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Abstract

Automated image-based assessment of blood films has tremendous potential to support clinical haematology within
overstretched healthcare systems. To achieve this, efficient and reliable digital capture of the rich diagnostic infor-
mation contained within a blood film is a critical first step. However, this is often challenging, and in many cases
entirely unfeasible, with the microscopes typically used in haematology due to the fundamental trade-off between
magnification and spatial resolution. To address this, we investigated three state-of-the-art approaches to micro-
scopic imaging of blood films which leverage recent advances in optical and computational imaging and analysis
to increase the information capture capacity of the optical microscope: optical mesoscopy, which uses a giant
microscope objective (Mesolens) to enable high-resolution imaging at low magnification; Fourier ptychographic
microscopy, a computational imaging method which relies on oblique illumination with a series of LEDs to capture
high-resolution information; and deep neural networks which can be trained to increase the quality of low magni-
fication, low resolution images. We compare and contrast the performance of these techniques for blood film imag-
ing for the exemplar case of Giemsa-stained peripheral blood smears. Using computational image analysis and
shape-based object classification, we demonstrate their use for automated analysis of red blood cell morphology
and visualization and detection of small blood-borne parasites such as the malarial parasite Plasmodium falciparum.
Our results demonstrate that these new methods greatly increase the information capturing capacity of the light
microscope, with transformative potential for haematology and more generally across digital pathology.
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Introduction

Microscopic analysis of blood films is fundamental to
many areas of haematology from research to clinical
diagnosis [1]. Automated assessment of digitized blood
films [2,3] has potential to transform overstretched clin-
ical services that require prompt and accurate assessment
of large numbers of specimens. This need is particularly
acute in low-resource settings where human expert
analysis of the blood film is the only tool available.
Information-rich blood film micrographs contain a
wealth of details which allow classification and counting
of blood cells and detection of blood-borne parasites and
bacterial infections. In contrast to alternative methods

such as rapid diagnostic tests and flow cytometry,
microscopy also allows visualization and analysis of cell
morphology. However, the fundamental properties of
light and practical optical engineering constraints limit
the ability of a conventional light microscope to capture
high-resolution images with a large field of view (FoV),
making it impossible to visualize an entire blood film at
high spatial resolution in a single image. As a result,
large images are often formed by sequential capture
and subsequent stitching of multiple small image fields
— a process which is slow and prone to subjectivity and
inadequate sampling. In addition to the high cost of tra-
ditional, clinical grade whole slide imaging systems,
many such devices are incapable of achieving the high
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spatial resolution often required for diagnostic image-
based blood film assays.

For illustration, consider the problem of imaging an
entire thin blood film which lies within a rectangular
patch on the microscope slide of 40 mm x 20 mm and
has a thickness of approximately 3 pm. At modest spa-
tial resolution, with a 20x/0.45 objective and a conven-
tional large-format scientific camera (2048 x 2048
6.5 pm pixels), the microscope has a FoV of 0.44 mm?
and a depth of field (DoF) of 3.7 pm. To capture the
entire film would require approximately 1800 image
fields in a single focal plane, or 3600 images over two
focal planes (assuming a maximum separation of half
the DoF) to fully sample the film axially. The problem
is exacerbated at higher spatial resolution as magnifica-
tion increases and DoF decreases with increasing numer-
ical aperture (NA). In practice, diagnostic assays are
typically based on the analysis of a small number of
image fields, but the example demonstrates the practical
difficulty of digitally capturing all the information within
a blood film using a conventional optical microscope.
Creating an extended FoV image by stitching together
multiple small fields of view invariably results in arte-
facts due to spatial registration errors and brightness var-
iations between image patches (Figure 1A). In recent
years, a number of innovative techniques have been
developed to increase the information capture capacity
of the optical microscope, allowing high spatial resolu-
tion imaging with a large FoV. These approaches can
be categorized as (1) purely optical — relying on novel
optical and mechanical design and engineering; (2) com-
putational imaging — optical encoding of additional sam-
ple information using novel hardware architectures
followed by decoding using computational image pro-
cessing; and (3) purely computational — increasing the

