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Abstract: The widescale distribution of hydrogen through gas networks is promoted as a viable
and cost-efficient option for optimising its application in heat, industry, and transport. It is a
key step towards achieving decarbonisation targets in the UK. A key consideration before the
injection of hydrogen into the UK gas networks is an assessment of the difference in hydrogen
contaminants presence from different production methods. This information is essential for gas
regulation and for further purification requirements. This study investigates the level of ISO 14687
Grade D contaminants in hydrogen from steam methane reforming, proton exchange membrane
water electrolysis, and alkaline electrolysis. Sampling and analysis of hydrogen were carried out by
the National Physical Laboratory following ISO 21087 guidance. The results of analysis indicated the
presence of nitrogen in hydrogen from electrolysis, and water, carbon dioxide, and particles in all
samples analysed. The contaminants were at levels below or at the threshold limits set by ISO 14687
Grade D. This indicates that the investigated production methods are not a source of contaminants
for the eventual utilisation of hydrogen in different applications including fuel cell electric vehicles
(FCEV’s). The gas network infrastructure will require a similar analysis to determine the likelihood
of contamination to hydrogen gas.

Keywords: hydrogen production; fuel cell vehicles; gas distribution network; ISO 14687 contaminants

1. Introduction

There is a global push to promote the utilisation of low carbon gases with the view
to reduce greenhouse gas (GHG) emissions. This is predominantly driven by the need to
mitigate the effects of climate change. Initiatives in the UK and several European countries
indicate the need to replace natural gas in the conventional gas networks with hydro-
gen [1-3]. This could be key to lowering carbon emissions from hard to decarbonise sectors
like transport, heat, and industry, which combined contribute to over 50% of the share of
GHG emission in the UK [4-8]. The European Commission’s hydrogen strategy and the
European Union’s hydrogen roadmap also affirms that hydrogen is a key building block for
meeting Europe’s climate neutrality targets for 2050; its utilisation could lead to increased
energy security with the view of reducing reliance on imported fuels [6,9]. Hydrogen can be
conventionally produced from several feedstocks and processes. This includes reformation
or thermochemical conversion of fossil fuels, electrolytic water splitting processes, and bio-
logical conversion of biomass residues [10-13]. Studies in the UK indicate that short term
to mid-term large scale production of hydrogen for grid injection and energy applications
will predominantly be carried out by electrolytic routes and thermochemical routes notably
steam methane reforming; this is because of the maturity of these processes [13]. Steam
methane reforming is likely to be favoured for areas with higher demand and electrolysis
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utilised for regional demand and grid balancing [13,14]. Therefore, the preponderant
hydrogen production methods selected in this study are steam methane reforming, proton
exchange membrane water electrolyser and alkaline electrolyser.

Hydrogen fuel can be distributed through various means such as the use of pipelines or
the gas network, high pressure tube trailers and liquefied hydrogen tanks. The conventional
gas network infrastructure is promoted due to its cost effectiveness, particularly for long
distances. There are several technological challenges associated with hydrogen distribution
by gas networks to the end-users (i.e., for heat application, transport and industry): Some
of these include possible network pipeline material degradation, leakages, odorisation,
gas metering, and gas quality [15]. The quality of gas, in particular, might be influenced
by several sources in the distribution network and also from the hydrogen production
process; some of the factors that might affect gas quality from the production process
include the source and composition of feedstock utilised, scale of production, the level of
pre-treatment carried out, the process or equipment utilised, materials utilised, and the gas
clean up employed.

There are different specifications for hydrogen gas quality depending on the appli-
cation of the gas; ISO 14687: 2019 stipulates the threshold or maximum concentration
of specific individual contaminants that can be present in hydrogen fuel for utilisation
in vehicular and stationary applications [16]. A new hydrogen purity specification has
also been developed as part of the Hy4Heat programme for recommended quality re-
quirements for hydrogen being distributed through the gas grid for domestic/commercial
heating applications.

