
Vol.:(0123456789)1 3

Accreditation and Quality Assurance 
https://doi.org/10.1007/s00769-021-01485-5

DISCUSSION FORUM

Meaningful expression of uncertainty in measurement

Maurice Cox1   · Anthony O’Hagan2

Received: 10 March 2021 / Accepted: 30 October 2021 
© The Author(s) 2022

Abstract
The Guide to the expression of uncertainty in measurement (GUM) has been the enduring guide on measurement uncertainty 
for metrologists since its first publication in 1993. According to the GUM, a measurement should always be accompanied 
by a reasoned and defensible expression of uncertainty, and the primary such expression is the standard uncertainty. In this 
article, we distinguish between the use of an expression of uncertainty as information for the recipient of a measurement 
result and its use when propagating uncertainty about inputs to a measurement model in order to derive the uncertainty 
in a measurand. We propose a new measure of uncertainty, the characteristic uncertainty, and argue that it is more fit for 
these purposes than standard uncertainty. For the purpose of reporting a measurement result, we demonstrate that standard 
uncertainty does not have a meaningful interpretation for the recipient of a measurement result and can be infinite. These 
deficiencies are resolved by the characteristic uncertainty, which we therefore recommend for use in reporting. For similar 
reasons, we advocate the use of the median estimate as the measured value. For the purpose of propagating uncertainty in a 
measurement model, we propose simple propagation of the median and characteristic uncertainty and show through some 
examples that this characteristic uncertainty framework is simpler and at least as reliable and accurate as the propagation of 
estimate, standard uncertainty and effective degrees of freedom according to the GUM uncertainty framework.

Keywords  Measurement uncertainty · Uncertainty propagation · Characteristic uncertainty · Guideto the expression of 
uncertainty in measurement

Introduction

A basic premise of the Guide to the expression of uncer-
tainty in measurement (GUM) [1] is that many measure-
ments are modelled by a functional relationship, termed the 
measurement model, between N input quantities X1,… ,XN 
and an output quantity (or measurand) Y in the form

The measurement function f may be mathematical or 
algorithmic.

The guiding principle of the GUM is that a measured 
value should always be accompanied by a reasoned and 
defensible expression of uncertainty. The GUM provides 

simple procedures for expressing uncertainty in the input 
quantities and, given these, to derive the uncertainty in the 
measurand. Thus the measurement result does not consist 
solely of the estimate, or measured value, of the measurand, 
but also includes an expression of uncertainty.

The GUM identifies two ways to evaluate the uncertainty 
in an input, which it names Type A and Type B evaluation. 
Type A evaluation for a quantity involves statistical analysis 
of data. Typically, the data will consist of a sample of indi-
vidual estimates of the quantity, often referred to as indica-
tions, which are subject to random observation errors. A 
Type  B evaluation is a judgement based upon the metrolo-
gist’s expertise, published information, etc.

To derive an estimate and standard uncertainty of the 
measurand, the GUM advocates the use of the law of propa-
gation of uncertainty (LPU), but recognises that this is only 
applicable when the measurement model is linear or nearly 
linear.

Limitations in the scope of the GUM have been addressed 
in two supplements. Supplement 1 (GUM-S1) [2] provides 
a methodology to compute uncertainty in the measurand for 

Y = f (X1,… ,XN).
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more complex measurement models, and Supplement 2 [3] 
treats multivariate output quantities.

Despite its status as a key document for metrologists 
that is used in thousands of calibration and testing labo-
ratories around the world, the GUM and its supplements 
have attracted sustained criticism and debate. Much of this 
resistance has centred on fundamental and philosophical dif-
ferences between Type A and Type B evaluations and the 
nature of the expressions of uncertainty that arise from them.

Terminology

Before proceeding further, we will clarify our use of the 
terms ‘measurement’, ‘measurand’ and ‘measurement 
result’.

The International Vocabulary of Metrology (VIM) [4, 
clause 2.1] defines measurement to be a ‘process of experi-
mentally obtaining one or more quantity values that can 
reasonably be attributed to a quantity’, but this is a vague 
and ambiguous definition. The word ‘experimentally’ seems 
to limit measurement to a process that is conducted as an 
experiment. As such, it would seem to encompass Type A 
evaluation of a quantity, if the data employed for the evalu-
ation have been obtained ‘experimentally’, but arguably 
excludes Type B evaluation. And since a measurement 
model often combines inputs subject to both kinds of evalu-
ation, it may be argued that the use of such a model is also 
not measurement according to this definition. Needless to 
say, metrologists always regard the use of a measurement 
model as measurement, and therefore this definition does 
not accord with practice in metrology.

Measurement should certainly be a process. We believe 
that Type A evaluation, Type B evaluation and application of 
a measurement model are all processes that can and should 
be deemed to be measurements.

The VIM [4, clause 2.3] further defines a measurand to 
be a ‘quantity intended to be measured’. We therefore regard 
any quantity that is the subject of Type A evaluation, Type 
B evaluation or application of a measurement model to be 
a measurand. In a Type A evaluation of a quantity X, X is 
the measurand. When a measurement model expresses a 
quantity Y in terms of other quantities X1,… ,XN , then Y 
is the measurand in that measurement, and although the Xi 
are the measurands in each of their respective evaluations, 
in this context they are referred to simply as inputs to the 
measurement of Y.

The VIM [4, clause 2.9] goes on to define the measure-
ment result as a ‘set of quantity values being attributed 
to a measurand together with any other available relevant 
information’. This definition deliberately allows a very wide 
range of interpretations, but the essence is that a measure-
ment result should express, in some usable form, what is 

known about the measurand following its measurement. This 
is the interpretation that we will employ.

A measurement result for a quantity X has two primary 
functions. The first is to inform a person who is interested 
in the value of X, and who receives the measurement result 
as information. We refer to this person as a recipient of the 
measurement result. The second function arises when X is an 
input to a measurement model for quantity Y. We refer to this 
function as the measurement result being transferred to the 
measurement of Y. Any given measurement result may serve 
as both information for a recipient and as an input to another 
measurement. Therefore, when we say that ‘a measurement 
result should express, in some usable form, what is known’ 
about X, it is important that it is usable for both functions.

Overview

An expression of the uncertainty concerning a measurand is 
generally seen as an essential part of a measurement result. 
Although the GUM introduces the standard uncertainty as 
the primary expression of measurement uncertainty, we 
identify a number of ways in which it may be both problem-
atic and unhelpful for the recipient of a measurement result 
and we propose instead an alternative measure of uncer-
tainty. We would argue that this measure has at least an equal 
case to be called ‘standard uncertainty’, except that that term 
is already confusingly used for several different kinds of 
standard deviation. Our new measure is therefore referred 
to herein as characteristic uncertainty. Characteristic uncer-
tainty resolves the problems associated with standard uncer-
tainties and is more meaningful and readily interpretable by 
recipients of measurement results.

We also consider the term ‘measured value’, whose 
definition in the GUM and the VIM is also ambiguous. 
The median is proposed as a more meaningful measured 
value within a wider discussion of ways to report the result 
of a measurement, for the benefit of a recipient of that 
measurement.

We then turn to the second function of a measurement 
result. The result of a measurement of a quantity X must 
be not only meaningful but also transferable, i.e. usable to 
compute the measurement result for Y when X is an input 
to the measurement of Y. One advantage that is claimed for 
the standard uncertainty is that it is transferable using the 
LPU, which gives the standard uncertainty of Y exactly in 
the case of a linear measurement model and approximately 
for a model that is ‘nearly linear’. We examine propaga-
tion and transferability for both standard uncertainties and 
characteristic uncertainties, concluding from some examples 
that our proposed reporting measures of median and charac-
teristic uncertainty have at least equally good transferability 
properties.
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Our key conclusions are that our new expressions of 
uncertainty, namely the median value and the characteristic 
uncertainty, are, first, more meaningful than the usual esti-
mates and standard uncertainties for reporting the result of a 
measurement and, second, have at least equally good proper-
ties when propagating uncertainty through a measurement 
model. We also acknowledge the limitations of any simple 
two-number summary and emphasise that ultimately it is the 
full probability distribution of a measurand that must be the 
primary result of a measurement.

Standard uncertainty

The GUM introduced the standard uncertainty, which 
has been universally adopted in metrology as the primary 
expression of uncertainty in measurement. The VIM [4, 
clause 2.30] defines standard uncertainty to be a standard 
deviation. However, this definition has always been ambigu-
ous because standard uncertainties can be defined in several 
distinct ways, with quite different interpretations.