information content of images post-capture using prior
knowledge about the sample and/or the imaging system.
In this article we investigate three such approaches for
microscopic imaging of blood films: (1) optical meso-
scopy (OM) [4], in which a giant microscope objective
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Figure 1. Brightfield microscopy image of Giemsa-stained periph-
eral blood smears. (A) Overview image showing thin (left) and thick
(right) films on a microscope slide, created by computational stitch-
ing of separate overlapping image fields captured using a 4x/0.16
objective lens. (B, C) Example of full field of view from within thick
(B) and thin (C) films captured using a 100x/1.4 oil immersion
objective. The spatial extent of the high-resolution field of view is
indicated by the small red and green boxes in the overview image
on the left.
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lens combines low magnification with a high numerical
aperture; (2) Fourier ptychographic microscopy (FPM)
[5], in which high-resolution information is captured
using a low-magnification objective lens via sequential
illumination of the sample at a series of different angles;
and (3) deep neural networks (DNNs), which leverage
prior knowledge about sample structure and the corre-
spondence between low- and high-resolution images to
increase image quality [6]. To assess the performance
of these different methods for blood film imaging, we
investigate their suitability for extraction of diagnosti-
cally relevant information, including red blood cell
(RBC) morphology and the detection of small blood-
borne parasites such as the malaria parasite Plasmodium
Jalciparum, from images of Giemsa-stained peripheral
blood films. The results are compared against images
produced using the type of standard brightfield micro-
scope commonly used for routine examination of blood
films. We demonstrate the potential of the resulting large
image datasets for automated analysis by developing
simple image processing workflows for analysis and
classification of RBC morphology. Finally, we discuss
the potential for broader application and adoption of
these novel methods in haematological imaging and
beyond.

Materials and methods

Optical mesoscopy (OM) using a Mesolens

A Mesolens is a giant microscope objective lens
designed for digital image acquisition (supplementary
material, Figure STA), which has a unique combination
of low magnification (4x) and high numerical aperture
(NA) (0.47) to allow sub-cellular resolution imaging of
sample volumes in excess of 100 mm?® [4,7]. The lens
is chromatically corrected across the entire visible spec-
trum, and multiple correction collars can be adjusted for
imaging specimens with oil, glycerol, or water immer-
sion. To capture the large, high-resolution images pro-
duced by the Mesolens, the mesoscope system uses a
chip-shifting camera sensor (VNP-29MC; Vieworks,
Gyeonggi-do, Republic of Korea) which records images
by shifting a 29-megapixel CCD chip. During acquisi-
tion, each camera pixel successively occupies nine posi-
tionsina3 X 3 array. Subsequent reconstruction of each
(260 megapixels, 506 Mb) takes approximately 5 s on a
typical laboratory PC. The camera has a monochrome
sensor and so colour brightfield images are created using
a series of blue (445 GB 50; Comar Optics, Linton, Cam-
bridge, UK), green (520 GB 50, Comar Optics), and red
(610 GY 50, Comar Optics) coloured glass filters manu-
ally inserted into the illumination path between the white
LED light source and the Mesolens. The three resultant
colour channel images are then merged into a false col-
our RGB image and white-balanced in Fiji [8] (supple-
mentary material, Figure S1B,C). Prior to imaging,
blood film slides were coated with immersion oil (Type
LDF; Cargille, Cedar Grove, NJ, USA). Total image
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acquisition time was 540, 600, and 1440 ms for the red,
green, and blue colour channel images, respectively.

Fourier ptychographic microscopy (FPM)