The hydrogen gas quality is influenced by the production method. Thermochem-
ical production processes for the production of hydrogen may lead to the presence of
contaminants such as methane (CHy), nitrogen (N3), carbon monoxide (CO) and carbon
dioxide (CO,); other trace constituents, argon (Ar), ammonia (NHs), formic acid (HCOOH),
formaldehyde (HCHO), total hydrocarbons (THC) excluding CHy, sulphur-containing
compounds, and halogens) dependent on the feedstock utilised, level of pre-treatment and
purification [17-21]. Possible contaminants from electrolytic routes to produce hydrogen
are oxygen (O;) Ny, CO, and water (H,O). It is reported that the presence of other ISO
14687 grade D contaminants is unlikely in hydrogen produced from thermochemical and
electrolytic routes [17-20].

A comparison of hydrogen gas quality from the different production routes is essential
to understand the potential variability between hydrogen injected into the future gas
network. Understanding the levels of contaminants will also support regulations and
standard of hydrogen quality for gas grid injection.

The objective of this study is to ascertain the variety and level of contamination that
occurs in real samples of hydrogen from conventional production methods. It presents the
comparison of hydrogen gas quality from three production sources: steam methane reform-
ing (SMR), proton exchange membrane (PEM) water electrolysis and alkaline electrolysis.
A review of the literature indicates that these three hydrogen production methods are the
most suitable and realistic on a large scale for gas grid injection in the short term [5,13]. SMR
production method was selected as it is believed to be the most realistic way to produce
hydrogen that will be injected into the gas grid on a large or centralised scale. The alkaline
electrolyser was selected because of the growing assertions that it might be sustainable
for distributed and regional injection into the gas grid as demonstrated in several projects
occurring regionally in the UK [2]. The PEM water electrolyser was selected because of its
prominent use for onsite hydrogen production in several refueling stations. This work was
carried out as part of the Hydrogen Grid to Vehicle (HG2V) project [22].

2. Materials and Methods
2.1. Hydrogen Gas Sampling

Hydrogen gas from an SMR, alkaline electrolyser and PEM water electrolyser was
sampled by NPL at the operating sites using a novel sampling system as detailed in
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Figure 1. Hydrogen from SMR was sampled at a 15 bar sampling point after the Pressure
Swing Adsorption (PSA) stage. Hydrogen from the alkaline electrolyser was sampled
at a 9.8 bar sampling point after a de-oxygenation unit/dryer and hydrogen from the
PEM water electrolyser was sampled at a 20 bar sampling point after Temperature Swing
Adsorption (TSA).
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Figure 1. Schematics of sampling system.

The same sampling methodology was applied for all the samplings. The gas sampling
from all hydrogen production plants was performed by the National Physical Laboratory
(NPL). Approximately 150 L of gas was collected from each source into 10 L pre-evacuated
(<1077 mbar) aluminium cylinders with spectraseal treatment (BOC, Guildford, UK). The
gas samples were taken through the sampling points after plug valve 4 and 5 in the
sampling system (Figure 1) after a sufficient purge of the sampling line with the sampled
gas for each source. Particulates in the hydrogen gas were trapped using pre-weighed
47 mm diameter filters (0.2 um Pore Size PTFE Filter with PFA support ring from MTL, UK)
held in-line with high-pressure stainless-steel filter holders from Millipore (XX4504700,
Millipore, Hertfordshire, UK). Two in-line filter holders are arranged between plug valve
V10 and V11 and between plug valve V12 and V13 in the sampling system (Figure 1). The
hydrogen gas volume that passed through the filter was equivalent to 400-500 L (40 min
at ~10-12 L/min). Water-soluble contaminants were investigated using three in-line PFA
(fluoropolymer) impingers arranged in series after plug valve V16 in the sampling system
(Figure 1); 25 mL of de-ionised water was utilised as a collection liquid in two of the
impinger bottles whilst the third bottle was left empty. Approximately 1000 L of hydrogen
gas passed through the impinger bottles for each sampling.

