
same land cover can differ between continents. One example was over 
the tropical forests for the JRC-TIP datasets, where only South America 
was characterized by significant agreement trends. Another example of 
land cover independence was for the MCD15 product, where the sig
nificant trends were mostly restricted to the eastern hemisphere. 

4.4. Spatial resolution impact 

Our framework was applied at various spatial resolutions to evaluate 
the scale impacts at the level of agreement between the ECV simulta
neous changes. Fig. 11 showed the variation in agreement and bias er
rors between the three datasets over the main four land cover classes 
over the southern African region during 2012. Except for the MCD15 
over forests, on average, the highest overall agreement is either 
observed at the native resolution or at the lowest possible resolution 
(upper panels). This means that the higher the number of pixels used in 
the aggregation, the lower the chance of both ECVs not agreeing. 
However, except for the JRC-TIP products or over grasslands, on average 
both sensitivities (Si and Sd) for the MCD15 and CGLS products decrease 
with resolution, indicating a loss of sensibility to detect a significant 
change between the ECVs, especially during the senescence period (Sd). 
For the MCD15 products over forests, both OA and sensitivities decrease, 
and Bnc increases, for lower resolutions. This means that the associated 
product uncertainty to weight the aggregated average leads to worse 
results. 

5. Discussion and conclusions 

In this paper, we evaluated the spatial and temporal consistency 
between LAI and FAPAR changes for three operational EO datasets. The 
proposed framework allowed us to quantify the level of agreement be
tween each ECV temporal change using their own uncertainties. The 
results are essential for users when ECVs products are assimilated 
together into a land surface model (Kaminski et al., 2013; Leroux et al., 

Fig. 10. Time-series for a) overall agreement over croplands in North America, b) Sensibility to decrease over tropical forest in South America, c) Non-coherence bias 
over sparsely vegetated areas in Australia, and d) Non-significant bias over croplands over India for the JRC-TIP (red), CGLS (green) and MCD15 (blue). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2018; Wu et al., 2019; Albergel et al., 2020). The sensitivity analysis on 
the level of confidence of the simultaneous changes allowed us to better 
understand the relation between the associated uncertainties of each 
ECV and its impact on the product’s agreement and biases. Furthermore, 
the impact of uncertainties used to aggregate the products into different 
spatial resolutions was also analysed. This analysis was important, since 
frequently ECVs are aggregated separately to fit model resolution and 
physical consistency is impacted (Kaminski et al., 2017). 

Our results showed that agreement between the ECVs’ changes 
varied significantly through each dataset. Not only because the agree
ment differed in terms of magnitude but also temporally and spatially, 
meaning that for certain regions and periods, products reveal a lack of 
consistency:  

● CGLS products exhibited a variation in the agreement and biases 
between the SPOT-VEGETATION and PROBA-V periods. This was 
already observed on version 1 of the product (Mota and Gobron, 
2017, Cammalleri et al., 2019). Our findings identified that the 
agreement between these FAPAR and LAI changes was severely 
affected by temporal trends. Although some validation efforts 
showed temporal consistency in the ECV time series (Camacho et al., 
2013), our results demonstrated that there was a lack of temporal 
consistency in associated uncertainties, mainly due to the transition 
of sensors. As revealed by the non-significant bias trends, the un
certainties magnitudes were changing over time: the LAI un
certainties were getting smaller or the FAPAR uncertainties 

increased. The agreement dependency with land cover classes 
showed a lack of spatial consistency. There was a high dependence 
on seasonality indicating that the products changes were not 
consistent, mainly during the periods of small/constant vegetation 
changes. 

● The agreement between the LAI and FAPAR from JRC-TIP was al
ways very high. This was primarily because FAPAR was retrieved 
from the two-stream model after state variables were retrieved. The 
relative uncertainties of each ECV were also larger compared to other 
products, as the prior values were higher. Consequently, this led to a 
low number of change cases available to analyse the agreement 
sensitivity during the growing and senescence periods. If the priors’ 
values are being restricted to lower range values, the uncertainties 
will decrease. JRC-TIP was also the only dataset where ECV agree
ment was less affected by LC, seasonality and trends: this is mainly 
because the retrieval algorithm is independent of land cover types, as 
no biome assumption was made.  