FPM [5] is a wide-field coherent imaging technique
which exploits the fact that illuminating a thin sample
at an oblique angle provides access to normally undetect-
able high spatial resolution information [9]. The method
combines a large field of view with high spatial resolu-
tion, making it particularly attractive for imaging blood
films, and it has previously been used for counting white
blood cells [10] and high-resolution imaging of infected
red blood cells [11]. FPM relies on the capture of a series
of images of the sample as it is illuminated sequentially
by individual LEDs within a 2D array (supplementary
material, Figure S2A). Combining the information con-
tained within these images increases the effective numer-
ical aperture from NAg, to NAg, = NAq; + NAy,,
where NA;; is determined by the illumination from the
LED furthest from the optical axis NA;j; = sin O,x.
Extending the spatial frequency support in this way
increases spatial resolution and improves visualization
of fine structural details (supplementary material,
Figures S2B and S3). We developed an upright FPM sys-
tem [12] using a commercially available, low-cost LED
matrix (WS2812; WorldSemi, DongGuan, GuangDong,
PR China) containing 22 x 22 RGB LEDs arranged on
a square grid with an inter-LED spacing of 7-8 mm.
The LED matrix was mounted 50-90 mm below the
sample (depending on the objective used) on a custom
3D-printed holder which was imaged using an air immer-
sion objective lens (4x/0.16, 10x/0.3 or 20x/0.45 —
UPLSAPO4x, MPLFLN10x, and MPLFLN20x
Olympus, Shinjuku City, Tokyo, Japan) and a tube lens
with a focal length of 200 mm, giving a total system mag-
nification of 4.4, 11.1x or 22x. Images were recorded
using a monochrome camera (IRIS 15; Teledyne Photo-
metrics, Tucson, AZ, USA) with a sensor comprising
5056 x 2968 4.25 pm pixels, giving a field of view of
4.8 mm X 2.8 mm at 4.4 x. Image capture was synchro-
nized with the LED illumination sequence using a micro-
controller (Uno; Arduino, Somerville, MA, USA). For
each image set, the sample was sequentially illuminated
with 225 individual LEDs arranged within a filled circle
on the matrix. With a camera exposure time of 100 ms,
the total acquisition time for each (monochrome) image
was slightly less than 30 s. Colour images were captured
by combining images acquired under illumination by red,
green, and blue LEDs. Images were reconstructed using a
version of the iterative phase retrieval method described
by Tian et al [13] modified to reduce background-related
image artefacts [14].

Image enhancement using a convolutional neural
network (CNN)

Machine learning (ML)-based computational image
enhancement was performed using a convolutional neu-
ral network (CNN) with an encoder—decoder architecture
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consisting of three 2D convolutional layers (Conv2D),
followed by nine residual layers (ResBlock), two 2D
transposed convolutional layers (UpConv2D), and one
2D convolutional layer with a hyperbolic tangent (tanh)
activation function at the end [15] (supplementary
material, Figure S4). To generate training data, high-
resolution reference images of blood films captured with
a 100x/1.4 oil immersion lens were degraded by convo-
lution with theoretical intensity point spread functions
(PSFs) for 10x/0.3 and 20x/0.45 objective lenses, where
the values of the PSFs were evaluated using the Richards
and Wolf 3D model [16] assuming monochromatic light
at a wavelength of 610 nm. Each captured image field
corresponded to an area of 166 x 142 pm. After convo-
lution, simulated images were down-sampled, by factors
of 10 and 5, to account for differences in magnification.
The model was then pre-trained using a total 52 high-res-
olution—simulated low-resolution image pairs, each
2560 x 2160 pixels in size, before being fine-tuned using
a set of 22 real high-resolution—low-resolution image
pairs. During each iteration, 512 x 512 patches were ran-
domly cropped from each training image pair. Random
rotations and flips were applied to further augment the
training set. An Adam optimizer with an initial learning
rate of 0.0003 was used to minimize the mean absolute
error between the target (ground truth) and predicted
images in both spatial and Fourier space. Model training
was performed using Tensorflow’s GPU implementation
[17], which took approximately 18 h on an Intel (Santa
Clara, CA, USA) Core 19 3.1 GHZ CPU with a NVIDIA
(Santa Clara, CA, USA) GeForce RTX GPU with 12 Gb
of memory.

The model was evaluated on unseen real image fields
acquired with 10x/0.3 and 20x/0.45 objective lenses.
Following training, subsequent processing of low-
resolution images took approximately 0.5 s per image
field on a standard laboratory PC with a graphics
processor.

