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ARTICLE INFO ABSTRACT

Editor: Jing M. Chen A framework is proposed for assessing the physical consistency between two terrestrial Essential Climate Vari-

ables (ECVs) products retrieved from Earth Observation at global scale. The methodology assessed the level of

Keywords: agreement between the temporal variations of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically
]I;:LAR Active Radiation (FAPAR). The simultaneous changes were classified according to their sign, magnitude and

level of confidence, whereby the respective products uncertainties were taken into consideration. A set of pro-
posed agreement metrics were used to identify temporal and spatial biases of non-coherency, non-significance,
sensitivity and the overall level of agreement of the temporal changes between two ECVs. We applied the
methodology using the Joint Research Center (JRC) Two-stream Inversion Package (TIP) products at 1 km, those
provided by the Copernicus Global Land Service (CGLS) based on the SPOT/VGT and Proba-V at 1 km, and the
MODIS MCD15A3 at 500 m. In addition, the same analysis was applied with aggregated products at a larger scale
over Southern Africa. We found that the CGLS LAI and FAPAR products lacked consistency in their spatial and
temporal changes and were severely affected by trends. The MCD15A3 products were characterized by the
highest number of non-coherent changes between the two ECVs but temporal inconsistencies were mainly
located over the eastern hemisphere. The JRC-TIP products were highly consistent. The results showed the
advantages of physically-based retrieval algorithms, in both JRC-TIP and MODIS products, and indicated also
that, except for MODIS over forests, aggregated products using an uncertainty-based weighted average led to
higher agreement between the ECVs changes.

Physical consistency

1. Introduction

Essential Climate Variables (ECVs) were defined in 2003 by the
Global Climate Observing System (GCOS), and endorsed by the United
Nations Framework Convention on Climate Change (UNFCCC) as “a
physical, chemical, or biological variable, or a group of linked variables,
that critically contribute to the characterization of Earth’s climate”
(GCOS, 2011, 2016). ECVs derived from Earth Observation (EO) are now
operationally delivered and they could be used in various policy and
scientific domains emphasizing the need to provide full uncertainty
budgets for them (Bojinski et al., 2014; Nightingale et al., 2019). Among
terrestrial ECVs, the Leaf Area Index (LAI), defined as one half of the leaf
area in the plant canopy within a given area, is one of the driving forcing
parameters of net primary production, water and nutrient use, and
carbon balance. FAPAR represents the fraction of photosynthetically
active radiation absorbed by live/green vegetated elements (Sellers
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et al., 1997). They were used to monitor the state of the vegetation
(Gobron et al., 2010; Polgar and Primack, 2011; Chen et al., 2019;
Gobron, 2020), ecosystem productivity (Seixas et al., 2009) and to
simulate a range of ecological responses to changes in climate and
chemical composition of the atmosphere, including changes in the dis-
tribution of terrestrial plant communities across the globe in response to
climate change (Wu et al., 2016). They are crucial to quantify the
terrestrial sink sequestration on the global carbon budget (Cai et al.,
2005).

Global dynamics of terrestrial processes can only be quantitatively
and accurately assessed using long-term measurements over every re-
gion of the Earth. Since the early 2000s, optical sensors aboard satellites
have been collecting spectral imagery from which LAI and FAPAR have
been estimated. For example, data measured by Multi-angle Imaging
Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradi-
ometer (MODIS), Advanced Very-High-Resolution Radiometer
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(AVHRR), Visible Infrared Imaging Radiometer Suite (VIIRS), PROBA-V,
SPOT-VEGETATION, MEdium Resolution Imaging Spectrometer
(MERIS) and more recently Sentinel-3 Ocean Land Colour Instrument
were used to estimate globally LAI and FAPAR (Knyazikhin et al., 1998a,
1998b; Gobron et al., 1999, 2019; Myneni et al., 2002; Pinty et al.,
2011a, 2011b; Baret et al., 2013; Zhu et al., 2013; Xiao et al., 2014;
Claverie et al., 2016; Yan et al., 2018).

Comprehensive studies to validate these products, mostly under the
framework of the Land Product Validation (LPV) subgroup of the Com-
mittee on Earth Observation Satellites (CEOS), have been conducted
performing product inter-comparisons at global scale and at regional
scale (Gobron et al., 2007; Weiss et al., 2007; McCallum et al., 2010;
Ogutu et al., 2011; Fang et al., 2012, 2013; Camacho et al., 2013; Clav-
erie et al., 2013; Martinez et al., 2013; Serbin et al., 2013; D’Odorico
et al.,, 2014; Pickett-Heaps et al., 2014; Stern et al., 2014; Yan et al.,
2016b; Zhang et al., 2020; Fuster et al., 2020; Bayat et al., 2020). These
products were compared with several ground field measurements
(Gobron et al., 2007; Camacho et al., 2013; Tao et al., 2015; Xiao et al.,
2015; Gobron et al., 2019, 2021; Brown et al., 2020; Fang et al., 2019;
Fuster et al., 2020). Many global multi-temporal ECV land products based
on the same, or combinations of, sensor imagery have been released and
are now available as Climate Data Records (CDR). Considering that they
are essential to characterise the earth system and to constrain land,
biosphere or crops models, cross consistency of ECV products must be
guaranteed. Recent efforts to identify the three-main cross-ECV incon-
sistency types (technical, retrieval and scientific level) were highlighted
in Popp et al., 2020. The level of scientific soundness was crucial between
ECVs that strongly interact, as do LAI and FAPAR. There was a strong
need to check for physical consistency between land ECVs to ensure
energy conservation when used in climate or land models (Sellers et al.,
1997; Pinty et al., 2011a; Wang and Zender, 2010; Yuan et al., 2017).