Frequency standard uncertainty

The first of these standard uncertainties arises in the GUM 
in Type A evaluation of uncertainty, where an estimate of 
a quantity has been obtained by statistical analysis of some 
data. If an estimate x for a quantity X has been obtained in 
this way, the GUM defines the standard uncertainty to be (an 
estimate of) the standard deviation of the estimator.

We will refer to a standard uncertainty of this type as a 
frequency standard uncertainty and denote it by the symbol 
uf (x) , because the statistical methodology assumed by the 
GUM for Type A evaluations is the frequentist paradigm. 
The frequency probability for an event is defined as the long-
run rate at which that event would occur in an infinitely 
long sequence of instances in each of which that event may 
or may not occur. In frequentist theory, all probabilities are 
frequency probabilities. Thus, uf (x) only has meaning in the 
context of a hypothetically infinite sequence of samples of 
data. If the estimate x is computed for each of these samples, 
then uf (x) is (an estimate of) the standard deviation of these 
values.

In frequentist theory, probabilities cannot be assigned to 
X, because it is not random or repeatable. A quantity in a 
measurement model, whether it be the measurand itself or an 
input quantity, has a fixed, unknown value for the measure-
ment at hand. It is not random and cannot have frequency 
probabilities. Although a frequency standard uncertainty is 
typically interpreted as a description of uncertainty about 
the quantity X, strictly it is a measure of variability of the 
estimate x. Hence the argument of uf is x.

Bayesian standard uncertainty

GUM Supplement 1 (GUM-S1) [2] derives standard uncer-
tainty in a different way for Type A evaluations. It uses the 
Bayesian statistical paradigm to analyse the data.

Bayesian theory adopts a different definition of prob-
ability, known as personal probability, or subjective prob-
ability. Instead of the frequency definition, probability is an 
expression of personal belief, experience and knowledge. 
Personal probability can apply to any uncertain quantity or 
event, without a requirement for repeatability. In particular, 
the fixed quantity X has a probability distribution that repre-
sents what is known about it. Bayesian analysis distinguishes 
between the prior distribution of X, which represents what 
is known about X before seeing the data, and its posterior 
distribution, which represents what is known after seeing 
the data. Bayes’ theorem is applied to combine the prior 
distribution with the data to yield the posterior distribution.

The Bayesian standard uncertainty ub(X) is the standard 
deviation of the posterior distribution of X and is therefore 
a direct expression of uncertainty about X, in the light of the 
observed x. The argument of ub is therefore X.

Judgement standard uncertainty

In the GUM, Type B evaluation of uncertainty is not derived 
from analysis of data. Instead, the standard uncertainty is a 
judgement by the metrologist of the quality of the metrolo-
gist’s estimate x for X. We will refer to this as a judgement 
standard uncertainty and denote it by uj(X).

A judgement standard uncertainty implicitly uses per-
sonal probability, and differs only from a Bayesian standard 
uncertainty by being expressed directly by the metrologist, 
rather than being derived from a Bayesian analysis of data. 
Nevertheless, it should be formulated in the light of all the 
available knowledge and expertise. As with Bayesian evalu-
ation, the argument of uj is X.

Combined uncertainty

The GUM asserts that where a measurement model 
expresses a measurand in terms of some inputs with fre-
quency standard uncertainties and some with judgement 
standard uncertainties, they can be combined in linear or 
near-linear models using the law of propagation of uncer-
tainty (LPU) to yield the standard uncertainty of the meas-
urand. Strictly, these disparate forms of standard uncertainty 
cannot be combined in that way. They certainly cannot be 
combined in frequency probability terms, because the sub-
jective standard uncertainties cannot have any meaning in 
frequency terms. The GUM claims that the LPU is neverthe-
less legitimate, but offers conflicting justifications for this 
assertion. In [1, clause G.4.2] it implies that a judgement 
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standard uncertainty uj can be treated as a frequency standard 
uncertainty and offers a way to assign a degrees of freedom 
based on a ‘relative uncertainty’ in the metrologist’s judge-
ment of uj . Personal probability does not recognise such an 
‘uncertainty about uncertainty’, and the GUM does not indi-
cate how the metrologist can contemplate such a thing. Even 
if a value can be obtained for a degrees of freedom in this 
way, frequency standard uncertainties can only be defined 
in relation to repeated realisations of a random process. We 
find this proposed justification for combining frequency and 
judgement standard uncertainties wholly unconvincing.

More credible is the contrary suggestion in [1, clause 
E.3.5] that disparate standard uncertainties can be combined 
because ultimately all expressions of uncertainty must be 
the metrologist’s judgement and opinion, even when based 
on Type A evaluation of uncertainty, and judgement uncer-
tainties can be legitimately combined. This attitude would 
indeed be convincing if the frequency standard uncertain-
ties can be viewed as judgements using personal probabil-
ity. However, the GUM does not explain the mechanism 
by which a Type A frequency standard deviation uf (x) , a 
property of the estimate x defined over hypothetical repeated 
sampling, becomes a judgement of uncertainty uj(X) about 
the quantity X in the sense of personal probability.

The Bayesian approach of GUM-S1 offers a resolution of 
this disparity. Both Bayesian and judgement standard uncer-
tainties are based on personal probability judgements, and 
the standard uncertainties from all inputs to a measurement 
model can then legitimately be combined to obtain a stand-
ard uncertainty for the measurand in the personal probability 
sense. The combination can be through the LPU in the case 
of linear models, or through the Monte Carlo method advo-
cated in GUM-S1 for measurement models with appreciable 
nonlinearity.

However, the approach in GUM-S1 yields a numerically 
different standard uncertainty from that in the GUM in some 
typical measurement problems.

Consider the canonical Type A evaluation where the data 
comprise n independently obtained indications x1,… , xn 
having the normal distribution with unknown mean � and 
unknown variance �2 . The best estimator of � is the sample 
mean x̄ . In the GUM, the frequency standard uncertainty is 
given as uf (x̄) = s∕

√
n , where s2 is the experimental variance ∑

(xi − x̄)2∕(n − 1).
For this problem, GUM-S1 applies a standard Bayes-

ian analysis based on an uninformative prior distribu-
tion and obtains the Bayesian standard uncertainty 
ub(�) =

√
(n − 1)∕(n − 3)s∕

√
n , which is larger than the 

GUM’s uf (x̄) by the factor 
√
(n − 1)∕(n − 3) . For small 

samples, the difference can be considerable, for instance 
the factor is 

√
2 when n = 5 , and ub(�) does not exist (and 

is effectively infinite) when n < 4 . This increase in standard 
uncertainty is viewed as unpalatable by many metrologists.

We may remark here that both the GUM and GUM-S1 
analyses take no account of prior knowledge that the metrol-
ogist might have, particularly concerning the error standard 
deviation � . Such information can be employed to advantage 
(see for instance [5, 6]), but the objections we will raise to 
standard uncertainty in the following subsection still apply.

Interpreting standard deviation

The preceding discussion has highlighted some of the prob-
lems with defining the primary expression of uncertainty 
to be a standard uncertainty. First, there are different ways 
of constructing a standard uncertainty, with different philo-
sophical underpinnings and leading to numerically different 
values even in the most basic of measurements.

Second, the standard uncertainty can be infinite, and to 
report that measurement uncertainty is infinite would not 
reflect well on the metrologist conducting the measurement. 
The situations in which this arises are not limited to Bayes-
ian evaluations, as described in Appendix Infinite standard 
deviations.

Undefined or infinite standard uncertainties are just one 
aspect of the underlying fact that the standard deviation of 
a probability distribution is highly sensitive to its tails. Tiny 
amounts of probability for extreme values of a quantity can 
substantially increase the standard deviation. Therefore, 
instead of expressing how far an estimate might typically 
deviate from the measurand’s value, the standard uncertainty 
may be simply an artefact of the tail shape of the probability 
distribution.

These problems already cast doubt on the usefulness of 
a standard uncertainty to the recipient of a reported meas-
urement result, which is the first of the two purposes of the 
measurement result identified under ‘Terminology’ above.

More importantly, from the recipient’s perspective, what 
meaningful information does a standard uncertainty u con-
vey about a measurand X?

A recipient might typically think that X will probably be 
within one standard uncertainty of the estimate, and that 
it is very likely (perhaps about 95 % certain) to be within 
two standard uncertainties of the estimate. These are vague 
interpretations of a standard uncertainty.