Conventional brightfield microscopy

For comparison with OM and FPM results, reference
images of blood films were also acquired using a con-
ventional motorized brightfield microscope (BX63,
Olympus) with a 100x/1.4 oil immersion objective lens
(MPlanApo N, Olympus) and a digital colour camera
(Edge 5.5c; PCO, Kelheim, Lower Bavaria, Germany).
Images were de-mosaiced and then white-balanced
using a reference image of a blank microscope slide. Fur-
ther colour balancing was performed manually in order
to match the colour of RBCs to those in FPM and OM
images of the same slides. To account for the shallow
depth of field, a focal series (z-stack) of images spanning
the thickness of the blood film was captured for each
region of interest in the sample. Each z-stack was then
processed using a wavelet-based extended depth of field
algorithm [18] to render a single image with all sample
features in focus. For CNN training and testing, addi-
tional images were acquired using the same microscope
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with 10x/0.3 and 20x/0.45 (MPLFLN, Olympus)
objective lenses.

Sample collection and blood film preparation

The internationally recognized ethics committee at the
Institute for Advanced Medical Research and Training
(IMRAT) of the College of Medicine, University of Iba-
dan (COMUI) approved this research on the platform of
the Childhood Malaria Research Group (CMRG) within
the academic Department of Pediatrics, University of
Ibadan, as well as at school and primary care centres
throughout the city of Ibadan with permit numbers
UI/EC/10/0130 and UI/EC/19/0110. Parents and/or
guardians of study participants gave informed written
consent in accordance with the World Medical Associa-
tion ethical principles for research involving human
subjects.

Blood films were prepared at the College of Medicine,
University of Ibadan, Nigeria according to World Health
Organization malaria microscopy standard operating
procedures MM-SOP-01 to 06b. A 12-pl and a 2-pl
droplet from a finger prick blood sample were deposited
on different parts of a cleaned glass microscope slide.
The larger droplet was then spread across a circular
region of diameter 10 mm using a pipette tip to create a
thick film and the smaller droplet was spread along the
length of the slide using a second clean glass slide to
form a thin film (Figure 1). Blood films were then fixed
by dipping the thin film end of the slide into methanol
for 2 s. After air drying, slides were coated with Giemsa
solution (Merck, Darmstadt, Hesse, Germany) and left
for 8-10 min before flushing away excess stain using
buffered water. Slides were then air-dried a second time
before imaging.

Analysis of RBC morphology

For OM, we developed a simple computational workflow
to segment and analyse RBCs from thin blood films. Illu-
mination nonuniformity was corrected using adaptive
thresholding with a Gaussian kernel. A binary image
mask was then generated using K-means clustering-
based image segmentation [19] to partition image pixels
into foreground (RBCs) and background classes. Holes
in RBCs were removed by morphological filling, and a
size exclusion threshold was then applied to each discrete
binary object to remove overlapping RBCs and smaller
objects from the binary image. A set of 45 shape descrip-
tors for each binary object was then computed using the
open-source image analysis software CellProfiler [20].
For FPM, RBCs were segmented by applying a Sobel
edge detector to the unwrapped FPM phase images, fol-
lowed by global thresholding using Otsu’s method [21],
and finally morphological filling to create a set of binary
RBC objects. As for OM images, 45 shape descriptors
were then computed for each segmented RBC. Ninety-
three successfully segmented RBCs were manually
classified as round or spiculated (echinocytes and
acanthocytes) and the corresponding shape feature
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vectors were used to train a set of supervised machine
learning classifiers using MATLAB’s (Mathworks,
Natick, MA, USA) Classification Learner app. Of the
25 different classifiers tested, a quadratic support vector
machine gave the highest prediction accuracy (97.8%).

Space bandwidth product as a measure of the
information capture capacity of a microscope

The information capturing capacity of a microscope can
be quantified by its space bandwidth product (SBP) [5],
which is equal to the number of image pixels required to
sample the full field of view (FOV), SBP = FOV/
(0.5r)*. In the absence of imaging aberrations, the spatial
resolution, r, is determined by the NA of the objective
lens and the characteristics of the illumination. For
brightfield microscopy with broadband illumination,
the configuration used for the great majority of blood
film imaging, the lateral resolution can be quantified
using Abbe’s resolution criterion, Rappe = A/2NA. For
simplicity, 4 can be assumed to represent an average of
the illumination power spectrum, the spectral transmit-
tance of the microscope components, and the spectral
responsivity of the camera. The achievable FOV is also
dependent on the NA, as practical constraints to the
diameter of the objective lens pupil means that focal
length decreases with increasing NA and hence magnifi-
cation increases. The NA also determines the depth of
field of the microscope according to [22] DOF ~ An/
NA? + n-e/(M-NA), where n is the refractive index of
the objective lens immersion medium, e is the size
of the camera’s pixels, and M is the magnification of
the microscope system. This means that high spatial res-
olution images have an inherently shallow depth of field
as well as a small field of view.

