

NPL REPORT MS 37

GOOD PRACTICES IN SOFTWARE QUALITY FOR GIT,
RELATIONSHIP WITH FAIR AND GOOD PRACTICES FOR FAIR

F.M. BROCHU

FEBRUARY 2022

NPL Report MS 37

NPL Report MS 37

Good practices in Software Quality for Git, relationship with FAIR and
Good practices for FAIR

F. M. Brochu
INFORMATICS/DATA SCIENCE/SED

NPL Report MS 37

 NPL Management Limited, 2022

 ISSN: 1754-2960

https://doi.org/10.47120/npl.MS37

National Physical Laboratory
Hampton Road, Teddington, Middlesex, TW11 0LW

Extracts from this report may be reproduced provided the source is acknowledged

and the extract is not taken out of context.

Approved on behalf of NPLML by
Marina Romanchikova, Science Area Leader in Informatics.

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.47120%2Fnpl.MS37&data=05%7C01%7Cfrederic.brochu%40npl.co.uk%7Ccbca3dc6f2974cff26b908da371282d9%7C601e5460b1bf49c0bd2de76ffc186a8d%7C1%7C0%7C637882849879715090%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=MFiPe4QTrd%2BZ4d7lYjDlHoC7JeB4JdOAgQqeA69SUQM%3D&reserved=0

NPL Report MS 37

CONTENTS

GLOSSARY/ABBREVIATIONS
EXECUTIVE SUMMARY

1 PURPOSE OF THIS DOCUMENT .. 1

2 GLOSSARY .. 1

3 INTRODUCTION .. 1

3.1 BACKGROUND TO GIT ... 1

3.2 GITLAB ... 1

3.3 LINK TO FAIR .. 1

3.4 INTEROPERABILITY/REUSABILITY FOR SOFTWARE AND GOOD PRACTICES. 2

4 GOOD PRACTICE IN GIT(LAB) ... 2

4.1 INTRODUCTORY MATERIAL TO GIT ... 2

4.2 FIRST POINT OF CALL FOR DOCUMENTATION: THE MASTER README.MD FILE 2

4.3 SOFTWARE QUALITY DOCUMENTATION ... 3

4.4 VERSIONING RECOMMENDATIONS .. 4

4.5 CONTINUOUS INTEGRATION/CONTINUOUS DEVELOPMENT AND TESTING 5

5 SUMMARY RECOMMENDATIONS ... 5

6 GITLAB INTEGRATION WITH COMMON NPL SOFTWARE TOOLS 5

6.1 MATLAB ... 5

6.2 LABVIEW ... 5

6.3 COMSOL ... 6

6.4 PYTHON ... 6

7 CASE STUDY: ROYAL FREE COVID-19 RESPONSE ... 6

7.1 INITIAL PROBLEM AND SPECIFIC CODE .. 6

7.2 GENERALISATION OF CODE ... 7

8 USEFUL WEB LINKS ... 7

NPL Report MS 37

NPL Report MS 37

 Page 1 of 13

1 PURPOSE OF THIS DOCUMENT

This document provides guidance on how the software development tool Git can be
used to improve the software quality and make your code more Findable, Accessible,
Interoperable and Re-usable (FAIR). It covers good practices around using Git and
provides links to NPL and external resources for integration of Git with common
software tools and using Git features for software documentation.
This guide does not provide a comprehensive technical description of Git. Detailed
instructions on how to install and use Git at NPL can be found here along with other
NPL Gitlab resources.

2 GLOSSARY

FAIR: good practice principles for data, stands for Findable, Accessible,
Interoperable, Reproducible.
SWQ: Software Quality
SWQD: Software Quality Documents
QA: Quality Assurance

3 INTRODUCTION

3.1 BACKGROUND TO GIT

Git is an open-source software “for tracking changes in any set of files, usually used
for coordinating work among programmers collaboratively developing source code
during software development. Its goals include speed, data integrity, and support for
distributed, non-linear workflows (thousands of parallel branches running on different
systems) (Wikipedia). It is a code repository and a version-control system like SVN
and CVS before it, building on their success. It is distributed under GNU General
Public License Version 2.

3.2 GITLAB

Git was released for NPL-wide usage packaged as Gitlab, an NPL-owned server to
be used as a coding repository. The NPL instance had 350 active users developing
over 680 projects in April 2020 and has grown significantly since.
Gitlab comes with a few useful functionalities that make software Findable and
Accessible, namely a search box and easy to set access rights (either on a user-
basis or NPL-wide basis). However, as Git is primarily a code repository as well as an
easy way to perform collaborative code development, the Interoperability and
Reusability aspects of FAIR is still up to the user to implement, by adhering to
software development good practices developed by the NPL QA team.