LAI and FAPAR are physically linked by the radiation absorption
theory as LA, a state variable, represents the optical depth of the canopy
in which radiation is absorbed by the leaves, ie. the scattering elements
(Ross, 1981). It is therefore expected that when LAI changes occur, FAPAR
will also vary in the same direction (Myneni et al., 1989). The magnitudes
of both changes must also be proportional. The exception to this rule
occurs during the senescence period before the fall of autumn leaves,
where FAPAR could decrease with a constant LAI (The single scattering
albedo value of senescence leaves differ from the green ones (Houborg and
Anderson, 2009)). This implies that the necessary condition for a signifi-
cant FAPAR change to happen is a significant change in LAI. We proposed
a framework to check for the physical changes consistency between these
two ECVs taken into account their uncertainties. Fang et al. (2013) noted
that some EO product uncertainties are only based on theoretical pre-
cisions that represent the algorithm’s weakness and therefore are unable
to fully represent the error propagation. Uncertainties cannot simply offer
an indication as to whether the products meet the user requirements but
are also key for the data assimilation within land surface models (Barbu
et al., 2014; Boisier et al., 2014). It is within this context that the product
uncertainties can offer an indication as to the significance of a temporal
change and therefore be used to set a confidence level of any change.

Mota and Gobron (2017), Mota et al. (2019) proposed a framework
that can be used for any combination of physically linked ECVs and we
adapted the methodology to assess cross-ECV consistency between LAI
and FAPAR.

In the present paper, we evaluated the level of agreement between
LAI and FAPAR changes from three products: the MODIS products
(Myneni et al., 2015), the Joint Research Centre Two-stream Inversion
Package Products (Pinty et al., 2011a, 2011b) based on MODIS Collec-
tion 6 surface albedo, and the Copernicus Global Land Service products
based on SPOT-VEGETATION and PROBA-V data (Verger et al., 2014).
We analysed the results for each product and assessed the spatial and
temporal consistency, based on land cover types. We also explored the
impact of spatial resolution.

In the next section, we detailed the three products and their retrieval
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algorithms, and described the methods used to evaluate their changes
agreement. In Section 3, we summarized the results and in Section 4, we
discussed and highlighted the main conclusions of the study.

2. Data
2.1. The Copernicus Global Land Service (CGLS) products

The CGLS LAI/FAPAR products were derived from top of canopy
reflectances in visible, near infrared and shortwave infrared bands using
Neural Network (NN) tools (Verger et al., 2014). The products were
supplied every decadal (10 days) period at global scale with a spatial
resolution of 1/112°. The dataset was based on SPOT-VEGETATION
imagery and when the mission ended in May 2014, the retrieval algo-
rithms were adapted to PROBA-V imagery by applying a spectral con-
version on PROBA-V Top Of Canopy (TOC) reflectances to get SPOT/
VGT-compatible ones, and rescaling the PROBA-V neural network
(NN) outputs to SPOT/VGT ones (Baret et al., 2016). The processing of
version 2 products also used a temporal smoothing and gap filling pro-
cess based on the version-1 climatology to ensure temporal continuity
and consistency (Verger et al., 2015). The NN algorithm capitalized on
previous products (such as CYCLOPES Version 3.1 and MODIS Collec-
tion 5 ones) and was calibrated with VEGETATION reflectance values. In
the CGLS products, the FAPAR values correspond to instantaneous
values at 10:00, solar time. The uncertainties associated with these
products were estimated using the root mean square values between the
dekadal value and the valid daily estimates within the 10 days period
excluding the climatological filled values. We used 20 years (January
1999 to December 2018) of valid data to ensure that only the higher
quality observations were analysed (Smets et al., 2018). This means that
each variable, i.e. LAI and FAPAR, has their own and separate retrieval
algorithm. The potential physical link between the state variables were
in the source of inputs data used in the NN, per se.

2.2. The MODIS products (MCD15)

The MODIS LAI/FPAR Collection 6 products, retrieved from data
acquired from the combined TERRA and AQUA platforms (MCD15A2H),
were generated every 8 days at 500 m spatial resolution over the globe
(Myneni et al., 2015). The main algorithm used the daily surface
reflectance data by inverting a 3-D radiative transfer model through a
look-up table (LUT) (Knyazikhin et al., 1998a, 1998b). The method
essentially searched the solutions in the LUT that best fit the observed
bidirectional reflectance factors (BRFs) in the MODIS red and near-
infrared bands based on predefined biome type, using MODIS land
cover maps. Eight biome types were used as a priori information to
constrain the vegetation optical and structural parameter spaces (Yan
et al., 2016a). The outputs were the mean values of LAl and FAPAR
averaged over all acceptable solutions, and the standard deviation served
as uncertainty. The intrinsic physical link between LAI and FAPAR is
therefore assured through the 3D-RT model computations. In addition,
the products supplied a quality control mask indicating whether the
values were derived from the main method or from a backup solution
based on an empirical relation with Normalized Difference Vegetation
Index (NDVI) for different biomes (Myneni and Williams, 1994; Knya-
zikhin et al., 1998a, 1998b). We used 16-years of data from January 2003
to December 2018. To ensure the best quality of observations, we
excluded the pixels classified as affected by significant or mixed clouds
and those derived by the back-up algorithm using the quality layer (htt
ps://lpdaac.usgs.gov/documents/624/MOD15_User_Guide_V6.pdf).

2.3. The Joint Research Centre Two-stream Inversion Ppackage products
(JRC-TIP)

The JRC-TIP was developed at the Joint Research Centre (JRC) and
the products were generated to bridge the gap between remote sensing
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products and large-scale global climate models (Pinty et al., 2011a,
2011b). The products were based on an inversion algorithm of a two-
stream model (Pinty et al., 2006) using the white-sky broadband al-
bedo product in the visible and near-infrared domains derived from
MODIS to infer the probability density functions (PDFs) of the model
parameters of the vegetation layer, such the effective LAI, the effective
single scattering albedo, the preferential forward or backward direction
of scattering and the soil albedo. The data assimilation technique
assumed constant prior values of these model parameters and their
uncertainties. In addition, a snow mask was used to prior the back-
ground albedo (Pinty et al., 2008). These parameters were then utilized
together, with their retrieved uncertainties, to estimate the PDFs of the
broadband (visible and near-infrared) scattered (i.e. canopy albedo),
absorbed by the vegetation layer (i.e. FAPAR) and transmitted through
the vegetation layer and absorbed by the background. Uncertainties for
LAI and FAPAR were the standard deviations relating to the diagonal of
the posterior covariance matrix derived from prior PDFs, observations
and model uncertainties. JRC-TIP products were derived from MODIS
Collection 6 data every 16-days at 0.01° globally between 2002 and
2018. The input data were MCD43D59 (MCD43D60) for the white-sky
albedo in the visible range, near-infrared) and the MCD43D31 prod-
ucts for quality information. Snow status quality layer (MCD43D40) was
used for background prior information.