Results

OM, FPM, and DNNs increase information content
and spatial resolution of images for blood film
analysis

The interdependence of the magnification and NA of the
objective lens in a conventional microscope means that
the capture of a larger imaging volume is necessarily
achieved at the expense of spatial resolution. Figure 2A
shows the decrease in lateral spatial resolution with
increasing FoV and DoF for five common objective
lenses. The figure inset (Figure 2B) illustrates how the
image information content, quantified using the space-
bandwidth product, also decreases with increasing spa-
tial resolution. In practice, this means that conventional
high-resolution images inherently carry less information
than their low-resolution, larger FoV equivalents. Both
FPM and OM deviate from this trend. FPM increases lat-
eral spatial resolution (effective NA) whilst maintaining
FoV. As the effective NA (NA,,,) increases, recon-
structed FPM images have a correspondingly shallower
DoF [22]; however, recovery of the full complex optical
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Figure 2. Field of view, depth of field, spatial resolution, and information capture capacity in optical microscopy. (A) Log-linear scatterplot
showing field of view and depth of field of conventional brightfield microscopy, FPM, and Mesolens systems. The diameter of the filled circles
is proportional to the lateral spatial resolution of each system. FPM generates a complex image in which the effective lateral resolution
depends on the properties of the object and in this case, the diameter of the circle represents the reciprocal of the coherent cutoff frequency
(A/NA). (B) SBP (a measure of information capturing capacity) of the different techniques in gigapixels.

field in FPM enables images to be computationally refo-
cused post-capture to visualize the sample over the full
DoF of the (low NA) objective lens [12]. In OM, an objec-
tive lens with a long effective focal length (low magnifica-
tion) and a high NA enables capture of high spatial images
with a substantially larger field of view (6 mm in diameter)
than is possible with a conventional microscope.

The typical size and thickness of thick and thin films are
indicated by the black crosses in Figure 2A, where the
thick film is assumed to lie within a circular region of
diameter 10 mm and the thin film within a rectangular
patch 40 mm x 20 mm. For all sample features to be
simultaneously in focus, the DoF must exceed the thick-
ness of the blood film. For thick films, this is the case for
a typical 4x (NA = 0.16) or 10x (NA = 0.3) objective.
For thin films, both the Mesolens (NA = 0.47) and a typ-
ical 20x (NA = 0.45) objective also have a sufficient
DoF. The large area of a typical blood film means that a
low-magnification objective is required in order to capture
a significant fraction of the film in a single image. A micro-
scope with a large format (21.49 mm x 12.61 mm) cam-
era and a 4x objective has an FoV of 16.9 mm?,
equivalent to 21.6% of the area of a thick film or 2.1%
of the area of a thin film. The Mesolens employs a
sensor-shifting camera to allow a similar FoV of
13.1 mmz, equivalent to 16.6% of the area of a thick film
or 1.6% of the area of a thin film. More importantly, whilst
a conventional microscope with a 4x/0.16 objective lens
has a lateral resolution of only around 2.3 pm, at the same
magnification the OM and FPM systems achieve sub-pm
lateral resolution which is sufficient to resolve important
details such as the fine structure of blood cells.

© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd.
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

To compare the performance of the different methods,
the same thin blood film was imaged using FPM, OM,
and a conventional microscope system, with the latter
image also processed using the previously described
trained CNN model. In all cases, the nominal spatial res-
olution of the raw images was approximately the same,
as the NA of the objective lens in each system was
between 0.45 and 0.47. Qualitative assessment of the
image results (Figure 3A,B) reveals several interesting
features. Firstly, images produced by the Mesolens and
a conventional microscope are similar; that the conven-
tional image is slightly sharper is likely due to a small tilt
of the sample with respect to the focal plane of the Meso-
lens. The effect of the CNN is primarily to increase
image contrast and sharpen the edges of the RBCs.
Whilst this edge enhancement allows clearer separation
of RBCs in regions where they are densely clustered
(bottom row of Figure 3B), visualization of fine morpho-
logical details, such as the membrane projections of the
spiculated RBCs in the top and middle rows of
Figure 3B, is only possible in the high-resolution FPM
image reconstructions. These differences are reflected
in the radial power spectrum of the images shown in
Figure 3C, where it can be seen that the effect of the
CNN is to increase the contrast at intermediate to high
spatial frequencies without significantly extending the
spatial frequency cutoff beyond the diffraction limited
value of ~1.7 pm~'. The capture of high frequency
information in FPM both increases contrast for high spa-
tial frequencies and extends the support of the optical
transfer function (the maximum spatial frequency
captured by the microscope) with a corresponding
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increase in image resolution (supplementary material,
Figure S2B).

OM and FPM enable quantitative analysis of RBC
morphology over large areas of the blood film

Variations in RBC morphology provide important diag-
nostic cues [23]. Whilst conventional microscopic tech-
niques offer sufficient spatial resolution to detect subtle
morphological differences, their FoV is typically too
small to capture enough RBCs for detection of rare phe-
notypes and extraction of robust population-wide statis-
tics. To investigate the suitability of OM and FPM for
morphological assessment, we developed simple illus-
trative computational workflows to segment and classify
RBCs from images of thin blood films (Figure 4).

For OM, we analysed differences in RBC morphology
for a patient diagnosed with sickle cell disease (HbSS)
and a healthy non-sickle (HbAA) control. The left panel
of Figure 4A shows a scatter plot of the minor and major
axes of segmented RBCs, 6166 cells for the healthy con-
trol and 2281 cells for the HbSS patient. For the control,
most RBCs are near circular and lie close to the diagonal
(major-axis length = minor-axis length). The elongation
of RBCs for the HbSS patient results in a qualitatively
different distribution characterized by a large number
of (off-diagonal) highly elliptical RBCs. The right panel
of Figure 4A shows the same data plotted as an ellipse
eccentricity (e, the ratio of the distance between the foci
of the ellipse and its major axis length) histogram. For
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the control, RBC eccentricity follows a normal distribu-
tion centred at e ~ 0.5. For the HbSS patient, the histo-
gram is bimodal with a distribution that can be
approximated as a sum of two Gaussians (non-linear
least squares fit, R* =0.97) with mean and standard
deviations (SDs) of 0.49 and 0.16 and 0.81 and 0.12.
The first of these terms closely matches the eccentricity
distribution for the control (mean = 0.47, SD = 0.14,
R* = 0.996), suggesting that the second Gaussian term
describes aberrant RBC morphologies associated with
HbSS. This analysis was performed for a patch size of
1.95 mm X 1.95 mm. Assuming the same RBC number
density across the full (13.1 mmz) Mesolens FoV, the
analysis would include almost 21 200 RBCs for the con-
trol sample and more than 7800 RBCs for the HbSS
patient.

The higher spatial resolution of FPM allows the visu-
alization and assessment of more subtle differences in
RBC morphology. As an example, we segmented and
classified RBCs in FPM images of a thin blood film cap-
tured with a 10x/0.3 objective as spiculated or round
based on the presence or absence of characteristic spiky
membrane projections. The spiculated class includes
both echinocytes (regularly spiculated) and acanthocytes
(irregularly spiculated), where the latter can indicate a
variety of disorders including liver disease, anaemias,
and some hereditary conditions. Both classes cluster rea-
sonably well by eccentricity and compactness (defined
as mean squared distance of the object pixels from the
centroid normalized by the area). The number of cells
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Figure 4. Measurement of RBC morphology from OM and FPM images of thin films. (A) Comparison of RBC morphologies measured from OM
images of peripheral blood smears from a healthy patient (blue) and a patient diagnosed with sickle cell (HbSS) (green). Analysis performed on
all segmented cells within a 1.95 mm x 1.95 mm field of view in a thin film from each patient. For the healthy patient, this corresponds to
6166 segmented cells and for the HbSS patient, 2281 cells. Left: scatter plot showing length of major and minor axes of ellipses fit to seg-
mented RBCs. Right: normalized histograms showing measured eccentricity of segmented RBCs. (B) Classification of RBCs from FPM images.
Left: segmented RBCs are manually classified as round (green) or spiculated (pink). Right: scatter plot showing compactness and eccentricity
of classified RBCs used in the training set. The inset shows the confusion matrix for RBCs classified using a quadratic support vector machine.