3.3 LINK TO FAIR

This web page from the Dutch e-science centre describes 5 steps to make any
software development FAIR. Step 1, “Use a publicly accessible repository with
version control” is fulfilled by git and NPL Gitlab. The other steps, “Add a licence”,
“Register your code in a community registry”, “Enable citation of your software” and

https://npluk.sharepoint.com/sites/SourceControlService
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Data_integrity
https://subversion.apache.org/
https://www.nongnu.org/cvs/
https://en.wikipedia.org/wiki/GNU_General_Public_License#Version_2
https://en.wikipedia.org/wiki/GNU_General_Public_License#Version_2
https://fair-software.eu/

NPL Report MS 37

 Page 2 of 13

“Use a software quality checklist” are not covered by git alone, but by separate NPL
software development procedures.
A companion report on FAIR practices at NPL is available here. This document
describes how the FAIR principles can be applied to software.

3.4 INTEROPERABILITY/REUSABILITY FOR SOFTWARE AND GOOD PRACTICES.

Interoperability and Reusability are very hard to distinguish when it comes to
software. A code is interoperable when it can run on different machines, possibly with
different operating systems. A code that is interoperable is reusable.
A code that is re-usable can be rerun as is on the same machine it was developed
several years later. A code that is re-usable is not necessarily interoperable, as
dependencies will vary across operating systems.
NPL software development good practices already emphasise the need for software
testing and maintain good documentation when it comes to running platforms and
software versioning, so we are going to reformulate them in the framework of Gitlab.

4 GOOD PRACTICE IN GIT(LAB)

4.1 INTRODUCTORY MATERIAL TO GIT

This report is not designed to be a starter guide to Git, for a comprehensive
introduction to Git please refer to the resources here. This report is designed to
provide guidance on good practices for how to use Git to ensure software quality of
your code. This report focuses on how Gitlab integrates with NPL’s digital ecosystem
and corporate software.

4.2 FIRST POINT OF CALL FOR DOCUMENTATION: THE MASTER README.MD FILE

The Gitlab platform provides all projects with its own wiki and README.md files, both
of which can be used for documentation. While the wiki stays on the server, the
README.md file is integral to the project development and downloaded along all
project code by any developer making a copy of the software (an operation called
“cloning” in git jargon). An example of a root “README.md” file can be seen from the
Gitlab screenshot show in Figure 1.

https://npluk.sharepoint.com/:w:/r/sites/DataScience/Shared%20Documents/Informatics/FAIR_Git/FAIR%20good%20practices.docx?d=w1e874ca9edb14ceaa605ee668f9003df&csf=1&web=1&e=yl8CBS
https://npluk.sharepoint.com/sites/SourceControlService

NPL Report MS 37

 Page 3 of 13

Figure 1: Snapshot of a Gitlab project main page, including file listing and root
README.md file
As such, we recommend keeping the wiki for general information with respect to the
software, and using the README.md file to describe:

• The requirements to run the software (operating system, name and version
(e.g Windows 10), compiler/interpreter, name and version (e.g python 3.7) and
all external dependencies, name and version (e.g anaconda 2.0.1, numpy
1.0.15).

• The steps needed to install the software and dependencies from scratch.
These two points are essential for Reusability: a software will be made obsolete if
any of its external dependencies are no longer findable or if the relevant version is
not known.
• The software functionality, the repository contents (file names and description)

as requested by NPL software QA.
• If the project contains a testing suite, instructions to run it, including the

description of expected input and output data format, supported protocols and
other pre-requisites.

4.3 SOFTWARE QUALITY DOCUMENTATION

Software quality is an important aspect of developing code at NPL. Existing NPL
procedures such as QF-59, software integrity level, user requirements and M013.
The software quality documents are useful for users to understand the code’s
purpose, structure, functionality etc. and are an essential part of the NPL process for
maintaining software quality.

Since software quality documents need to be version controlled, we generally
recommend including them into the same Gitlab repository as the code. However, in
certain cases such as projects with public releases, the SWQD may be too sensitive
to be shared alongside the code. In such cases, we recommend to store software
quality documents in a separate area with different permissions. Such separation can

http://www.intranet.npl.co.uk/quality/procedures/m/013/m-013.pdf

NPL Report MS 37

 Page 4 of 13

be achieved by using Gitlab “modules”.

Gitlab organises projects as “folders” and allows splitting into subfolders, or
“modules” of a given project. Each module has its own set of permissions, allowing to
distribute work and responsibilities among developers. This functionality is useful for
large scale projects and can also be used to separate software quality documents
from the code.

To help users organise their Gitlab project and generate the required software quality
structure, one could develop a dedicated script that will automatically provide a
minimum set of software quality documents when a new Gitlab project is generate.
The Time and Frequency group are using Git to generate SWQD automatically using
Git, and we will aim to combine the two approaches in a future extension of this work.