Furthermore, this usual interpretation of a standard devia-
tion can be quite wrong, depending on the tail shape of the 
distribution. In the case of the single normal sample the 
probability that X lies within two frequentist standard uncer-
tainties of the estimate is much less than 95 % if the sample 
size is small. Recognising this difficulty of interpreting the 
standard uncertainty, the GUM defines the expanded uncer-
tainty U(x̄) to be such that the interval x̄ ± U(x̄) has 95 % 
coverage. For small sample sizes, U(x̄) is appreciably larger 
than 2uf (x̄).
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We conclude that no concrete, quantitative, meaningful 
interpretation of a standard uncertainty is possible.

Meaningful reporting of measurement

We now consider more meaningful ways to report the result 
of measurement.

We will adopt the Bayesian paradigm in what follows, 
because we are convinced that it is the only sound and logi-
cally consistent framework for metrology, when Type A and 
Type B evaluations must be combined coherently, and when 
a metrologist must necessarily use judgement and expertise 
at all stages of a measurement. In taking this position, we 
follow [1, 7–10].

From the Bayesian perspective, uncertainty in any quan-
tity is expressed using probabilities. In particular, a com-
plete description of uncertainty in a measurand consists of 
a probability distribution (or probability density function, 
PDF). In the case of Bayesian Type A evaluation, the com-
plete description is the posterior distribution. For a Type B 
evaluation, the probability distribution of the measurand is 
based on the metrologist’s judgement. Distributions for the 
inputs to a measurement model imply a probability distribu-
tion for the measurand, which may for instance be computed 
using the Monte Carlo method of GUM-S1. Probabilities 
and probability distributions are always to be understood as 
representing the considered opinion and judgement of the 
metrologist.

Characteristic uncertainty

For a measurand X with estimate m(X), we define the char-
acteristic uncertainty of X, denoted by c(X), to be such that 
m(X) ± 2c(X) is a 95 % coverage interval for X.

Unlike a standard uncertainty, defined as a standard devi-
ation, a characteristic uncertainty has a clear and meaningful 
interpretation for the user of a measurement result. It always 
exists and conveys concrete information about X. Instead of 
the vague interpretations that are typically (and sometimes 
erroneously) attributed to a standard deviation, the interpre-
tation of a characteristic uncertainty is that X is expected to 
lie within 2c(X) of the estimate m(X) with probability 95 %, 
no more, no less. As with standard uncertainty, the user can 
also expect that X will probably lie within one characteristic 
uncertainty of the estimate.

We believe that the characteristic uncertainty should form 
the principal expression of uncertainty when reporting a 
measurement result, on the grounds that it is more useful 
and meaningful to the recipient than a standard uncertainty.

We note that in many metrology applications, a 95 % cov-
erage interval is usually specified as part of a measurement 
result, typically by specifying the expanded uncertainty, and 

it may even be given more prominence than the standard 
uncertainty. The characteristic uncertainty conveys essen-
tially the same information as this when reporting a meas-
urement result, but we believe that recipients of such report-
ing will benefit from being consistently given this clear and 
meaningful expression of measurement uncertainty. Further-
more, we subsequently show that its value extends also to 
when X becomes an input to another measurement model, 
which is the second purpose of a measurement result.

The normal sample case

To illustrate the value of this new uncertainty measure, we 
consider characteristic uncertainty in the canonical Type A 
evaluation context of a normal sample, as described above.

Although the frequentist and Bayesian methods lead 
to different standard uncertainties, they both give the 
same estimate m(X) = x̄ and 95 % coverage interval for X: 
x̄ ± kn−1s∕

√
n , where kd is the upper 97.5 % point of the 

Student t distribution with d degrees of freedom. Therefore 
the characteristic uncertainty is

regardless of whether the metrologist employs the frequentist 
statistical paradigm of the GUM or the Bayesian paradigm 
of GUM-S1. Characteristic uncertainty thereby resolves, 
in this most basic and widely used analysis in metrology, 
the conflict between the frequency and Bayesian standard 
uncertainties.

Table 1 gives values of c(X)∕uf (x̄) = kn−1∕2 for various 
values of the sample size n. These numbers are familiar as 
half the expanded uncertainty factor for the normal sample 
problem. For n < 10 , this factor is appreciably larger than 
1, and hence c(X) is larger than uf (x̄) . This highlights the 
deficiency of the frequentist standard uncertainty as a mean-
ingful expression of uncertainty. With small sample sizes, 
the simple notion that with probability about 95 % X will be 
within two standard deviations of the estimate is seriously 
erroneous and optimistic.

c(X) = kn−1s∕(2
√
n),

Table 1   Comparisons between 
c(X) and ub(x) for the normal 
sample

n c(X)∕uf (x̄) ub(x)∕uf (x̄)

2 6.35 ∞

3 2.15 ∞

4 1.59 1.73
5 1.39 1.41
7 1.22 1.22
10 1.13 1.13
20 1.05 1.06
∞ 0.98 1.00
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The final column of Table 1 gives values of the factor 
ub(x)∕uf (x̄) =

√
(n − 1)∕(n − 3) and it is noticeable how 

close they are to the values of c(X)∕uf (x̄) in the second col-
umn for n > 4 . Therefore, unless n ≤ 4 the characteristic 
uncertainty is very close to the Bayesian standard uncer-
tainty. Figure 1 shows the ratio c(X)∕ub(x) as a function of n 
for n up to 500. For n > 7 this ratio decreases smoothly with 
n, asymptotically approaching 0.97998 ....

As explained earlier, we adopt the Bayesian perspec-
tive, and so we regard the Bayesian ub(X) as the appropriate 
standard uncertainty in this problem. Table 1 shows that 
for sample sizes larger than 4, the recipient of a report con-
taining this standard uncertainty would not be seriously 
wrong in understanding that the measurand is about 95 % 
certain to lie within two standard uncertainties of the esti-
mate, whereas the comparable intuition for the frequentist 
standard uncertainty would be substantially wrong unless n 
is more than 10.

Sample sizes in practical metrology are very often smaller 
than 10 and may indeed be smaller than 4. The characteristic 
uncertainty by definition has the desired interpretation for all 
sample sizes of 2 or more and is always finite.

The median estimate

Having proposed the characteristic uncertainty as a more 
useful and meaningful expression of uncertainty for the 
recipient of a measurement result, we now turn our atten-
tion to the measured value. The notion of a measured value 
in metrology is even more ambiguous than the standard 
uncertainty. A measurement is a process that rarely consists 
simply of reading a single number from a physical instru-
ment, so the term ‘measured value’ refers to a number deriv-
ing from that process that can be variously referred to as a 

‘representative value’, an ‘estimate’, a ‘best estimate’ or an 
‘expected value’.

A frequentist Type A evaluation will typically result in 
an estimate, which may formally be an unbiased estimate.

The result of a Bayesian Type A evaluation or a Type B 
evaluation will be a probability distribution, and it is usual 
to choose the mean (also known as the expectation) of this 
distribution as the measured value.

When using a measurement model, the measured value 
according to the GUM uncertainty framework is simply the 
result of plugging ‘measured values’ of all the inputs into the 
measurement function. (We note an alternative suggestion in 
[1, clause 4.1.4] to average such values where replication is 
available.) If, however, the Monte Carlo method is used, it is 
specified to be the mean of the distribution of the measurand 
[2, clause 5.1.1].

As with the standard uncertainty, we ask what use-
ful interpretation the recipient or user of a measurement 
result can place on the measured value. A ‘representative’ 
value can be arbitrary, at the whim of the metrologist. An 
‘estimate’ could be the result of applying any estimation 
method, good or bad. The result of plugging measured val-
ues of inputs into a measurement model is just that, with no 
other formal interpretation. It is often referred to as a ‘best 
estimate’, but without justification or explanation of in what 
sense it is ‘best’.

A measured value that is the mean of the measurand is 
at least well defined (when it exists; see Appendix Infinite 
standard deviations), but in practice it is not clear what that 
value would convey to the user. Where the metrologist’s 
judgement about the measurand is represented by a sym-
metric probability distribution, as in the case we have been 
considering of Type A evaluation from a single normal sam-
ple, there is a natural best choice of a measured value — the 
mean or expected value lies at the centre of symmetry when 
it exists, and this is also the median and the mode (assuming 
the distribution is unimodal). However, although only briefly 
mentioned in the GUM by way of a simple example, asym-
metric distributions can arise in metrology and it is not so 
obvious that the mean is then a useful estimate.