2.2. Hydrogen Gas Analysis

The amount fraction of ISO 14687 Grade D contaminants in the sampled gas were
quantified and evaluated at NPL’s hydrogen purity laboratory. NPL is the UKs national
metrology institute and developed analytical methods to measure the hydrogen fuel
contaminant listed in ISO 14687. The instruments utilised in the analysis of the sam-
pled gas is summarized in Table 1. Ny, O; and Ar were analysed by gas chromatog-
raphy (GC) (Agilent Technologies, Didcot, UK) with pulsed discharge helium ionisa-
tion detector (PDHID, VICI, CH) using helium as a carrier gas (Pre filtered helium was
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utilised as carrier gas (Purity > 99.9999%, (He BIP®, Air Products, London, UK))). The
GC/PDHID sampling loop was 1 mL. The sample was transferred onto capillary column
molsieve 5A plot (30 m x 0.53 mm x 50 pm) and a second capillary column molsieve 5A
plot (50 m x 0.53 mm x 50 um). The GC oven was set at 30 degrees Celsius. Water was
measured using quartz crystal microbalance, QMA401 (Michell, Cambridgeshire, UK).
Gases are sampled directly from the gas cylinder to the analyser, a valve was used
to restrict the flow to 0.333 L/min for the QMA. Formic acid, formaldehyde and am-
monia were measured using selected ion flow tube mass spectrometry (SIFT-MS, Syft,
Christchurch, New Zealand). The measurements were performed using H3O* reagent
ions for formic acid and formaldehyde and product ions HCOOH,* (m/z = 47 am.u.)
and CH30" (m/z = 31 a.m.u). The measurements were performed using O,* reagent ions
for ammonia and the product ion NH3" (m/z = 17 a.m.u.). The SIFT-MS vaccum pres-
sure was set at 104 mTorr with an overflow of 140-160 mL/min. Helium was measured
using gas chromatography with thermal conductivity detector (GC-TCD) (Agilent Tech-
nologies, Didcot, UK). The method used one Hayesep Q 80/100 mesh 2 m x 1/8” outer
diameter x 2.0 mm inner diameter column and one Molesieve 5A 80/100 mesh 9 ft x 1/8”
outer diameter X 2 mm inner diameter column with hydrogen carrier (Pre filtered hydro-
gen was utilised as carrier gas (Purity > 99.9999%, (H, BIP®, Air Products, London, UK))).
The loop size used for sample injection was 2 mL. Methane, carbon monoxide, carbon
dioxide and total hydrocarbons excluding methane were measured GC (Peak Laborato-
ries, California, USA) coupled with a methaniser and flame ionisation detector (FID). The
method used a Haysep D column (186" x 1.5”) with nitrogen carrier with the column
held at a temperature of 65 degrees Celsius. The loop size used for sample injection was
5 mL. Total sulphur compounds were measured by gas chromatography with sulphur
chemiluminescence detector (GC-SCD). The analysis of the sample is performed on an
Agilent 7890A gas chromatograph (Agilent, California, USA) equipped with two detec-
tors, a flame ionisation detector and sulfur chemiluminescence detector (SCD 355, Agilent
Technologies, California, USA). The GC-5CD sampling loop volume was 1 mL and the
sample was then transferred onto capillary column used which is a HP-5, 30 m x 0.320 mm
ID x 0.251 pum film thickness (Agilent, California, USA). The column program tempera-
ture is isothermal at 110 °C. Helium is used as a carrier gas at a flow rate of 20 mL/min.
Organo-halogenated compounds were analysed using a TD-GC (Markes International,
Bridgend, UK) coupled with mass spectroscopy (MS) and an FID (Agilent Technologies,
Didcot, UK). The compounds were adsorbed onto a Chromosorb tube. This system des-
orbs the analytes from the sorbent and releases the analytes onto a U-T6SUL cold trap.
A DB-VRX column 60 m x 0.25 mm with a helium carrier was used for separation. All
analyses were calibrated using NPL gravimetric gas standards in hydrogen matrix gas
(The gas standards utilised were in house standards prepared in accordance with ISO
6142-1 [23]). Gravimetric standards and /or dynamic standards (prepared by dilution using
mass flow controller system (Bronkhorst, Ruurlo, NL)) were used to generate calibration
curve ranging covering the ISO 14687 grade D threshold and the measured values (as
long as it is above the limit of detection). The data was scrutinised however no result
was discarded without a technical reason. The calibration curve, results of analysis and
uncertainties associated were determined using NPL software XLGENline [24]. An ex-
panded uncertainty (of k = 2) was used in this study but in some cases, a more conservative
uncertainty was derived from scientific experience.