2.4. Global Land Cover map

Throughout this study, aggregation by land cover type was based on
the ESA Climate Change Initiative (CCI) land cover product, epochs
2000, 2005 and 2015 (UCL-Geomatics, 2017). These global land cover
maps were available at 300 m spatial resolution (http://maps.elie.ucl.
ac.be/CClI/viewer (last accessed on 1/2/2019)). In our analysis, we
adopted the global land cover class legend referred to CCI-LC and the
appropriate aggregation into vegetation structure (see Table S1 in sup-
plementary material), and used the different epochs to match the period
under study (see Fig. S1 in supplementary material). Spatial conformity
with each ECV product resolution was achieved by spatially aggregating
the LC maps using a majority filter.

3. Method: Agreement framework

As both ECVs are physically linked, temporal consistency between
these variables must be coherent, i.e., a significant change in one should
be reflected in the second. The agreement between changes in LAI and
FAPAR products (A) is expressed by the following conditions:

Ay<=Ap (@]
Ay > 0=Au > 0 orAy < 0=4Ap < 0 ()]

where Ay and Ay are LAI and FAPAR consecutive temporal changes,
respectively. Whereas the first condition establishes the cause-and-effect
- stating that for any change of LAI (Ay) a change in the FAPAR value
(Au) should occur - the second condition depicts the radiation absorption
law — expressed by requirement that if LAI/FAPAR increases (decreases)
then FAPAR/LAI itself increases (decreases), respectively.

To analyse the level of agreement between the simultaneous LAI
and FAPAR changes, we first quantified the frequency of the type of
changes, i.e. negative and positive, that occurred in both variables
according to conditions (1,2). In addition to the sign of the change,
each change was assessed for its significance using the uncertainty to
determine the level of confidence of the changes of one observation to
the next. The confidence level, associated with each change allowed us
to classify the changes into positive, negative or non-significant cate-
gories, was determined by the ratio between the overlapping region
and the full range of values between two consecutive observations and
their uncertainties. The full range is the interval of values that are

f[:{(v,ﬂt,)—
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possible between observations when considering their uncertainties to
determine the maximum and minimum range, as depicted in Fig. 1. The
overlapping range represents only the common values between the two
intervals and expresses the level of similarity between the
observations.

For example, large changes for which the associated ranges (value +
uncertainty) do not overlap, indicate 100% of confidence in the change
(see Fig. 1a). Changes where an overlap in the observations and their
uncertainties was observed, highlight a degree of similarity and there-
fore a reduced level of confidence in the change (Fig. 1b and c). The
proportion between the overlap and the full range of values provides the
degree on how confident the change is: the confidence level. The greater
the overlap, the lower the significance of the change. For example, if
both observations have similar uncertainties but are small enough not to
reach the following observation value, the overlap is below 0.33
resulting in a confidence level bigger than 66% (see Fig. 1b). When the
observations have large uncertainties that overlap the change value, the
resulting ratio is large, indicating a low confidence associated with the
change.

The level of confidence is therefore given by:

G| = 100- (1—%) ®3)

1

Where O is the change overlapping range, given by:

(Vz+1 + ur+l) - (Vz + ur) Vel < Vg
0, = ’ 4
! { (Vz + ul) - (Vz+l - “z+1)7Vz+1 >V )

and fj the full range is given by:

(Vi1 — “z+1)7 Virr < Vy )
Vet F 1) = (0 = ), vipr > v

where v is either LAI or FAPAR and u is the associated uncertainty for
consecutive observations at t and t + 1.

All changes for LAI and FAPAR were analysed and classified ac-
cording to the type of changes that occurred simultaneously. The three
possible change classifications were: 1) an increase, 2) a decrease or 3)
no confidence in the change. A change, to be considered as increase or
decrease, must have at least a Cr value above 50%. Elsewhere, it was
classified as a non-significance change (NC). In total, when considering
the ECV simultaneous changes, nine possible classification combinations
can occur.

To evaluate the agreement between product changes, all nine
possible types of intra-product changes were counted and used to
populate the contingency table as framed in Fig. 2. This contingency
table, also known as a confusion matrix, was used to derive the agree-
ment and bias metrics. Physically coherent situations can assume three
forms:

@ Significant increase in LAl leading to a significant increase in FAPAR,
depicted in ngzs,

@ the inverse significant change leading to a decrease depicted in nj;
and,

@ the cases for which both changes in LAI and FAPAR are simulta-
neously classified by a low confidence level and therefore considered
non-significant, depicted in ngp.

Physical non-coherence was represented by the contradicted cases
where significant LAI increase/decrease led to significant FAPAR
decrease/increase, represented by njs/nsj, respectively.

The agreement between LAI and FAPAR changes was based on
metrics developed for classification accuracy assessment (Story and
Congalton, 1986). Overall accuracy, renamed hereafter as overall
agreement (OA), is determined by the total percentage of coherent
simultaneous changes, represented by the diagonal elements of the
confusion matrix (Fig. 2), given by:
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Fig. 1. Change confidence level at a) 100%, b) greater than 66% and c) lower than 66%. Change confidence level is based on the overlap area (in grey) between two
observations. Product uncertainties around the values represent the extent of possible observations and the ratio between the overlapping area and the total extent of

two consecutive observations determines the confidence of change.
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Fig. 2. Contingency table representing the LAI and FAPAR change classifica-
tions based on the significance of change observed simultaneously within each
product. Diagonal elements represent coherent cases of increase (n33), decrease
(n11) events and no-confidence changes in both products (n22).