Furthermore, as discussed in Appendix Infinite standard 
deviations, the mean may not exist.

We propose that the median of the measurand’s prob-
ability distribution is a more useful and meaningful meas-
ured value. Compared with the mean, the median is typi-
cally located more in the central part of a skew distribution, 
where the probability density is highest; see Appendix Skew 
distributions.

More importantly, it always exists and has a clear and use-
ful interpretation: the true value of the measurand is equally 
likely to be above or below the median.

The characteristic uncertainty c(X) was defined earlier 
by reference to the estimate m(X), which we now formally Fig. 1   Ratio c(X)∕ub(x) as a function of sample size n 
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identify as the median. Thus, we define c(X) to be such that 
there is 95 % probability that X will lie within ±2c(X) of the 
median m(X).

The new measures in practice

To show the practical implications of using the median and 
characteristic uncertainty we consider three examples. For-
mulae and methods for computing these new measures are 
given in Appendix Computing the median and characteristic 
uncertainty.

t distribution Our first example is a scaled and shifted 
Student t distribution, arising from a normal sample as 
discussed previously. We suppose that the sample size 
is n = 6 , the sample mean is x̄ = 0 and s∕

√
n = 0.0225 . 

Therefore the Bayesian or judgement distribution for X is a 
t distribution with mean E(X) = 0 and standard uncertainty 
u(X) = 0.0225

√
5∕3 = 0.0290 . This distribution is shown in 

Fig. 2. Its median, m(X), is also zero and the characteristic 
uncertainty is c(X) = 0.0225 k(5)∕2 = 0.0289.

Gamma distribution A gamma distribution is appropri-
ate for a quantity that must be positive and can therefore 
arise in metrology as a Type B evaluation for such a quan-
tity. Suppose that X has the gamma distribution Ga(95, 7.6) 
with density shown in Fig. 3. It has mean E(X) = 0.0800 
and standard uncertainty u(X) = 0.0290 . However, the 
median is m(X) = 0.0765 and the characteristic uncertainty 
is c(X) = 0.0275.

Skew-normal distribution The skew-normal family of dis-
tributions [11, 12] has a variety of applications in statistics. 
In metrology, it can arise when a measurand is the sum of 
two inputs, one of which has a constrained distribution (such 
as the half-normal distribution in Appendix Skew distribu-
tions). Therefore suppose a measurand X has the skew-nor-
mal distribution SN(−0.0355, 0.04582, 4) whose density is 

shown in Fig. 4. It has mean E(X) = 0 and standard deviation 
u(X) = 0.0290 . Its median, however, is m(X) = −0.0046 and 
its characteristic uncertainty is c(X) = 0.0295.

In all three cases, the median is close to the mean and 
the characteristic uncertainty is close to the standard 
uncertainty. This will typically be the case in the major-
ity of metrological contexts, and indeed the standard 
approaches set out in the GUM are designed for well-
behaved problems like these, where the distribution of the 
measurand will be similar to a normal or t distribution. 
Therefore the new measures will not generally produce 
radically different values from the more familiar measures. 
However, we emphasise that the new median and charac-
teristic uncertainty have clear, unambiguous and meaning-
ful interpretations for the recipient. They therefore fulfil 

Fig. 2   Density function of t distribution

Fig. 3   Density function of gamma distribution

Fig. 4   Density function of skew-normal distribution



	 Accreditation and Quality Assurance

1 3

the requirements of reporting a measurement result in 
ways that the traditional mean and standard uncertainty 
fail to do.

Situations can arise in metrology where the distribution 
of the measurand is not similar to the above examples and 
exhibits considerable asymmetry. We discuss these briefly 
in Appendix Skew distributions.

Reporting guidelines

We are now led to consider more widely the most useful and 
meaningful ways to report a measurement result, from the 
perspective of the recipient.

The result should represent the metrologist’s consid-
ered judgement regarding the measurand, in the light of 
the available evidence and the metrologist’s experience and 
expertise. We believe that the measurement result should 
always include the probability distribution that represents 
that judgement.

In the example of a sample from a normal distribution, it 
would be reported that X has a scaled and shifted Student t 
distribution with median m(X) = x̄ and characteristic uncer-
tainty c(X) = kn−1s∕(2

√
n).

The probability distribution is a complete description 
of the metrologist’s judgement regarding X. However, the 
distribution alone will not generally meet our requirements 
for reporting because, unless the recipient is well versed in 
statistics, it does not readily convey useful information about 
X. Therefore, various summaries of the distribution should 
be provided to convey clear and meaningful information for 
the recipient. It is for this purpose that we have proposed 
the median and characteristic uncertainty. The median m(X) 
is a summary measure of location, which can serve as an 
estimate or representative value of X. It has the specific 
meaning that X is equally likely to be above or below m(X). 
The characteristic uncertainty c(X) is a summary measure 
of uncertainty, with the specific meaning that X has a 95 % 
probability of lying within m(X) ± 2c(X).

Other summaries can usefully supplement these meas-
ures where appropriate, and we discuss such situations in 
Appendix Skew distributions. However, we strongly advo-
cate that the measurement result for a measurand X should 
comprise the probability distribution for X with at least the 
two new summary measures—the median and the charac-
teristic uncertainty.

For all the reasons set out above, we see little purpose 
in quoting the standard uncertainty in reporting a measure-
ment result. However, before rejecting it completely we must 
consider whether it still should be reported in case X is sub-
sequently to be used as an input to a measurement model for 
another measurand.

Propagation and transferability

We examine methods of propagating uncertainty through 
a measurement model, and their associated transferability 
properties.

We will refer to a group of components of a measure-
ment result as transferable if there is a way to compute, at 
least approximately, those components for the measurand 
Y given only those components for the model inputs Xi.

For instance, the mean and standard uncertainty com-
prise a transferable group if the measurement model is 
linear, because the mean and standard uncertainty of the 
measurand can be computed exactly from the means and 
standard uncertainties of the inputs using the LPU. This 
transferability property is regarded as an important feature of 
the standard uncertainty, suggesting that the standard devia-
tion should be included as a component of the measurement 
result for the second function as described at the start.

However, we have argued that for reporting purposes 
the measurement result should include the median and 
characteristic uncertainty. Therefore, we shall only con-
sider here exact or approximate methods that can deliver 
a measurement result for Y that includes both the median 
of Y and an expression of uncertainty that allows a 95 % 
coverage interval to be derived (e.g. the characteristic 
uncertainty of Y or an expanded uncertainty).

Approximate propagation methods are widely used, 
and it should be noted that the approximation will be less 
accurate if the components for the model inputs are them-
selves approximations (for instance, from being propa-
gated through a sub-model [13]).

The GUM uncertainty framework

The basic method advocated in the GUM has the follow-
ing elements:

•	 The measurement model is assumed to express the 
measurand Y as a linear function of the input quanti-
ties (X1,… ,XN) . If the model is not linear, then it is 
linearised about the estimates of the Xi using the first-
order Taylor series expansion.

•	 The estimate of Y is obtained by plugging the estimates 
of the Xi into the measurement function [1, clause 
4.1.4]. For our purposes, this estimate is taken to be an 
approximation to the median.

•	 The standard uncertainty of Y is obtained or approxi-
mated by applying the LPU to combine the standard 
uncertainties of the Xi in the (linearised) model.

•	 An ‘effective’ degrees of freedom d for Y is obtained 
by applying the Welch-Satterthwaite formula [14] to 
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combine the standard uncertainties and degrees of free-
dom of the Xi in the (linearised) model. The expanded 
uncertainty for Y is then approximated as the product 
of the resulting standard uncertainty and kd.

We will refer to this method as the GUM uncertainty frame-
work (GUF) [2].

Notice that for the GUF it is the triplet of estimate, stand-
ard uncertainty and expanded uncertainty that is transfer-
able. Estimates and standard uncertainties are propagated 
directly, while expanded uncertainties are propagated 
indirectly through the corresponding degrees of freedom. 
Degrees of freedom for the Xi can be inferred from the quo-
tient of their expanded and standard uncertainties, and then 
the expanded uncertainty for Y is obtained from its standard 
uncertainty and its degrees of freedom.

The GUF is regarded as applicable in practice when it 
produces a sufficiently accurate measurement result for 
Y. The conditions for this to hold are generally argued as 
follows.

If the measurement model is nonlinear, then applying the 
GUF in the linearised model will give approximate values 
for the mean and standard uncertainty of Y. The approxima-
tion can be poor if the model is strongly nonlinear and the 
input standard uncertainties are large.