The amount fraction of the particulates (mass of particulate per mass of gas passing
through the filters) was calculated by taking an average of the mass of particulates from
the two inline filters used during sampling. Weighing of the filters before sampling and
after the passage of gas through the filters was performed using XP2U (Mettler Toledo,
Royston, UK).
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Table 1. Analytical Methods for ISO 14687 contaminants.

Components Instrument

Water (H,O) QMA 401
THC, CO, CO,, CHy GC-methaniser-FID

0,, N, Ar GC-PDHID

Helium (He) GC-TCD
Total sulphur compounds

(S1 basis) GC-SCD
HCHO, HCOOH, NH3 SIFT-MS

Halogenated compounds

(Halogenate ion basis) TD-GCMS

The de-ionised water samples from the impinger tubes were analysed by Ion Exchange
Chromatography systems for a suite of Anions (Chloride, Nitrate, Sulphate) and Cations
(Lithium, Sodium, Ammonium, Potassium, Magnesium, Calcium), in accordance with
NPL’s in-house procedure. The Ion Chromatography systems used were ICS-1500 (carbon-
ate/bicarbonate eluent) (Dionex, CA, USA) and ICS-2100 (MSA eluent) (Dionex, CA, USA)
for anions and cations respectively, both with conductivity suppressors. The samples
were analysed as supplied, no dilution or matrix matching were required. An inductively
coupled plasma mass spectrometry (ICP-MS) by Agilent (Agilent 8800 Triple Quadrupole
ICP-MS) was also utilised to carry out indicative analysis on the de-ionised water sam-
ples to identify the presence of additional ionic contaminants that might be present in
the samples.

3. Results and Discussion
3.1. Result of Analysis

The three production routes did not show contaminants significantly above the thresh-
old set by ISO 14687 Grade D (see Table 2).

Table 2. Analysis of ISO 14687 contaminants found in hydrogen production sources.

Characteristics (assay) Grade D Specification PEM SMR Alkaline
pumol/mol pumol/mol umol/mol pumol/mol
Water (H,O) 5 587 +£0.15% 1.46 £ 0.10 2.97 £0.29
Total hydrocarbons except methane (C1 basis) 2 <0.015 <0.015 <0.015
Methane (CHy) 100 <0.010 <0.010 <0.010
Oxygen (O,) 5 <0.24 <0.24 <0.24
Helium (He) 300 <28 <28 <28
Nitrogen (Nj) 300 6.89 £+ 0.37 <0.09 6.06 £ 0.35
Argon (Ar) 300 <0.07 1.74 £ 0.10 <0.07
Carbon dioxide (CO,) 2 0.61 & 0.07 0.294+0.09  0.240 £ 0.020
Carbon monoxide (CO) 0.2 <0.029 <0.029 <0.029
Total sulphur compounds (H;S basis) 0.004 <0.0012 <0.0012 <0.0012
Formaldehyde (HCHO) 0.2 <0.10 <0.10 <0.10
Formic acid (HCOOH) 0.2 <0.010 <0.010 <0.010
Ammonia (NH3) 0.1 <0.010 <0.010 <0.010
Total halogenated compounds (Halogenate ion basis) 0.05 <0.030 <0.030 <0.032
mg/kg mg/kg mg/kg mg/kg
Maximum particulates concentration 1 14+067 1.6+062 1.75+0.36%

2 The amount fraction realised for water in hydrogen in PEMWE and the maximum particulate concentration for all hydrogen production
methods investigated are slightly higher than the ISO 14687 Grade D specification; this could be attributed to additional water and particles
from the sampling system and procedure.