3
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where n;; is the number of cases that fell into each coherent change
classification type (i = 1, 2, 3) and N is the total number of considered
cases.

Producer and user accuracy, also known as omission and commission
errors (Janssen and Vanderwel, 1994), are combined into a single metric
known as dice coefficient (Dice, 1945; Forbes, 1995). This coefficient
has a probabilistic interpretation that if a given LAI product identified a
change, the dice coefficient (DC) is equal to the conditional probability
that the FAPAR product will also identify the corresponding coherent
event (Fleiss et al., 2003). The dice coefficient is hereafter referred to as
an increase sensitivity (S;) for the growing season, or a decrease sensi-
tivity (Sq) for senescence period. These are respectively given by Egs.
(7, (8):

2.
= n33 )
2+n33 + N3y + 13y + Mp3 + 13
2.
S l (8)

4=
2'1’!11 +nyp +np3 +nyy + N3

The non-coherent bias (By) provides the information on the degree

of balance between the two types of significant non-coherent cases. This
bias refers to the percentage of all cases of the difference between the
significant changes where LAI and FAPAR vary incoherently (Eq. (9)).

_ M3 —n3

B,. = N 9

The non-matching non-significant bias (By;) evaluates the degree of
balance between both non-significant changes between the ECVs. It is
given by the percentage of all cases of the number of non-matching non-
significant LAI changes and the ones associated with FAPAR (Eq. (10)).

(n21 - nza) - (nlz - "32)
N

B, = (10)

3.1. Temporal and spatial consistency evaluation

We determined the level of changes agreement of the three EO
products, applying the framework described in the previous section. The
level of agreement was evaluated for its spatial and temporal consis-
tency based on the following approaches:

@ Temporal consistency was assessed using a map approach where, for
each temporal change, the simultaneous changes, for specific conti-
nent and land cover type were classified and used to determine the
level of agreement and biases. The integration with respect to time of
the agreement and bias metrics results in a time-series from which
one can evaluate the temporal consistency. Short-term consistency
was assessed using the monthly climatological averages of the
agreement metrics and the long-term consistency was evaluated by
testing for a monotonic trend in the agreement metrics, using the
Seasonal Mann-Kendall test (Hirsch et al., 1982, Hirsch and Slack,
1984)

@ Spatial consistency was evaluated using a pixel based approach
where the time-series of simultaneous -classification changes,
throughout the full period that occurred for each pixel, were used to
determine the level of agreement, resulting in a map of agreement
and bias metrics. These maps were used to estimate for spatial con-
sistency within and between each land cover type by continent. The
consistency was calculated by testing for mean and distribution
differences between the products using the Welsh two-way (Welch,
1947) and the Kolmorov-Smirnov two-way tests.

3.2. Agreement sensitivity to the change confidence level

As the confidence level associated with each temporal change is a key
parameter to determine its significance, we evaluated the impact of
different Cy thresholds on agreement between the ECV’s changes. We
first looked at the overall agreement (OA) results by varying the Cf
threshold value (25%, 50% and 75%) but by applying the same values to
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both LAT and FAPAR changes. This was done at global scale for the entire
period of the datasets. We then focused on a particular year and area,
and evaluated the impact on non-significant bias between the ECVs,
using different Cythresholds (at 1% scale steps) applied independently to
each ECV. This analysis indirectly allowed us to examine how, and if, the
relation between LAI and FAPAR uncertainties varies within each
product. We restricted our analysis over Southern Africa, characterized
by the presence of the four dominant land cover classes representing the
main vegetation structures -croplands, forests, shrubs, grasslands- and
during the 2012 representing an average season, selected randomly from
the middle period of the ECV datasets.

3.3. Spatial resolution impact on the ECV agreement

To assess the spatial resolution impacts on the level of agreement, the
framework was applied at four coarser resolutions (0.05°, 0.10°, 0.25°
and 0.50°) for 2012 over Southern Africa [0-35°S; 8-43°W]. The
method for aggregating the products to a coarser resolution is based on a
weighted average (R;) approach, where the weights are calculated based
on the associated product uncertainties.

The weighted average for each grid-cell was given by Eq. (11)

i 1
Ry :¥7 Wi =3 an

where §; were the uncertainties associated to each ECV value o;
within each grid cell ith, and w; the associated weights.
Ultimately, the uncertainty associated to Rs, o is given by Eq. 12.

o, = ,/ﬁ a3)

4. Results
4.1. Confidence threshold impact

The level of agreement between the products’ changes was depen-
dent on the chosen confidence threshold Cy associated with the ECV
temporal changes. Choosing a smaller or larger threshold may result in
different strengths of agreement. This was highlighted in Fig. 3 dis-
playing the overall agreement zonal average (OAz) values when
applying a 25%, 50% and 75% confidence threshold for the MODIS
products aggregated at 0.5° spatial resolution.

The figure showed that on average a higher overall agreement was
obtained by applying a higher threshold. This meant that by setting a

Latitude (o)
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higher threshold requirement (i.e. requiring a larger change signifi-
cance), higher OAz were obtained. The same effect was observed for the
other products (not shown here).

However, as shown in Fig. 4, this relation was non-linear and
dependent on land cover.

Depending on the land cover type, each dataset follows a specific
dynamic between agreement and confidence threshold. Fig. 4 illustrates
how the agreement metrics vary with the confidence threshold, for each
dataset over forests in southern Africa during 2012. The upper panels
related to the variation in agreement metrics that resulted from applying
equal confidence thresholds for individual ECV, and the lower panels to
the non-significant bias (Bps) when choosing independent confidence
thresholds for each ECV. In the bottom panels, the red line indicated the
same threshold level applied to the LAl and FAPAR changes that resulted
in the upper panel metrics.