Furthermore, the LPU is only part of the GUF. The 
Welch-Satterthwaite formula is required to deliver the effec-
tive degrees of freedom, and hence the expanded uncer-
tainty, but the formula is inherently approximate. Comput-
ing an expansion factor derived from Welch-Satterthwaite’s 
effective degrees of freedom will only yield an approxi-
mate expanded uncertainty. The approximation is generally 
regarded as good if the distributions of the input quantities 
are not too different from a normal or t distribution, and in 
particular if they are not markedly skew.

The GUF is therefore only considered to be applicable if 
the model is linear or nearly linear, and if the input distribu-
tions making substantial contributions to the uncertainty in 
Y have a symmetric (or almost symmetric) form similar to a 
normal or t distribution [2, clauses 5.7, 5.8].

The Monte Carlo method

A primary objective of GUM-S1 was to overcome the limita-
tion of the GUM uncertainty framework to linear or nearly 
linear models. For nonlinear models, GUM-S1 advocates a 
Monte Carlo method to compute the mean, standard uncer-
tainty and a coverage interval for a stipulated coverage 
probability.

The GUM-S1 Monte Carlo method (MCM) requires 
more than the triplet of estimate, standard uncertainty and 
expanded uncertainty; the full probability distribution(s) of 

the Xi must instead be specified. The method then has the 
following elements.

•	 Many random samples are drawn from the distributions 
of the Xi . For each sampled set of Xi values, the measure-
ment model is employed to provide a sampled value of Y.

•	 The resulting sample of Y values represents the prob-
ability distribution of Y. The estimate y and standard 
uncertainty of Y are computed as the mean and standard 
deviation of the sample.

•	 Other summaries of this distribution may be readily com-
puted, such as the median, characteristic uncertainty or a 
coverage interval for any stipulated coverage probability.

For the Monte Carlo method, it is the entire probability 
distribution that is transferable. Mean, median, standard 
uncertainty, expanded uncertainty, characteristic uncer-
tainty or any other desired summary expressions of knowl-
edge regarding the measurand are simply computed from 
the probability distribution: see Appendix Computation by 
Monte Carlo for details of the computation of median and 
characteristic uncertainty.

From the Bayesian perspective Monte Carlo is the ‘gold 
standard’ and is always applicable because those expres-
sions can be computed exactly (in the sense that they can 
be computed to any desired accuracy with a sufficiently 
large Monte Carlo sample). It is often the tool of choice in 
complex measurement problems such as those addressed in 
the national metrology institutes, but it is perceived by a 
large sector of the metrology community as technically and 
computationally more demanding than the GUM uncertainty 
framework.

The distribution of Y must be reported, as recommended 
above, for transferability to be achieved; however, the Monte 
Carlo method delivers not the distribution itself but a large 
sample from it. One way to report the distribution is simply 
to provide the Monte Carlo sample. In a sense, this consti-
tutes exact propagation, because if Y then becomes an input 
to a second measurement model in which the Monte Carlo 
method is to be used, the reported sample is exactly what is 
needed in that second application of Monte Carlo.

Transferring a data set comprising a large sample of Y 
values is entirely feasible with modern IT tools.

An alternative is to report a standard distribution fitted to 
that sample. If, for instance, the distribution is symmetric, 
unimodal and similar to a normal or t distribution, it can be 
reported as the best-fitting such distribution. Whilst this may 
no longer represent exact propagation, a good approxima-
tion to the distribution of Y will generally be adequate, and 
much simpler to report and transfer to a second measurement 
model than the full Monte Carlo sample.

See [15] for methods of obtaining a compact summary 
of the full Monte Carlo sample that preserves information 
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about the measurand and can be used in a subsequent uncer-
tainty evaluation.

The characteristic uncertainty framework

We now suppose that we have medians and characteris-
tic uncertainties for all input quantities in a measurement 
model, and consider how to propagate these in order to 
obtain the median and characteristic uncertainty for the 
measurand. Our simple proposal is to apply the same propa-
gation rules as in the GUF, but treating medians and charac-
teristic uncertainties in the same way as means and standard 
uncertainties.

Our proposal therefore has the following elements:

•	 The measurement model is assumed to express the 
measurand Y as a linear function of the input quantities 
(X1,… ,XN) . If the model is not linear, then it is line-
arised using the first-order Taylor series expansion about 
the medians.

•	 The median of Y is approximated by plugging the medi-
ans of the Xi into the measurement function.

•	 The characteristic uncertainty of Y is approximated by 
applying the LPU to combine the characteristic uncer-
tainties of the Xi in the (linearised) model.

We will refer to this procedure as the characteristic uncer-
tainty framework (CUF).

In the CUF it is the couplet of median and characteristic 
uncertainty that is transferable. It is therefore the simplest 
of the three propagation methods.

Whereas the GUF is exact when propagating means and 
standard uncertainties in linear measurement models, this 
is not true of the CUF. Even for a linear model the median 
and characteristic uncertainty of Y given by the proposed 
propagation rules can only be approximate. Nevertheless, 
we argue that they will represent good approximations under 
the following conditions.

Provided the input distributions are not markedly skew, 
medians will be close to means, in which case plugging 
medians into the linear measurement function will yield a 
good approximation to the median of Y.

Furthermore, we showed when discussing the normal 
sample case that any symmetric distribution that is close 
to a normal or t distribution with more than four degrees of 
freedom will have a characteristic uncertainty that is close 
to the corresponding standard deviation. Since the LPU is 
based on fundamental formulae for combining standard 
deviations, we can expect it to be a good approximation for 
characteristic uncertainties.

These intuitive arguments will be tested below.
We therefore propose that the CUF is applicable under 

the same conditions as the GUF, namely if the model is 

linear or nearly linear, and if the input distributions mak-
ing substantial contributions to the uncertainty in Y have a 
symmetric (or almost symmetric) form similar to a normal 
or t distribution.

Comparison

We will test the intuitive arguments we have given to sug-
gest that the CUF should yield good approximations to the 
median and characteristic uncertainty of Y, by means of 
examples. In each case we will compare the median and 
characteristic uncertainty obtained in the characteristic 
uncertainty framework with (a) the gold standard values 
from Monte Carlo, and (b) the implied values given by the 
GUM uncertainty framework (the mean as approximation 
to the median and half the expanded uncertainty as approxi-
mation to the characteristic uncertainty). The Monte Carlo 
computations have been conducted with sufficiently large 
numbers of iterations to achieve accuracy to the stated num-
bers of significant digits.

Example 1  Two-term model
A common measurement model takes the form

where the measurand Y is modelled as a quantity X, evalu-
ated as the sample mean of a set of n normally distributed 
indications, plus an independent bias correction term C.

We suppose that the evaluation of X is reported as a meas-
ured value of 5.7120 in some suitable units, with standard 
uncertainty u(X). The expanded uncertainty for a 95 % cov-
erage interval is reported as u(X)kn−1 . Under our proposal, 
it would simply be reported that X has median 5.7120 and 
characteristic uncertainty

Our base case will be n = 3 and u(X) = 0.0520 , while other 
cases will vary n to 7 or u(X) to 0.0260 or 0.0130. The case 
of n = 3 may seem extreme, but it is common in routine 
metrology, particularly in testing laboratories. Note that in 
this case the distribution of X does not have a finite standard 
deviation, and so neither does Y. Their judgement standard 
uncertainties do not exist. Nevertheless, the characteristic 
uncertainty is well defined.

We will consider four different cases for the correction 
C. In each of these, C is assigned a mean of 0 and a standard 
uncertainty of u(C) = 0.0290 . 

1	 C is evaluated by a Type B judgement. C is assigned 
a normal distribution with mean (and median) 0 and 
standard deviation 0.0290. It therefore has characteristic 
uncertainty 

Y = X + C ,

c(X) = u(X) kn−1∕2 .



Accreditation and Quality Assurance	

1 3

 where 0.98 is half of 1.96, the expanded uncertainty 
factor for a normal distribution. The normal distribution 
is defined to have infinite degrees of freedom.

2	 C is evaluated by a historic sampling exercise, together 
with the metrologist’s judgement on how the bias in 
this instance might deviate from the historic data. C 
is assigned a t distribution with 5 degrees of freedom, 
mean (and median) 0 and standard deviation 0.0290. Its 
characteristic uncertainty is therefore 

3	 C is evaluated by a Type B judgement to the effect that 
the bias could be between −0.0502 and +0.0502 . A uni-
form (rectangular) distribution is assigned between these 
bounds, which therefore has mean (and median) 0 and 
standard deviation 0.0290. The characteristic uncer-
tainty is 

 By convention, the uniform distribution also has infinite 
degrees of freedom [16, section 2.5.4.1].