The results of analysis are presented with measurement uncertainty at 95% confidence
level. It should be noted that the amount fraction levels for all the compounds (except
water, nitrogen, carbon dioxide, argon and particulate were below the limit of detection
of NPL analytical methods. All the results of analysis from all the hydrogen production
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method were below the ISO 14687 threshold (except for water for PEMWE). The water
amount fraction for the PEMWE is slightly higher when compared to other production
methods; whilst water is a possible contaminant from this production method, water at
low amount fractions as those specified by the ISO 14687 grade D specification can easily
be introduced during sampling. For this reason, further work might be required to validate
the accuracy of sampling and analysis of water amount fractions. Following the complexity
of sampling water amount in hydrogen fraction at hydrogen production method, online
measurement needs to be investigated to avoid inaccuracy during the sampling for water
amount fraction in hydrogen.

Particulate analysis at low amount fraction (1 mg/kg) in low pressure hydrogen
stream is a challenge for several reasons. The particulate amount fraction trapped in the
inline filters was between 1.4 and 1.8 mg/kg with an uncertainty of 0.36-0.6 mg/kg. It is
important to realise that the volume of gas passed through the filter was only 400-500 L and
with a state-of-the-art ultra-trace balance the measurement uncertainty is few micrograms.
Therefore, the amount of hydrogen gas becomes a limiting factor for this experiment. In an
ideal scenario, it would have been important to sample a much larger volume 5000-10,000 L
in order to improve the measurement uncertainty. The current results of analysis reflect
the complexity of particulate analysis and the requirement of a large volume of gas to be
passed through the filters.

3.2. Hydrogen Gas Contamination from the Three Sources

Literature indicates the possible presence of CHy4, Ny, CO and CO; in the product
stream of thermochemical routes to hydrogen such as SMR [17-20]. The results of analysis
from this study indicates low levels of CO, (4-8 times lower than ISO 14687 threshold)
whilst the amount fractions of CHy, N, and CO were significantly lower than the ISO
14687. This could indicate a high efficiency of the purification technique utilised in this
conventional process. Asides from Ar and H,O which were identified at low fractions from
the results of analysis of hydrogen from the SMR, all other gaseous ISO 14687 contaminants
were lower than the limit of detection of NPLs analytical methods.

Previous studies identify O,, Ny, CO, and H,O as possible ISO 14687 contaminants
from electrolytic routes to produce hydrogen with the most probable contaminant being
O; [17]. The result of analysis of hydrogen from PEM electrolyser and alkaline electrolyser
indicates the presence of Ny, CO, and H;O. There is a similar profile for these contaminants
in hydrogen samples from both electrolyser samples except the H,O content in hydrogen
from PEM water electrolyser which is at the threshold stipulated by ISO 14687 Grade D.
The results of analysis from this study confirm that the amount fraction of every other
gaseous ISO 14687 contaminant were lower than ISO 14687 threshold.

This study demonstrates that the current hydrogen production methods provide
hydrogen with a quality which is compatible with the most stringent standard (ISO 14687
Grade D for transport application) therefore it is suitable for injection in the gas grid as it
will meet other current specification for hydrogen utilisation such as ISO 14687 Grade A. It
will be important to study the actual gas network to understand if additional contamination
can occur within the network and be detrimental to the hydrogen gas quality. This next
activity is critical for the future transportation of hydrogen gas unto the gas network and
to ensure that the end-users will benefit from the hydrogen fuel quality injected into the
gas network.

3.3. Extensive Analysis for Additional Impurities

The results of analysis from this study raised several points regarding the presence of
contaminants that may not have been identified in the current literature especially around
particulates, hydrocarbons and water-soluble compounds.

The particulates amount fraction trapped in the inline filters was around the ISO 14687
Grade D threshold. As highlighted in Section 3.1, there are improvements to be made
to the sampling method, specifically with regards to increasing the volume of hydrogen
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passing through the inline filters. The presence of particulates in the gas could have been
derived from product gas, leachate of distribution lines/pipes or low-level degradation
of equipment utilised in the plants (i.e., compressor oil, cleaning agent). As no additional
analysis was carried out on the filters, it would be difficult to interpret the actual chemical
composition of the contaminants which is crucial to identify the source of contamination.