Matching non-significant changes always increased with confidence
threshold (grey line in top panels). Its rate of increase varied with
product: it was higher for the JRC-TIP (Fig. 4a) and lower for the MCD15
(Fig. 4b). This was due to the JRC-TIP’s larger uncertainties values
relative to the ECV absolute values. Indeed, the prior value (uncertainty)
for LAI was set to 1.5 (5). For both MCD15 and CGLS, relative un-
certainties were smaller compared to the JRC-TIP ones, as they do not
correspond to actual standard deviations of PDFs, and therefore led to
more changes being classified as significant. However, as non-significant
changes contributed positively to OA if they were simultaneous, these
contributed positively to OA. In case of the sensitivities to increase (S;)
and decrease (Sq), the growth in the number of matching non-
significance can have a high impact due to the reduction of coherent
changes classified as significant (nj; or ngs, in Fig. 2).

The example also showed a decrease in the number of non-coherent
changes (n;3 + ng3;) for larger confidence thresholds (brown line top
panels). Although this was common to all products, for the JRC-TIP
product non-coherence cases were not observed for this case, whereas
the CGLS and MCD15 required a C; threshold of 25% and 75%,
respectively, to result in less than 1% of changes being classified as non-
coherent (brown line top panels). This showed that non-coherence was
more frequent in the MCD15 than in the CGLS or the JRC-TIP product,
indicating that the lower relative uncertainties allowed for non-coherent
changes to be classified as significant.

In terms of non-matching and non-significant changes, e.g. the lack of
balance in the confidence of changes between the ECVs, the JRC-TIP
product shows consistency by having a higher number associated with
LAI (nz; + nz3) than FAPAR (nj2 + n3z) throughout all Cy thresholds
(magenta and yellow lines, left upper panel). The exception (n12 + n32

,mnnnmm m.u,m.mm,nm )
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Fig. 3. Hovmoller diagram of the overall agreement between the MCD15 LAI and FAPAR products using a) 25%, b) 50% and c) 75% confidence threshold of change
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> n21 + n23) is only at very low Cf that upon inspection showed that
these are associated with very low LAI and FAPAR values. For the
MCD15, the opposite is observed. More changes in FAPAR than in LAI
are classified as non-significant above the Cy thresholds of 40% (middle
upper panel). As for the CGLS, the results show that independently of the
chosen Cy, non-significant changes are always higher for FAPAR than for
LAI (right upper panel).

Choosing independent Cy thresholds for each ECV led to different By
and therefore allowed us to identify the kind of relation between the
ECV’s uncertainties. Fig. 4 showed the By distribution for all possible C¢
for the three products. A negative bias for the JRC-TIP product, meaning
more non-significant FAPAR changes than LAI ones, only occurred when
considering low Cy for both LAI and FAPAR. In the case of the MCD15
product, this only occurred for the higher C;, mainly associated with
FAPAR changes (Fig. 4e). For the CGLS, a negative bias dominated all Cr
between 20 and 65% associated with LAI (Fig. 4f). These results re-
flected the type of relation between each ECV uncertainty. For the JRC-
TIP product, in relative terms, uncertainties tended to be always lower
for FAPAR than for LAIL This was a direct consequence of how error
propagated within the two-stream model characterized by a negative
power exponential between FAPAR and LAL In the case of the MCD15
product, the results showed a contrasting relation, where FAPAR un-
certainties tended to be higher, in relative terms, than the LAI ones. In
addition, the MCD15 products were characterized by the biggest bias
values among the three products and by a lower number of precision
units leading to the unsmooth patterns shown in the By distribution. In
the case of the CGLS, positive bias only occurred for the lower or higher
end of Cy thresholds associated with the LAI changes, indicating a
dichotomous relation between the ECV’s uncertainties.

The best compromise between LAI and FAPAR changes, the one that
showed balance between the number of significant cases occurring
simultaneously in both ECVs, was the one that led to zero non-significant

bias. For this forest case, this can only happen when a Cy around 16%,
33% and 80% is applied to the JRC-TIP, MCD15 and CGLS datasets,
respectively. For other land cover types, these values changed (not
shown), and could be susceptible to change of study area and time
period. Although one can find the Cy value that optimized all possible
cases (spatially and temporally), it would prevent a proper consistency
analysis study. Here, the objective was to analyse the product’s consis-
tencies under equal terms. Therefore, it was for this reason that we chose
a Cyof 50%, to be applied throughout the rest of study, representing the
standard statistical threshold for decision making.

4.2. Spatial consistency

The level of agreement between the ECVs changes was determined
using the 50% confidence threshold, and its spatial consistency was
evaluated for each product. To highlight the differences between the
product’s results, we plotted the mean of their metrics and the associ-
ated standard deviations in Fig. 5.

In terms of overall agreement (OA) (Fig. 5a), large spatial variations
were found with high values associated with areas where vegetation is
more active and low values over deserts and sparsely vegetated areas.
The same pattern can also be observed for both sensitivity metrics
(Fig. 5d and e), except over tropical forests characterized by sensitivities
as low as the ones over sparsely vegetated areas. Over these areas, ECV
changes were relatively small or constant compared to their un-
certainties in the three products. This resulted in a larger number of non-
significant cases leading to lower sensitivities. The results also showed
that, on average the products exhibited higher sensitivity to decrease
(Sgy)than to increase (S;).

As indicated by the larger standard deviation values (right panels),
discrepancies between the products are also observed. These, in terms of
OA, were larger over deserts and sparsely vegetated areas (Fig. 5b). In
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Fig. 5. Spatial distribution of the average of the three products agreement metrics for (left panels) and the associated standard deviation (right panels) using the 50%

confidence threshold of change.

terms of sensitivities, discrepancies were observed over tropical forests
and sparsely vegetation for both sensitivities (Fig. 5d and e), and over
Boreal forests for only S; (Fig. 5e).