Overall accuracy is 97.8%.

that can be analysed in this way is limited primarily by the
reliability of the cell segmentation, which is strongly
dependent on the RBC density and the proportion of over-
lapping or touching cells. For Figure 4B, we were able to
segment and analyse 35 RBCs in a 76.5 pm X 76.5 pm
patch. Assuming a similar RBC density and segmentation
rate, this equates to the detection and classification of
~13 000 RBCs over the entire (10x) FPM FoV.

FPM and ML improve visualization of Plasmodium
falciparum parasites

The small size of many blood-borne parasites and the
presence of morphologically similar ‘distractors’, aris-
ing from non-specific staining or contamination, neces-
sitate high-resolution imaging for accurate parasite
detection in blood films. To assess the suitability of
FPM and CNNs for parasite detection, we visually

© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd.
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examined images of Giemsa-stained thin films clinically
assessed as positive for the P. falciparum malaria para-
site (MP). P. falciparum typically presents as small
ring-shaped objects, typically ~2 pm in diameter, com-
prising a dark, densely stained chromatin spot sur-
rounded by a fainter cytoplasmic ring. Figure S5A
shows FPM images of the same three regions within a
thin film captured using different objective lenses to
illustrate how the NA of the objective and the resulting
synthetic NA of the reconstructed image affect the visi-
bility of MPs (for the corresponding full images, see sup-
plementary material, Figure S3). In the 4x/0.7 images,
although parasites are visible with sufficient contrast to
pick out the chromatin spot, the spatial resolution is
inadequate to clearly visualize the ring structure. For
many samples, which are often sub-optimally prepared,
we find that such images are often inadequate for reliable
parasite identification. By contrast, MPs are clearly
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Figure 5. Parasite detection in FPM and CNN enhanced images of
Giemsa-stained thin blood films. (A) FPM amplitude images showing
P. falciparum-containing RBCs captured using different objective
lenses. The NA indicated corresponds to the final reconstructed image.
(B) Raw, CNN recovered, and ground truth images of P. falciparum-
containing RBCs captured using 10x/0.25 and 20x/0.45 objective
lenses. Ground truth conventional brightfield images captured using
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resolved in FPM images captured with 10x and 20x
objectives. The 20x images with a synthetic NA of 1.15,
in particular, compare well with conventional brightfield
images captured using a 100x/1.4 objective shown in the
lower row of Figure 5B. Based on this, we anticipate a
higher MP detection efficiency (accuracy) for 20x/1.15
images; however, this comes at the expense of a smaller
field of view and resulting number of RBCs. As a result,
the sensitivity for detection of a single MP may not neces-
sarily be higher for higher-magnification images.

Figure 5B shows the effect of the CNN on images of
RBCs containing MPs (for the corresponding full
images field, see supplementary material, Figure S5).
In this case, the network was trained using a set of image
fields of a single slide captured using 100x/1.4,
20x/0.45, and 10x/0.3 objective lenses and then used
to estimate 100x/1.4 images from lower-resolution
images of different fields within the same slide. As noted
previously (Figure 3), the CNN has the effect of sharpen-
ing images, with RBC membranes in 10x and 20x
images better defined in estimated high-resolution
images. Quantitatively, the normalized variance
(a measure of image sharpness) increases from 61.2%
to 83.9% of the value for the 100x ground truth image
for images captured with the 10x objective and from
65.6% to 90.7% for 20x images. The CNN also
increases the structural similarity index with the ground
truth image from 0.70 to 0.77 and from 0.73 to 0.76 for
the 10x and 20x images, respectively. However, we
find that the CNN is unable to render the four MPs visi-
ble from the 10x image. In the 20x image, the sharpen-
ing effect increases the contrast of the chromatin spot but
fails to reveal significant additional parasite structure.
This suggests that the CNN is unlikely to improve the
visualization of MPs in low magnification (low-resolu-
tion) images which are not already, to some extent, visi-
ble in the raw data. However, by increasing image
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sharpness/contrast, the network may aid the (manual or
automated) detection of MPs.