4.4 VERSIONING RECOMMENDATIONS

Recording code and documentation version numbers is important for software
quality. For Git it is recommended that:

• In the case of collaborative development where branching is necessary, do
provide a human readable version number or “tag” via the command line git
tag, once merging has been done and a collective release (internal or
external) has been agreed. “Internal” release is an intermediate development
step towards “external” (or full) release to the user.

• In case of single developer project, a readable version number should be
allocated on versions marking a significant development milestone, to help the
auditors making sense of the development strategy.

Git provides a nice way to ensure that each new version is unique, but unfortunately
it means the default version number is unreadable by humans. On the other hand,
traditional numbering does not make real sense when several concurrent
development branches are active and can be subjective, with many different
approaches which would work well. By making use of tags in Git you combine
advantages of both methods.

Git version frequency

• A new version is generated by committing developments to the repository. It
could be to a branch or the master repository. Each commit comes with a
comments message describing the changes made It is essential (critical in the
case of collaborative development) to describe what you have done in a clear,
but exhaustive way, and name the files affected (as several files might change
during a single commit). The comments message will be part of the project
history and therefore read by the auditors, so it is important to have
meaningful details.

• Because of the need for details for each commit, it is recommended having a
maximum of 3 to 4 significant changes for each commit. More would make the
version description hard to read.

• As a consequence of the two previous points, we recommend committing
changes often in small steps.

NPL Report MS 37

 Page 5 of 13

4.5 CONTINUOUS INTEGRATION/CONTINUOUS DEVELOPMENT AND TESTING

NPL SWQ procedure leaves the testing mechanisms and procedures open to the
developers. It would be useful to educate people on testing methods and approaches
for Gitlab, including test-driven development (also known as CI/CD in Gitlab jargon).
This process is recommended for the developers who are already experienced with
Gitlab and beyond the scope of this report. For the curious, this Gitlab page will
introduce the concept of CI/CD and automated testing.

5 SUMMARY RECOMMENDATIONS

This guide covered information on how to use Git version control system to improve
software quality and support FAIR principles in code management. A summary of key
recommendations numbered R1, R2 etc. is given below.
R1: Always create a README.md document in the top-level folder.
This document should contain at least:

• Author details and contact information
• Summary of project and/or code
• Content list
• Example use or test case
• Include software quality procedures and forms

R2: Commit the Software quality documents directly along the code in Gitlab, unless
they are too sensitive for release, in which case the project should be subdivided into
a public subproject containing the code, and a private subproject containing the
Software Quality documents.
R3: Commit changes often and in small quantities, so the changes can be well
described and easy to follow up.
R4: Use human readable tags for releases completing a milestone.

There are advanced Gitlab functionalities such as the Issues tracker for bug
management, Issues board for planning, merge requests for code reviews, the CI/CD
instance for automated code testing, etc. that will be worth exploring but are beyond
the scope of this report. Current statistics show a very low adoption rate of these
provided functionalities across NPL, showing that Gitlab is currently just used as a
code repository.

6 GITLAB INTEGRATION WITH COMMON NPL SOFTWARE TOOLS

In this section we overview how Gitlab integrates with NPL supported software.

6.1 MATLAB

MathWorks provides some recipes about integration of git with MATLAB and
Simulink.

6.2 LABVIEW

A description of LabView and Gitlab integration can be found here

https://docs.gitlab.com/ee/ci/quick_start/
https://uk.mathworks.com/videos/source-control-integration-95324.html
https://uk.mathworks.com/videos/matlab-and-simulink-racing-lounge-versioning-simulink-projects-with-git-93369.html
https://www.hampel-soft.com/wp-content/uploads/2019/04/hampel-soft_release-management_rev05-export.pdf

NPL Report MS 37

 Page 6 of 13

6.3 COMSOL

This will be covered in coming NMS cross-theme development with Ed Dickinson.

6.4 PYTHON

There are a few python modules providing easy access to the Gitlab server API,
allowing to do atomic operations on the project itself, like python-GitLab. Covertly, the
Gitlab documentation addresses well how-to setup a testing (CI/CD) environment for
project written in python.

A Yammer thread by Alvise Vianello (26/05/2021) quoted below outlines how to
install python packages from GitLab via python package installer pip and PyPi by
using this tutorial. The demo URL from the tutorial should be modified to
accommodate NPL Gitlab repository structure:

gitlab.npl.co.uk/api/v4/projects/<project id>/packages/pypi/

“<project id> is the ID of the Gitlab project you are using as a Package Registry. Your
packages will then appear under Packages and Registries > Package Registry, and
you can setup pip to look for packages in that repository before looking on the official
PyPI repository.” A tutorial on configuring pip to use custom package index can be
found here.