● The MCD15 agreement consistency was close to the JRC-TIP one, and 
in some cases statistically identical. On some occasions, it was 
characterized by higher agreement than for the JRC-TIP in sensitivity 
to the growth and senescence period. This could be due to the higher 
temporal resolution (8-day) used here in contrast to that of JRC-TIP 
(16-days) but also because their reported uncertainties were smaller 
and therefore contributed more to the agreement metrics. The 
MCD15 also showed that the sensitivity to decrease was a little 
higher than for increases. This could reflect the fact that in the 

Fig. 11. Agreement metrics variation by spatial resolution between the simultaneous changes of the JRC-TIP (red), CGLS (green) and MCD15 (blue) LAI and FAPAR 
for agriculture (left column panel), forest (second column panel), shrub (third column panel) and grasslands (right column panel) classes over Southern Africa 
[0–35◦S; 8–43◦W] using the 50% confidence threshold of change for year 2012. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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senescence period, leaf yellowing and the fall was quicker and easier 
to monitor. However, in contrast to the other datasets where 
agreement trends were globally distributed, trends for the MCD15 
product were mainly identified over the eastern hemisphere. 
Furthermore, these products were the ones mostly affected by non- 
coherence changes between LAI and FAPAR, meaning that signifi
cant changes were associated with physically inconsistent situations. 

Our results showed that the ECV’s uncertainty contribution to the 
calculation of the level of confidence of the changes was different for 
each product and land cover class. This suggested that different uncer
tainty definitions between each product impacts depend on the vege
tation type. For the JRC-TIP, uncertainties propagate consistently 
according to its formulation, i.e., in simplistic terms a negative expo
nential based on LAI is used to calculate FAPAR and therefore results in 
lower relative uncertainties for FAPAR than for LAI. The confidence 
threshold sensitivity analysis confirmed that the uncertainty propaga
tion, in the JRC-TIP case, was in accordance with the physical equation 
relating the two ECVs. For MCD15, the results showed that there was an 
inversion in the relative magnitude of the ECV uncertainties: the LAI 
relative uncertainties tended to be smaller than the FAPAR ones. As they 
were calculated using the standard deviation of the retrieval solutions, 
during the retrieval algorithm, the range of values was larger in LAI than 
for the FAPAR. Exceptions can only be observed for small LAI values. As 
for CGLS product, agreement between the ECV changes was character
ized by the larger LAI uncertainties, with minor expectations for extreme 
LAI values. The CGLS products uncertainties were unconnected as each 
ECV was derived directly from independent neural network algorithms. 
Therefore, there was no uncertainty relation between them. 

This study also indicated that spatial resolution had an impact on the 
level of consistency of the ECV’s changes. On average, higher agreement 
and low biases always resulted from lower resolution resampled prod
ucts when using weighting averages based on the associated un
certainties. This meant that having a higher number of pixels (more 
information) leads to a low probability of non-coherence between the 
ECV’s changes. At the same time, aggregation tends to smooth changes 
and lead to a decrease in sensitivity. However, because uncertainty is 
used to weigh each gridcell average, products that perform worse, or 
deviate significantly from the trend, over a particular land cover, could 
suggest that there is a problem on how uncertainties are estimated and 
therefore their use needs further research. 

In conclusion, JRC-TIP and MCD15 datasets offered a higher agree
ment between the LAI and FAPAR temporal variations and were 
spatially and temporally consistent. The MCD15 product results were 
similar to those of the JRC-TIP, but it was characterized by smaller 
relative ECV uncertainties that can also indicate a lack of coherence 
between LAI and FAPAR changes. The CGLS datasets had less consis
tency, especially over small vegetated cover that was either higher or 
lower during the growing and senescence periods. 

This study proposed a framework to allow identification of physical 
consistency in the agreement between terrestrial ECV changes with 
various metrics made available temporally and spatially. Depending on 
the application, users that aim to assimilate these ECVs into land surface 
models, namely global vegetation models, need to fully understand 
where, and when, inconsistencies can occur. This study demonstrated 
that product retrieval algorithms that are independent performed worse 
in terms of agreement than those physically based. Furthermore, un
certainty needs to be better defined and evaluated for its fitness for 
purpose. At this stage, none of these EO products has its uncertainty fully 
characterized by propagating L1 radiance uncertainties to the L2 bio
physical products. This can lead to large differences between the prod
ucts on what effects are considered in their uncertainties. With the 
increasing number of Earth Observation satellite programs, validation of 
the available ECV products and their uncertainties was not only 
becoming more important in context of product accuracy, but also in 
terms of physical compatibility. The proposed framework integrated 

both information on the temporal changes and the associated un
certainties of these products to assess physical consistency before any 
assimilation studies. This methodology can be applied to any type of 
ECVs if a physical link is known. The advantage is the economy of 
computational demands when compared to assimilation methodology. 
Also, it does not depend on other land variables and model scheme. It 
also provides information at both spatial and temporal scale for 
detecting any bias when multiple sensors are used or when assumptions 
are made in the retrieval algorithm, thus potentially helping producers 
to refine them. However, a necessary condition is having product un
certainties with the same unit and definition. 
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