Discussion

To inform relevant clinical pathways, image-based
blood film analysis requires sufficient spatial resolution
to detect (often subtle) morphological features and small
objects, and a suitably large FoV to capture enough cells,
or other objects of clinical interest, for statistical robust-
ness. Our results show that OM, FPM, and CNNss can all
be applied to provide an increased capacity for extrac-
tion of diagnostically important information of blood
films. Although our analysis has been restricted to
RBCs, in particular assessment of morphology and the
detection of intracellular parasites, we note that the three
methods can also be applied to imaging of WBCs (sup-
plementary material, Figure S6). As with RBCs, we
anticipate that combining a large FoV with high spatial
resolution offers significant potential for improved
image-based diagnostic assays, such as the WBC differ-
ential count and the identification of malignant WBCs
through their aberrant morphology.

Although our analysis has been restricted to Giemsa-
stained thin films, the methods are directly applicable to
other stains and preparation protocols. Researchers have
also effectively applied FPM for high-resolution imaging
of stained tissue sections [24]. By capturing sample phase
information, FPM holds potential for label-free structural
imaging, albeit at the expense of the specificity provided
by chemical staining. Thicker, scattering objects can pre-
sent challenges for FPM; however, recent work [25,26]
has shown that modification of the image reconstruction
algorithm can allow effective 3D FPM imaging. OM
and CNN image enhancement methods are directly appli-
cable to imaging and analysis of thicker samples such as
thick blood films and tissue sections.

As with any new technology, the wider adoption of
these methods depends on several factors, principally
cost and complexity. FPM is relatively cheap and simple
to implement on many of the microscopes currently in
use for haematological research and clinical practice,
requiring only the addition of a low-cost LED array, a
digital camera, and some off-the-shelf electronic compo-
nents. However, care is required when acquiring and
reconstructing images in order to avoid artefacts. In prin-
ciple, FPM could also be employed to enhance the per-
formance of other low-cost automated microscope
platforms [27,28], allowing improved diagnostic imag-
ing in resource constrained settings. Reconstruction of
FPM images using common iterative phase retrieval
algorithms can be relatively time-consuming (several
hours for the full FoV of a large format camera). Alterna-
tive approaches based on machine learning have shown
promise in reducing the computational burden [29,30]
and we have obtained encouraging results using such
methods for fast reconstruction of FPM images of blood
films. Using a CNN-based FPM reconstruction model
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trained using TensorFlow, we were able to obtain a high-
resolution full FoV image in approximately 3 min.

Aside from initial system setup and alignment, practi-
cal operation of the Mesolens is similar to a conventional
brightfield microscope system, albeit with an increased
sensitivity to any tilt of the specimen with respect to
the focal plane of the objective lens because of the large
FoV. Handling the resulting image datasets can require
significant computational resources: an RGB OM image
is around 1.5 Gb. Also, to date, there are only a small
number of Mesolens systems housed in specialist aca-
demic research laboratories within the UK.

Machine learning methods are ubiquitous across many
areas of science, technology, and medicine. At present,
implementation often relies on expert computer scientists
and on the availability of large amounts of training data.
However, once the CNN model has been trained and val-
idated, estimation of high-quality, high-resolution images
from lower-quality, low-resolution image input is simple,
fast, and requires only modest computer hardware.

Advances in computing hardware and the development
of increasingly sophisticated computational analysis tools
have created an increased capacity for storage and analysis
of biological and biomedical image data. Our ability to
interrogate biological systems, diagnose disease, and
develop new therapeutic treatments may ultimately be lim-
ited by our ability to acquire suitable image data. Having
demonstrated the capacity of OM, CNNs, and FPM to
extract more of the rich structural information contained
within from blood films, we look forward to their wider
application for diagnostic imaging in haematology and
more widely throughout digital pathology.
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