In terms of error metrics, non-coherence bias (B,.) is positive over
agricultural and sparsely vegetated areas and negative over forests
(Fig. 5g). Except for deserts and sparsely vegetated areas - where the
difference is higher - mean non-coherence bias and associated standard
deviation is small indicating consistency between the products (Fig. 5h).
In terms of non-significant bias (Bys), a similar spatial pattern to B, was
observed but characterized by higher values and, as the standard devi-
ation values shown, by larger intra-product differences (Fig. 5j).

We also summarized the results by land cover class over South
America (Fig. 6). Additional plots for other continents are available in
the Supplement Document. On average, low agreements and error biases
were normally restricted to the land cover classes with lower vegetation

content, namely shrubs and grasslands. JRC-TIP products were always
characterized by the highest agreement, while the CGLS were generally
associated by the lowest agreement between the ECVs changes (Fig. 6a).
In terms of sensitivity to decrease, S4, the MCD15 products on average
provided higher values over croplands and most forest types (Fig. 6b).
Exceptions were only observed over Australia where S, for the JRC-TIP
was more sensitive to decrease (Fig. S3). CGLS products had the lowest
sensitivity, with only a few exceptions, over forests. Over shrubs, the
JRC-TIP products had the highest one over Asia, Australia and Africa
whereas it was the MCD15 for the remaining continents. Over the two
grassland types, these same products can show alternating sensitivities,
depending on the continent. Regarding the sensitivity to increase, S;, the
results were identical to Sq but characterized by slightly lower values. In
terms of error bias, the CGLS and JRC-TIP products were characterized
by positive and negative non-significant bias, respectively (Fig. 6e). In
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contrast, a very small positive bias was associated with the MCD15
products. Regarding non-coherency, only the CGLS dataset showed
positive bias over a restrictive set of LCs, such as grasslands over the
Southern American continent (Fig. 6d). Intra-class spatial consistency,
illustrated by the error bars associated with By variability, tended to be

higher for grasslands and shrubs independently of the product and
continent. On average, the MCD15 products were characterized by a
lower variability and the CGLS by the highest. This meant that the CGLS
was characterized by a degree of non-coherency spatial heterogeneity.
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4.3. Temporal consistency

4.3.1. Global pattern

The temporal consistency approach illustrated that the products
were characterized by considerable differences in terms of magnitude
and trend, of the agreement and error bias metrics. The results at the
global scale for the JRC-TIP (left panels), the MCD15 (middle panels)
and the CGLS product (right panels) are displayed for the three agree-
ments and the two-bias metrics in Fig. 7. For the overall agreement (OA),
the JRC-TIP products had the highest values with a mean value for the
full period of 98.8% whereas we found 83.1% for MCD15 and 71.0% for
CGLS.

There was no significant difference between both sensitivity metrics
(84.8% and 83.9%) for the JRC-TIP product. In the case of the MCD15,
the S4 (83.0%) was slightly greater than the S; (80.5%). CGLS products
was not only characterized by lower mean values (61.0% and 66.7% for
Sq and S;, respectively) but a clear negative trend was detected for S,
with a drop post mid-2004 (corresponding to the VGT-1 and VGT-2
transition) and even a greater drop for the post-2014 period (transi-
tion from VGT to PROBA-V).

Non-coherent bias, e.g. By, was not detected for the JRC-TIP prod-
ucts and the MCD15 had a small positive mean bias of 0.05%. For the
CGLS, By, variations were not only bigger but their mean magnitude was
of 0.15%. One can notice also a large peak during the 10-day transition
period of 2014. The three products had contrasting non-significant bias
(Bps) results. Whereas the JRC-TIP dataset is characterized by a low
mean negative bias (—0.01%), the MCD15 has a mean positive bias
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(0.05%). The CGLS was not only characterized by a much larger mean
positive bias (0.15%) but also by a larger seasonal variation following a
positive trend.

One can also notice that the percentage of processed pixels relative to
the number of available land pixels (grey shaded areas, upper panels)
was characterized by the expected seasonal oscillation. The mean value
over the full period was similar for JRC-TIP and MCD15 (58.7% and
62.6%, respectively). As for the CGLS, this percentage was smaller,
reaching mean values below 50% or 85% (pre-or post-2014 period),
associated with the sensor transition from VGT to PROBA-V. In sum-
mary, the agreement and bias metrics for the CGLS product were char-
acterized by a larger temporal and seasonal variability. Not only was the
magnitude of values larger but also the seasonally based oscillation
clearer. Due to the smaller and noisier oscillations, the seasonal pattern
was not as apparent for the JRC-TIP and MCD15 products.

4.3.2. Seasonality — Short term consistency

Fig. 8 illustrated the average annual variation of the agreement
metrics over North America for the three products. These represented
the climatological seasonal variation and, for this continent, with only
one clear season occurring during the year. For the JRC-TIP, OA and S;
variations were minimal and a larger variation was only observed with
Sa (Fig. 8b). Non-significant bias was always negative with larger values
occurring from April to June (Fig. 8e). As for the MCD15, the annual S4
and S; variations were slightly larger than for the JRC-TIP between the
May-August (Fig. 8b) and April-June (Fig. 8c) period, respectively.
Non-coherence bias for the MCD15 tended to be always positive,
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meaning significant LAI increase with simultaneous FAPAR decrease.
The exception occurred during August and September (small negative
bias) meaning that during this period non-coherence was characterized
by significant FAPAR increase and LAI decrease.

The CGLS followed a clearer seasonal variation characterized with
lower OA, S4 and S; in comparison to the other products. In this region,
the winter months were always characterized by the lowest agreements

10

(OA, S; and Sy). In summary, CGLS exhibited a clear seasonal pattern,
meaning that the lack of agreement between the ECV’s change was
highly dependent on the season and therefore, lacked short term tem-
poral consistency. The MCD15 products’ change agreement was not as
affected by seasonality but non-coherence bias can be an issue. Seasonal
variations over the other continents (not shown) showed similar results.
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4.3.3. Temporal trends — Long term variation

The trends of both agreement and error bias time-series were ana-
lysed at global scale. Fig. 9 shows the spatial distribution of Mann-
Kendall seasonal score over the areas where it was significant for each
metric using the JRC-TIP (left panels), MCD15 (middle panels) and CGLS
(right panels) dataset.