7 CASE STUDY: ROYAL FREE COVID-19 RESPONSE

In this section we provide exemplar case studies of using Gitlab for NPL projects.
First, we introduce the original project, links to the Gitlab code and good practice
here. Secondly, we present a generalisation of these codes in to a ‘Toolkit’ so that
other users in NPL with similar problems can benefit from this code. In this case we
also provide descriptions of good practice used here.

7.1 INITIAL PROBLEM AND SPECIFIC CODE

As part of the COVID-19 response, NPL’s Data Science and Medical Physics teams
worked with the Royal Free London NHS Foundation Trust (RFL) on several projects.
These included:

• Optimising hospital flow – Managing hospital flow to separate areas of the
hospital in to Covid and Covid-free areas. This was also extended to modelling
the hospital flow to support optimal use of wards, rooms, beds and taking into
account key requirements and constraints such as oxygen usage.

• Optimising the cancer pathway - Optimise the RFL cancer pathways which
have interdependencies such as Radiology and Pathology, in order to meet
national targets for diagnosing patients within a given time frame.

• Analysis of Biomarkers – Analysing coagulation markers and routine lab
tests for Covid patients in order to identify possibly markers of disease severity
for optimal treatment planning.

For more detailed information please visit the website case study and watch
Elizabeth Cooke’s presentation of this work at the Celebrating Science Lecture on

https://pypi.org/project/python-gitlab/
https://web.yammer.com/main/threads/eyJfdHlwZSI6IlRocmVhZCIsImlkIjoiMTIyMjkzMDQxOTcyODM4NCJ9
https://docs.gitlab.com/ee/user/packages/pypi_repository/index
https://realpython.com/what-is-pip/#installing-packages-from-your-github-repositories
https://www.npl.co.uk/case-studies/supporting-nhs-during-covid19-pandemic
https://web.microsoftstream.com/video/bb9bb312-0bf5-4353-b577-926e06fc2983

NPL Report MS 37

 Page 7 of 13

Data Science Solutions to Healthcare Problems (starting at 27:20). For each of these
projects developed software consisting of multiple files and functions to read in,
process, analyse and visualise data from the RFL in various formats. Code for all
projects is available in NPL’s Gitlab repository though access is restricted due to the
sensitive nature of the data. These codes have been generalised for use in other
areas in an NPL wide repository which is available here and detailed in the next
section.

7.2 GENERALISATION OF CODE

The code developed in the COVID-19 response with RFL was generalised to be
reused for related problems as many of the tasks are generic. The toolkit is available
here and open to all NPL users. This shows several benefits of Gitlab, including code
reuse across projects, branching (a testing/development branch and a released
branch), version control in code development. The project contains a very detailed
README.md which:

• outlines the creator and contact details
• content of the repository
• requirements to run the code
• the codes available (including a description)
• Example testing codes and their requirements
• Module requirements for packages used by the code

Further benefits from Gitlab that are utilised in this case study
• Datasets for the example problems
• User documentation in a designated folder
• Issues board

8 USEFUL WEB LINKS
Last accessed 25/01/2022.

https://threedots.tech/post/automatic-semantic-versioning-in-gitlab-ci/
https://connect.appypie.com/apps/Gitlab/integrations/sharepoint
http://artokai.net/2016/SPFXContinuousIntegration/
https://best-practice-and-impact.github.io/qa-of-code-guidance/intro.html
https://realpython.com/what-is-pip/#installing-packages-from-your-github-repositories

https://web.microsoftstream.com/video/bb9bb312-0bf5-4353-b577-926e06fc2983
https://gitlab.npl.co.uk/elizabeth.cooke/python-toolkit
https://gitlab.npl.co.uk/elizabeth.cooke/python-toolkit
https://gitlab.npl.co.uk/elizabeth.cooke/python-toolkit
https://threedots.tech/post/automatic-semantic-versioning-in-gitlab-ci/
https://connect.appypie.com/apps/gitlab/integrations/sharepoint
http://artokai.net/2016/SPFXContinuousIntegration/
https://best-practice-and-impact.github.io/qa-of-code-guidance/intro.html
https://realpython.com/what-is-pip/#installing-packages-from-your-github-repositories

	1 Purpose of this document
	2 Glossary
	3 Introduction
	3.1 Background to Git
	3.2 Gitlab
	3.3 Link to FAIR
	3.4 Interoperability/Reusability for Software and good practices.

	4 Good Practice in Git(Lab)
	4.1 Introductory material to Git
	4.2 First point of call for documentation: the master README.md file
	4.3 Software Quality documentation
	4.4 Versioning recommendations
	4.5 Continuous integration/continuous development and testing

	5 Summary Recommendations
	6 GitLab integration with common NPL software tools
	6.1 MATLAB
	6.2 LabVIEW
	6.3 COMSOL
	6.4 Python

	7 Case study: Royal Free COVID-19 Response
	7.1 Initial problem and specific code
	7.2 Generalisation of code

	8 Useful WEB links