4	 C is evaluated by a Type B judgement reflecting the 
metrologist’s opinion that X is a little more likely to 
overestimate Y than to underestimate. C is assigned the 
skew-normal distribution considered earlier. It has mean 
0, median m(C) = −0.0046 , standard deviation 0.0290 
and characteristic uncertainty c(C) = 0.0295 . The tails 
of the skew-normal distribution are at least as thin as 

c(C) = 0.98 × 0.0290 = 0.0284 ,

c(C) = 0.0145 × k(5)
√
3∕5 = 0.0289 .

c(C) = 0.475 × 0.0502 = 0.0238.

those of the normal distribution, and so this also has 
infinite degrees of freedom.

Combining four cases for the distribution of X and four for 
the distribution of C, we have 16 cases in all. These are set 
out in the first four columns of Table 2. For instance, the 
case denoted by 2.3 in the first column combines the sec-
ond case of the distribution of X, in which the sample size 
is n = 7 and the standard uncertainty is u(x) = 0.052 , with 
the third case of the distribution of C, which is the uniform 
distribution.

Considering first the computations of the median, m(Y), 
in cases 1, 2 and 3 of the correction term, the normal, t 
and uniform distributions are symmetric, as is the distri-
bution of X in all cases, so medians are equal to means. 
And because the measurement model is linear, means are 
propagated exactly in the GUF, CUF and Monte Carlo. 
All methods correctly give m(Y) = 5.7120 . The excep-
tion is the skew-normal distribution for C in case 4, which 
has mean zero but median m(C) = −0.00462 . For each of 
cases 1.4, 2.4, 3.4 and 4.4 the GUF computes the mean of 
Y to be 5.7120, and this is inferred also to be the median. 
In those same cases, the CUF computes the median to be 
m(Y) = 5.7120 − 0.0046 = 5.7074 . The exact median of Y, 
computed by Monte Carlo, is 5.7109 in cases 1.4 and 2.4, 
5.7098 in case 3.4 and 5.7087 in case 4.4.

When the model includes an input with an asymmetric 
distribution, neither GUF nor CUF computes the median 
of Y exactly. Both are approximate, and we see that GUF is 
more accurate when the skewed input C has lower uncer-
tainty than that for the symmetric input X, while CUF is 

Table 2   Comparing GUM 
and characteristic uncertainty 
frameworks, Example 1

Case n u(X) C MCM GUF GUF CUF CUF
c(Y) c(Y) % c(Y) %

1.1 3 0.052 N 0.1143 0.088 91.8 0.115 95.1
1.2 3 0.052 t

5
0.1147 0.090 92.1 0.116 95.1

1.3 3 0.052 U 0.1141 0.088 91.8 0.114 95.0
1.4 3 0.052 sN 0.1146 0.088 91.8 0.116 95.1
2.1 7 0.052 N 0.0692 0.066 94.1 0.070 95.2
2.2 7 0.052 t

5
0.0694 0.067 94.3 0.070 95.1

2.3 7 0.052 U 0.0689 0.066 94.2 0.068 94.8
2.4 7 0.052 sN 0.0693 0.066 94.0 0.070 95.1
3.1 3 0.026 N 0.0613 0.043 89.0 0.063 95.3
3.2 3 0.026 t

5
0.0626 0.044 89.4 0.063 95.1

3.3 3 0.026 U 0.0607 0.043 89.4 0.061 95.1
3.4 3 0.026 sN 0.0617 0.043 88.8 0.063 95.2
4.1 3 0.013 N 0.0393 0.032 90.3 0.040 95.2
4.2 3 0.013 t

5
0.0408 0.038 94.0 0.040 94.8

4.3 3 0.013 U 0.0367 0.032 92.1 0.037 95.0
4.4 3 0.013 sN 0.0395 0.032 90.2 0.041 94.9
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more accurate when the skewed input has higher uncer-
tainty. However, in all cases the errors in computing m(Y) 
are very small compared with the uncertainty in Y. This 
example supports the assertions above that both GUF and 
CUF are applicable if ‘the input distributions making sub-
stantial contributions to the uncertainty in Y have a sym-
metric (or almost symmetric) form similar to a normal or 
t distribution’.

The performance of the GUM uncertainty framework 
(GUF) and of our proposed characteristic uncertainty frame-
work (CUF) in computing the characteristic uncertainty 
c(Y) of the measurand are shown in the last five columns 
of Table 2. For each case we show in columns 5, 6 and 8, 
respectively, the ‘true’ c(Y) values from MCM and the c(Y) 
values given by the GUF and CUF. Columns 7 and 9 show 
the percentage coverage, computed using MCM, for the 
implied 95 % intervals m(Y) ± 2c(Y) from GUF and CUF.

Considering first the numbers for the CUF in the last two 
columns of Table 2 we note the following:

•	 Propagation of characteristic uncertainties using CUF 
produces in every case a c(Y) very close to the true value 
from MCM. In this example, therefore, the transferability 
of characteristic uncertainties is affirmed.

•	 Furthermore, the true coverage of the CUF’s implied 
95 % intervals is seen in every case to be very close 
to 95 %.

•	 The various cases for C (normal, t, uniform or skew-nor-
mal) make little difference to the accuracy of the approxi-
mations. They have the biggest influence in the last block 
of the table, Cases 4.1 to 4.4, when u(X) = 0.013 and 
there is therefore more uncertainty about C than X, which 
can happen occasionally in practice.

This example therefore supports our claim that the CUF 
provides a good approximation to the true median and char-
acteristic function in a case where the conditions for its 
applicability hold.

In columns 6 and 7 of Table 2, propagation according to 
the GUM using the Welch-Satterthwaite approximation is 
seen to be less accurate. The GUM values for c(Y) are invari-
ably smaller than the true values, with coverage appreciably 
less than 95 %. Similar findings of inadequate coverage of 
intervals based on the Welch-Satterthwaite approximation 
have been reported elsewhere [17], but it should be noted 
that these findings are from a Bayesian perspective, under 
which the MCM provides exact computation of the Bayesian 
posterior distribution of Y. From the frequentist perspective, 
coverage of the GUF 95 % interval should be judged instead 
on the basis of very many repetitions of the measurement, 

and Welch-Satterthwaite has been shown to be a good 
approximation with coverage typically close to 95 % when 
its assumptions hold [18]. However, those assumptions do 
not generally hold when Type B evaluations are involved.

Our position is that only the Bayesian paradigm prop-
erly allows the combination of Type A and Type B evalu-
ations, and that the MCM computation is indeed the gold 
standard against which other methods should be judged.

Example 2  Six-term model
The Standards Publication CEN/TR 16988:2016 [19] is 

entitled ‘Estimation of uncertainty in the single burning item 
test’. Clause 2.5.13.2 deals with the uncertainty concerning 
an input described as the ‘velocity profile correction factor’, 
which we will denote by � and which is expressed using the 
sub-model

with six input quantities. vi , i = 1,… , 5, are velocity meas-
urements taken on five different radii and vc is a central 
measurement. Each measurement is actually the average 
of four indications taken at 90◦ intervals. These measure-
ments are reported in Table 3. The characteristic uncer-
tainty of each input is the standard uncertainty multiplied 
by k3∕2 = 1.591.

We will denote an estimate by placing a hat over the 
quantity, so that for instance v̂1 = 7.00ms−1 . Following 
the GUF, the estimate of � is obtained by substituting 
the estimates of the input quantities into the measure-
ment function, giving �̂ = 0.817 . However, to obtain the 
standard uncertainty and expanded uncertainty, model (1) 

(1)� =
1

5

5∑

i=1

vi

vc

Table 3   Input data, Example 2

Quantity Estimate Standard Degrees of Characteristic
/ms −1 uncertainty/

ms −1
freedom uncertainty/ms −1

v
1

7.00 1.132 3 1.801
v
2

9.39 0.412 3 0.656
v
3

10.62 0.531 3 0.845
v
4

11.25 0.180 3 0.286
v
5

12.37 0.233 3 0.355
v
c

12.39 0.636 3 1.012
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is linearised by expanding in a first-order Taylor series 
around the estimated values of the quantities, which yields

For this example, we will simply use the linearised version 
(2) as the measurement model, but we will return to original 
nonlinear model (1) in Appendix Infinite standard devia-
tions. Because all the inputs are symmetric, their estimates 
are also means and medians. Both the GUF and CUF will 
correctly infer the true m(Y) = 0.817.