JRC-TIP depicted significant negative trends for OA and for sensi-
tivities over North America and the south Asia region. In contrast,
positive trends were observed in South America. Trends for B,; were
always negative and mainly over areas for which OA also had a negative
trend. The JRC-TIP dataset did not show any B, trend.

For the MCD15, significant OA trends were mainly detected over the
eastern hemisphere: negative in Southern Africa and Australia and
positive in Asia. The same trends as OA were detected in S; and S4 values,
except for a sign change over Australia. Only the regions over south Asia
and Australia showed trends of opposite sign for Bp.. As for By, the
trends were mainly negative with significant high scores located in India
and China, that can be associated with irrigated croplands.

The CGLS dataset was characterized by the highest geographical
extent over which a significant trend was detected across all metrics. For
example, trends of OA with significant high positive scores were found
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over most areas covered by vegetation. One exception was the negative
trends located over sparsely vegetated areas in southern Africa and
Australia. Contrasting trends for S; and S; occurred over non-forested
vegetation in Africa. Over the western hemisphere and Australia B
were characterized by a positive bias trend whereas a negative trend was
detected over Asia. As for the B,s, much of the areas were characterized
by negative trends except for sparsely vegetated areas over Australia and
southern Africa.

In summary, the results demonstrated that datasets had significant
trends in the agreement metrics over different areas, and that these were
of the same or opposing sign depending on the product. As one example,
the results over croplands in North America are plotted in Fig. 10.
Whereas a small but significant negative OA trend was detected for the
JRC-TIP, a positive trend was detected for CGLS (Fig. 10a). The JRC-TIP
negative OA trend was associated with a negative B, trend, meaning
that over time more FAPAR changes were classified as non-significant in
comparison with the LAI ones. This caused lower number of simulta-
neous changes being classified as non-significant or coherent, thus
contributing less to the overall agreement. In contrast, the CGLS product
was categorised by a negative By trend of positive bias values, meaning
that there were less non-significant LAI changes over time in comparison
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with the FAPAR ones. The second example, over tropical forest in South
America, also demonstrated opposite trends associated with S, where
the JRC-TIP/CGLS products were characterized by a positive/negative
trend, respectively (Fig. 10b). The third example showed that trends of
By were mostly found with the CGLS dataset: over sparsely vegetated
areas in Australia. In this case, not only was the bias value higher
compared to the other products, but a significant positive trend was
detected (Fig. 10c). This meant that the number of changes where LAI
decreases and FAPAR increases compared to the number of changes
where LAI increases and FAPAR decreases was growing in time. The
main contribution to the trend was the transition between the pre-and
post-2014 period, meaning that the PROBA-V based products were
more prone to non-coherence.

The three products also manifested aligned trends over similar areas.
For example, the B, negative trend over croplands in India for both JRC-
TIP and MCD15 (Fig. 10d). Here, the trends meant that the balance
between the number of non-significant simultaneous LAI and FAPAR
changes was varying over time. But whereas for the JRC-TIP this dif-
ference was becoming more negative, meaning more bias, for the
MCD15 the difference was becoming less positive, and therefore less
biased.

The outcomes also suggested that trends were not dependent on the
type of vegetation (e.g. the land cover classes), as the trend results for the
same land cover can differ between continents. One example was over
the tropical forests for the JRC-TIP datasets, where only South America
was characterized by significant agreement trends. Another example of
land cover independence was for the MCD15 product, where the sig-
nificant trends were mostly restricted to the eastern hemisphere.
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4.4. Spatial resolution impact

Our framework was applied at various spatial resolutions to evaluate
the scale impacts at the level of agreement between the ECV simulta-
neous changes. Fig. 11 showed the variation in agreement and bias er-
rors between the three datasets over the main four land cover classes
over the southern African region during 2012. Except for the MCD15
over forests, on average, the highest overall agreement is either
observed at the native resolution or at the lowest possible resolution
(upper panels). This means that the higher the number of pixels used in
the aggregation, the lower the chance of both ECVs not agreeing.
However, except for the JRC-TIP products or over grasslands, on average
both sensitivities (Si and Sd) for the MCD15 and CGLS products decrease
with resolution, indicating a loss of sensibility to detect a significant
change between the ECVs, especially during the senescence period (Sd).
For the MCD15 products over forests, both OA and sensitivities decrease,
and Bnc increases, for lower resolutions. This means that the associated
product uncertainty to weight the aggregated average leads to worse
results.

5. Discussion and conclusions

In this paper, we evaluated the spatial and temporal consistency
between LAI and FAPAR changes for three operational EO datasets. The
proposed framework allowed us to quantify the level of agreement be-
tween each ECV temporal change using their own uncertainties. The
results are essential for users when ECVs products are assimilated
together into a land surface model (Kaminski et al., 2013; Leroux et al.,
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Fig. 11. Agreement metrics variation by spatial resolution between the simultaneous changes of the JRC-TIP (red), CGLS (green) and MCD15 (blue) LAI and FAPAR
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[0-35°S; 8-43°W] using the 50% confidence threshold of change for year 2012. (For interpretation of the references to colour in this figure legend, the reader is
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2018; Wu et al., 2019; Albergel et al., 2020). The sensitivity analysis on
the level of confidence of the simultaneous changes allowed us to better
understand the relation between the associated uncertainties of each
ECV and its impact on the product’s agreement and biases. Furthermore,
the impact of uncertainties used to aggregate the products into different
spatial resolutions was also analysed. This analysis was important, since
frequently ECVs are aggregated separately to fit model resolution and
physical consistency is impacted (Kaminski et al., 2017).