Additional analysis was carried out on the sampled hydrogen gas to identify if the
presence of hydrocarbon contaminants in the gas phase (i.e oil leachates) may be related
to the presence of particulates. A large amount of hydrogen sample was passed through
dedicated sorbent material in order to trap extremely small quantities of hydrocarbon
constituents (C,—C;y3). Analysis by TD-GC-MS/FID indicated that the concentration of
individual hydrocarbon constituents (C,—Ci3) in the gas for all routes of hydrogen were
also below 0.08 ng/g. This indicates that the particulates trapped in the inline filters were
possibly not related to oil or grease.

Trace element analysis of the hydrogen gas (Table 3) sampled using impingers did not
identify any water-soluble contaminants (anions and cations) above the limit of detection
of NPL analytical methods (0.20 pg/g). The trace element analysis also indicates the level
of Hg in hydrogen in all three samples analysed is well below the threshold set for other
quality specification for hydrogen utilisation like ISO 14687 including Type 1 Grade B
(Quality specification for gaseous hydrogen; industrial fuel for power generation and heat
generation except PEM fuel cell applications) which is set at 0.004 pmol/mol.

Table 3. Trace water-soluble contaminants from all hydrogen production sources.

Mass Concentration of Amount Fraction in Hydrogen Amount Fraction in
Water-Soluble Contaminants from Electrolytic Routes Hydrogen from SMR

Anion in Gas (ug/g)

Chloride <0.09 <0.09

Sulphate <0.10 <0.10
Cation in Gas (ug/g)

Sodium <0.06 <0.06

Potasium <0.20 <0.20

Calcium <0.10 <0.10

4. Conclusions

There is a strong case for the injection of hydrogen in the UK gas grid to promote
a low carbon hydrogen economy. This could be done either as a blend of hydrogen and
natural gas or as 100% hydrogen in the gas grid. If the hydrogen was sufficiently pure to
meet the requirements of Hy4Heat WP2 [25] and ISO 14687 grade D [16], it could be used
for heating applications, there would also be the potential to use the grid to easily transport
and supply fuel to hydrogen refuelling stations across the UK.

Hydrogen gas was sampled from three different production sources (SMR, alkaline
and PEM water electrolyser) for this study with the view of understanding the level
and variety of contaminants in real samples of hydrogen. Comparison of the hydrogen
contaminant amount fraction against the threshold set by ISO 14687 Grade D (for hydrogen
vehicles) affirms that the quality of hydrogen produced from the three routes investigated
is below the threshold or at the threshold for all constituents. The study highlighted that
water amount fraction online measurement may be investigated due to sampling difficulty.

This study also investigated the presence of new potential contaminants in hydrogen
and provides the first results for anions, cations, trace elements and C, to C1 hydrocarbons
in hydrogen from SMR, alkaline and PEM water electrolysers. The results show that anions
and cations like sodium, potassium, sulphate, and calcium were not detected above the
limit of detection of NPL analytical methods (0.20 ug/g).

The three sources of hydrogen sampled for this study (SMR, alkaline, and PEM
water electrolyser) demonstrate that hydrogen quality from production can be compliant
with ISO 14687 Grade D. It is essential to stress that contamination from the hydrogen
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production routes will differ from plant to plant, production routes utilised, the level of
purification utilised, and operating conditions utilised. Consequently, the results from this
work cannot be used as firm evidence for the expected hydrogen purity levels produced by
all hydrogen production processes. Nevertheless, it gives a good indication of the level of
purity that can be attained from these production routes with the purification techniques
employed. This infers that H, production methods with purification in its product line
should be able to provide sufficiently pure hydrogen for its different applications (heating,
transport and industry). Nevertheless, further work is required to understand possible
contamination from other parts of the supply chain like the distribution network itself if
the gas is transported through the conventional gas grid.
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