The GUF now applies the LPU to the standard uncer-
tainties of the inputs to obtain the standard uncer-
tainty  u(�) = 0.0473 . Next, the Welch-Satterthwaite 
formula gives 4.66 degrees of freedom for � . There-
fore the characteristic uncertainty is obtained as 
c(�) = 0.0473 k4.66∕2 = 0.0622 . The CUF instead applies 
the LPU to the characteristic uncertainties, resulting in 
c(�) = 0.0752.

For comparison, we apply the Monte Carlo method to 
(2). We obtain c(�) = 0.0761 . The true coverage probabili-
ties for the implied 95 % intervals are 91.6 % for the GUM 
uncertainty framework and 94.8 % for the characteristic 
uncertainty framework. This example therefore lends fur-
ther support to the indication from Example 1, that simple 
propagation of characteristic uncertainties of the model 
inputs yields an accurate approximation to the true char-
acteristic uncertainty of the measurand, with close to 95 % 
coverage, and that from the Bayesian perspective the GUM 
uncertainty framework is less accurate.

Example 3  Sum of skewed inputs
Our third example illustrates how in some extreme situa-

tions the CUF may perform less well, due to the way propa-
gation of medians for skewed distributions may misrepresent 
the median of the measurand.

Consider the model

where the measurand is the sum of M inputs. Suppose for 
convenience in this example that the Xi all have Type A 
evaluations based on samples of n = 6 normal observations, 
and all have sample means x̄ = 1 and frequentist standard 
uncertainties uf (x̄) = 0.8.

The standard GUM analysis in this case is straightfor-
ward. The estimate of Y is y = M , with standard uncertainty 
uf (y) = 0.8

√
M . The Central Limit Theorem says that for 

(2)

� = �̂ +
1

5v̂c

5∑

i=1

(vi − v̂i) −
1

5v̂2
c

(vc − v̂c)

5∑

i=1

v̂i

= 0.817 + 0.016142

5∑

i=1

(vi − v̂i) − 0.065940(vc − 12.39) .

Y =

M∑

i=1

Xi ,

large M the sum of independent random variables has a 
normal distribution asymptotically, and because the t dis-
tributions are unimodal and symmetric this theorem will 
apply even for moderate M. This statement is supported 
by application of the Welch-Satterthwaite formula, which 
gives an effective degrees of freedom of d = 5M , and there-
fore for any M ≥ 4 the implied characteristic uncertainty is 
c(y) = 0.98 × 0.8

√
M = 0.784

√
M.

We now introduce a condition that it is known that all 
the Xi are necessarily positive. Individually, an estimate of 
1 with standard uncertainty 0.8 and 5 degrees of freedom 
would lead to an expanded uncertainty of 2.0565 and an 
implied 95 % coverage interval from −1.0565 to 3.0565, 
which includes negative values in contradiction of the con-
straint. Although there may be alternative frequentist analy-
ses to take account of this constraint, it would not be deemed 
a problem in practice since for even moderate M the standard 
uncertainty u(y) will be small enough for no such issues to 
arise. For instance, with M = 4 the 95 % coverage interval 
4 ± 3.136 is entirely positive.

Now applying a Bayesian Type A analysis the constraint 
is simple to apply. The posterior t distribution is truncated to 
positive values of Xi . The truncated t distribution is shown 
in Fig. 5. This distribution has mean E(Xi) = 1.2543 and 
standard uncertainty ub(Xi) = 0.8143 . However, its median 
is m(Xi) = 1.1413 and its characteristic uncertainty is 
c(Xi) = 0.7803.

The exact Bayesian measurement result for Y can be com-
puted by MCM, and we have mean E(Y) = 1.2543M and 
standard uncertainty u(Y) = 0.8143

√
M . Again for M ≥ 4 

the distribution will be very close to a normal distribution, 
so the median is the same as the mean, m(Y) = 1.2543M and 
the characteristic uncertainty is 

c(Y) = 0.98 × 0.8143
√
M = 0.7980

√
M  .  H ow eve r , 

applying the CUF the median is estimated as 1.1413M and 

Fig. 5   Density function of truncated-t distribution
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the characteristic uncertainty is estimated as 0.7803
√
M . 

For sufficiently large M the CUF estimates will deviate 
substantially from the exact Bayesian values.

Table 4 presents some calculations for M = 4, 9 and 16. 
There is little difference between the three characteristic 
uncertainty values for any given M, but the various median 
values deviate systematically from each other, and these dif-
ferences become relatively larger compared with the char-
acteristic uncertainty as M increases. This is shown in the 
percentage coverages for GUF and CUF in columns 6 and 9. 
These are calculated using the corresponding 95 % intervals 
m(Y) ± 2c(Y) and the gold standard normal distribution from 
MCM.

Looking first at the CUF percentages in column 9, we see 
that coverage steadily decreases from the nominal 95 % as 
M increases. At M = 16 it is 90.7 %, which may be regarded 
as unacceptably low. The explanation is that in this example 
the conditions we have identified for the CUF to be appli-
cable do not hold. The distribution of each Xi , shown in 
Fig. 5, is markedly skew. The combination of many such 
skew distributions, all skewed in the same direction, causes 
the accumulating error in the estimated median. For small 
M, the error is small compared with the uncertainty in Y, 
and the CUF median and characteristic uncertainty remain 
useful and meaningful expressions for the recipient of the 
measurement result.

Although this example illustrates the failure of the CUF to 
give acceptable approximations to the true Bayesian median 
and coverage interval, it is comforting that it only arises 
when a relatively large number of inputs, all appreciably 
skewed, are combined. We believe that practical instances 
of such a measurement model will be rare.

Turning to the GUF percentages in column 6 of Table 4, 
they suggest that the GUF coverage is unacceptably low even 
for M = 4 . Nevertheless, this is not the case from a frequen-
tist perspective. The estimate y = M is unbiased, its sam-
pling standard deviation is validly estimated as 0.8

√
M and 

M ± 0.784
√
M is an exact 95 % confidence interval. If very 

many repetitions of the measurement were performed and 
the interval computed each time then 95 % of those intervals 
would contain the true value of the measurand. From the 
frequentist perspective, the MCM is not a gold standard; it 
computes the Bayesian measurement result exactly, but this 
differs from what is a valid frequentist result.

The difference between the frequentist and Bayesian anal-
yses arises from the fact that the Bayesian posterior distribu-
tion for Xi implements the known constraint that Xi ≥ 0 , and 
this leads to a posterior expectation that Xi is more likely to 
be above the sample mean x̄ = 1 than below 1. The reason-
ing behind this expectation is as follows. Consider that x̄ = 1 
could have arisen from a true value Xi greater than 1 and a 
negative average measurement error, or Xi less than 1 and a 
positive average error. A positive error of a given size has 
the same probability as a negative error of that size. There-
fore given x̄ = 1 it is equally likely for Xi to be 1.5 or 0.5, 
for example, but is not equally likely to be 2.5 or −0.5 , since 
the latter is ruled out by the constraint. It is here that the 
asymmetry in the posterior distribution is created, leading 
to a larger probability for each Xi to be above 1 than below 1. 
This effect would apply for any value of x̄ , but is nontrivial 
in this instance because the sampling error is relatively large 
compared with x̄.

We remain convinced that the Bayesian paradigm is the 
more appropriate methodology for metrology.

In the first two examples, the conditions for applicability 
of the GUF and CUF are satisfied, namely that the models 
are linear or almost linear, and that the probability distribu-
tions are close to the normal or t forms and nearly symmetric 
for all inputs making a substantial contribution to the uncer-
tainty in the measurand. Full conditions for the valid appli-
cability of the GUF are given in [2, clauses 5.7 and 5.8].

The examples confirm that under these conditions the 
characteristic uncertainty framework provides accurate 
evaluation of the median and characteristic uncertainty of a 
measurand, and that from the Bayesian perspective it is more 
accurate than the GUM uncertainty framework. More testing 
would certainly be warranted to add further confirmation.

The third example concerns a rare situation where the 
conditions for the applicability of the CUF do not hold, 
involving a measurement model with many markedly skew 
input distributions. In such a situation, the error in the CUF 
propagation of the median may be sufficient for the implied 
95 % interval to have poor coverage despite the characteristic 
uncertainty being propagated accurately.