Our results showed that agreement between the ECVs’ changes
varied significantly through each dataset. Not only because the agree-
ment differed in terms of magnitude but also temporally and spatially,
meaning that for certain regions and periods, products reveal a lack of
consistency:

@ CGLS products exhibited a variation in the agreement and biases

between the SPOT-VEGETATION and PROBA-V periods. This was
already observed on version 1 of the product (Mota and Gobron,
2017, Cammalleri et al., 2019). Our findings identified that the
agreement between these FAPAR and LAI changes was severely
affected by temporal trends. Although some validation efforts
showed temporal consistency in the ECV time series (Camacho et al.,
2013), our results demonstrated that there was a lack of temporal
consistency in associated uncertainties, mainly due to the transition
of sensors. As revealed by the non-significant bias trends, the un-
certainties magnitudes were changing over time: the LAI un-
certainties were getting smaller or the FAPAR uncertainties
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increased. The agreement dependency with land cover classes
showed a lack of spatial consistency. There was a high dependence
on seasonality indicating that the products changes were not
consistent, mainly during the periods of small/constant vegetation
changes.

The agreement between the LAI and FAPAR from JRC-TIP was al-
ways very high. This was primarily because FAPAR was retrieved
from the two-stream model after state variables were retrieved. The
relative uncertainties of each ECV were also larger compared to other
products, as the prior values were higher. Consequently, this led to a
low number of change cases available to analyse the agreement
sensitivity during the growing and senescence periods. If the priors’
values are being restricted to lower range values, the uncertainties
will decrease. JRC-TIP was also the only dataset where ECV agree-
ment was less affected by LC, seasonality and trends: this is mainly
because the retrieval algorithm is independent of land cover types, as
no biome assumption was made.

The MCD15 agreement consistency was close to the JRC-TIP one, and
in some cases statistically identical. On some occasions, it was
characterized by higher agreement than for the JRC-TIP in sensitivity
to the growth and senescence period. This could be due to the higher
temporal resolution (8-day) used here in contrast to that of JRC-TIP
(16-days) but also because their reported uncertainties were smaller
and therefore contributed more to the agreement metrics. The
MCD15 also showed that the sensitivity to decrease was a little
higher than for increases. This could reflect the fact that in the
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senescence period, leaf yellowing and the fall was quicker and easier
to monitor. However, in contrast to the other datasets where
agreement trends were globally distributed, trends for the MCD15
product were mainly identified over the eastern hemisphere.
Furthermore, these products were the ones mostly affected by non-
coherence changes between LAI and FAPAR, meaning that signifi-
cant changes were associated with physically inconsistent situations.

Our results showed that the ECV’s uncertainty contribution to the
calculation of the level of confidence of the changes was different for
each product and land cover class. This suggested that different uncer-
tainty definitions between each product impacts depend on the vege-
tation type. For the JRC-TIP, uncertainties propagate consistently
according to its formulation, i.e., in simplistic terms a negative expo-
nential based on LAI is used to calculate FAPAR and therefore results in
lower relative uncertainties for FAPAR than for LAL The confidence
threshold sensitivity analysis confirmed that the uncertainty propaga-
tion, in the JRC-TIP case, was in accordance with the physical equation
relating the two ECVs. For MCD15, the results showed that there was an
inversion in the relative magnitude of the ECV uncertainties: the LAI
relative uncertainties tended to be smaller than the FAPAR ones. As they
were calculated using the standard deviation of the retrieval solutions,
during the retrieval algorithm, the range of values was larger in LAI than
for the FAPAR. Exceptions can only be observed for small LAI values. As
for CGLS product, agreement between the ECV changes was character-
ized by the larger LAI uncertainties, with minor expectations for extreme
LAI values. The CGLS products uncertainties were unconnected as each
ECV was derived directly from independent neural network algorithms.
Therefore, there was no uncertainty relation between them.

This study also indicated that spatial resolution had an impact on the
level of consistency of the ECV’s changes. On average, higher agreement
and low biases always resulted from lower resolution resampled prod-
ucts when using weighting averages based on the associated un-
certainties. This meant that having a higher number of pixels (more
information) leads to a low probability of non-coherence between the
ECV’s changes. At the same time, aggregation tends to smooth changes
and lead to a decrease in sensitivity. However, because uncertainty is
used to weigh each gridcell average, products that perform worse, or
deviate significantly from the trend, over a particular land cover, could
suggest that there is a problem on how uncertainties are estimated and
therefore their use needs further research.

In conclusion, JRC-TIP and MCD15 datasets offered a higher agree-
ment between the LAI and FAPAR temporal variations and were
spatially and temporally consistent. The MCD15 product results were
similar to those of the JRC-TIP, but it was characterized by smaller
relative ECV uncertainties that can also indicate a lack of coherence
between LAI and FAPAR changes. The CGLS datasets had less consis-
tency, especially over small vegetated cover that was either higher or
lower during the growing and senescence periods.

This study proposed a framework to allow identification of physical
consistency in the agreement between terrestrial ECV changes with
various metrics made available temporally and spatially. Depending on
the application, users that aim to assimilate these ECVs into land surface
models, namely global vegetation models, need to fully understand
where, and when, inconsistencies can occur. This study demonstrated
that product retrieval algorithms that are independent performed worse
in terms of agreement than those physically based. Furthermore, un-
certainty needs to be better defined and evaluated for its fitness for
purpose. At this stage, none of these EO products has its uncertainty fully
characterized by propagating L1 radiance uncertainties to the L2 bio-
physical products. This can lead to large differences between the prod-
ucts on what effects are considered in their uncertainties. With the
increasing number of Earth Observation satellite programs, validation of
the available ECV products and their uncertainties was not only
becoming more important in context of product accuracy, but also in
terms of physical compatibility. The proposed framework integrated
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both information on the temporal changes and the associated un-
certainties of these products to assess physical consistency before any
assimilation studies. This methodology can be applied to any type of
ECVs if a physical link is known. The advantage is the economy of
computational demands when compared to assimilation methodology.
Also, it does not depend on other land variables and model scheme. It
also provides information at both spatial and temporal scale for
detecting any bias when multiple sensors are used or when assumptions
are made in the retrieval algorithm, thus potentially helping producers
to refine them. However, a necessary condition is having product un-
certainties with the same unit and definition.
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