Methods of propagation similar to the CUF have been 
suggested by other authors. Williams [20] and Kacker 
[21], noting how closely the Bayesian standard uncertainty 
approximates the characteristic uncertainty in the case of 
a normal sample (as discussed earlier), propose simply 

Table 4   Comparing GUM 
and characteristic uncertainty 
frameworks, Example 3

M MCM MCM GUF GUF GUF CUF CUF CUF
m(Y) c(Y) m(y) c(Y) % m(Y) c(Y) %

4 5.017 1.596 4 1.568 89.8 4.565 1.561 93.5
9 11.289 2.394 9 2.352 83.6 10.272 2.341 92.3
16 20.069 3.192 16 3.136 75.1 18.261 3.121 90.7
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propagating the Bayesian standard uncertainty using the 
LPU and then assuming the distribution of Y is normal. Their 
suggestion approximates to the CUF in this case, but leads 
to less accurate propagation and is less generally applicable.

CUF’s propagation of characteristic uncertainties is 
equivalent to propagating expanded uncertainties. The GUM 
[1, clause E.3.3] points out that it is legitimate to propagate 
fixed multiples of standard uncertainties using the LPU, 
but this would not apply to propagating variable multiples, 
such as expanded uncertainties. Nevertheless, in the original 
analysis of six-term model (1) [19], expanded uncertainties 
are propagated through the linearised model (2) in this way 
without comment.

Propagation guidelines

The Monte Carlo method is the gold standard for propa-
gating input uncertainty through all kinds of measurement 
models to compute uncertainty about a measurand. Never-
theless, the GUM uncertainty framework is still by far the 
more widely used method in laboratory practice. MCM is 
more complex to apply, requiring some computing power 
and expertise. And although the GUF is only recommended 
for models that are linear or close to linear, the linearisation 
technique is very attractive, and so it is often used even in 
markedly nonlinear models.

The comparison between the GUF and CUF approaches 
in the two examples suggest the following conclusions.

•	 The characteristic uncertainty framework is simpler to 
apply than the GUM uncertainty framework, because it 
does not entail the computation of a degrees of freedom 
through the Welch-Satterthwaite formula.

•	 In linear or nearly linear models, the CUF’s simple 
propagation of characteristic uncertainties using the LPU 
generally produces an accurate approximation to the true 
characteristic uncertainty of the measurand, as computed 
by MCM, with true coverage close to 95 %.

•	 In linear or nearly linear models, the GUF appears to 
yield less accurate approximation of the true characteris-
tic uncertainty, with coverage that is typically lower than 
the claimed 95 %.

We argue, therefore, that wherever the GUF is applicable 
the characteristic uncertainty framework should be seriously 
considered as a more viable method of propagation. There 
remains no compelling reason to retain the use of standard 
uncertainty in metrology.

We proposed earlier that the probability distribution of 
the measurand should always be reported as the primary 
measurement result. When the CUF has been used to com-
pute the median and characteristic uncertainty of Y, and 

therefore the appropriate conditions apply, it will be ade-
quate to report a normal distribution.

When the CUF is not applicable, for instance when the 
model is markedly nonlinear or when there are inputs with 
markedly asymmetric distributions that make a substantial 
contribution to the uncertainty in the measurand, we would 
always recommend the Monte Carlo method if the appropri-
ate tools and expertise are available.

Conclusions

When reporting a measurement result for a quantity, it is 
important to express the metrologist’s knowledge fully in 
the form of a probability distribution. However, it is equally 
important to provide useful and meaningful summaries 
of that information for the benefit of the recipient of that 
result. The median and characteristic uncertainty should be 
the primary summaries included in the measurement result. 
A plot of the PDF of the distribution is also valuable as a 
visual summary, while other summaries may also be useful 
depending on context, or where the distribution is markedly 
skew (as discussed in Appendix Skew distributions).

We find no value in reporting the standard uncertainty 
(standard deviation), because it is not a meaningful sum-
mary, may not exist and may give a misleading impression 
in the case of a distribution with heavy tails (low degrees of 
freedom). Furthermore, conflicting definitions of the stand-
ard uncertainty have given rise to confusion and friction. 
Characteristic uncertainty may defuse that debate.

When a quantity of interest (measurand) is expressed 
through a measurement model in terms of one or more input 
quantities, a procedure is needed for computing the distribu-
tion and summaries for the measurand in terms of the cor-
responding properties of the inputs. The gold standard for 
this propagation from the Bayesian perspective is the Monte 
Carlo method as proposed in the GUM Supplement 1. Given 
the (joint) distribution of the inputs, it yields the distribution 
of the measurand in the form of a large sample from that 
distribution. The distribution may be reported in this form, 
as an electronic file, or as a suitable standard statistical dis-
tribution that is a good approximation fitted to the sample. 
Summaries such as median and characteristic uncertainty 
may be computed directly from the sample. The PDF plot 
may be a kernel density plot derived from the sample or a 
plot of a fitted distribution.

Provided that the model is linear or nearly linear, and that 
all inputs making substantial contributions to the uncertainty 
in the measurand have symmetric or nearly symmetric dis-
tributions similar to a normal or t distribution, the charac-
teristic uncertainty framework (CUF) may be used to com-
pute good approximations to the median and characteristic 
uncertainty of the measurand. In that case, the distribution 
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of the measurand may be reported as the normal distribution 
matching those summaries.

The GUM uncertainty framework, as set out in the GUM 
and its Supplement 1, relies on analogous conditions to the 
CUF for its validity and appears to be no more accurate 
when compared with the precise computations from the 
Monte Carlo method. Indeed, in all the examples we have 
explored its coverage, computed from the Bayesian perspec-
tive, seems to be consistently below the nominal 95 %. We 
therefore see no useful role for the standard uncertainty in 
propagation that is not equally served by the characteristic 
uncertainty. Moreover, on the basis of a number of examples, 
the coverage provided by the CUF is very close to 95 %, 
whereas from the Bayesian perspective that produced by 
GUF can be appreciably less.

Our principal, and most radical, recommendation is that 
the characteristic uncertainty should be the primary single-
figure expression of uncertainty in measurement.

Appendices

Infinite standard deviations

We discuss here situations in which the standard uncertainty 
of a quantity may be infinite, including instances where the 
mean does not exist. These cases will cause insurmount-
able problems if measurement uncertainty is defined to be 
a standard uncertainty and if the estimate of a quantity is 
required to be the mean. We emphasise that no such prob-
lems arise with the median and characteristic uncertainty. 
These summaries exist in all such cases, in addition to being 
well-defined, clear and meaningful for the recipient of a 
measurement result.

Probability distributions with infinite standard deviations 
arise in a number of ways, one example being GUM-S1’s 
Bayesian Type A evaluation for a normal sample discussed 
previously.

As stated when discussing Bayesian standard uncertainty, 
a Bayesian Type A evaluation combines information in the 
data with prior information, and it is the standard deviation 
of the posterior distribution that is the Bayesian standard 
uncertainty. In this example GUM-S1 uses a ‘noninforma-
tive’ prior distribution that is supposed to represent a null 
state of prior knowledge. This is a common and frequently 
useful device in Bayesian analyses generally, but when the 
information in the data is very limited a ‘noninformative’ 
prior distribution can lead to a posterior distribution with 
infinite standard deviation. This is the situation with the 
GUM-S1 analysis of the normal sample with n < 4 . Indeed, 
when n = 2 neither the standard deviation nor the expecta-
tion of the measurand exists.

Although the median and characteristic uncertainty 
resolve such problems, it is also worth noting that a situation 
of ‘no prior information’ is unrealistic. Before carrying out 
a measurement, the metrologist will have some prior expec-
tations regarding the quantity to be measured and the error 
characteristics of the measuring system. One reason for the 
use of a ‘noninformative’ prior distribution by GUM-S1 is 
that the use of the metrologist’s subjective prior information 
is controversial and may in some contexts be unacceptable. 
In the case of a sample of n < 4 from a normal distribution, 
even a small amount of prior information suffices to pro-
duce a posterior distribution with a finite Bayesian standard 
uncertainty. Cox and O’Hagan (paper in development) show 
that relatively weak prior information about the measure-
ment variance �2 , such as might normally be expected to be 

Fig. 6   Density function of half-normal distribution

Fig. 7   Density function of lognormal distribution
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available quite uncontroversially, will yield not only a finite 
posterior standard deviation but also a material reduction in 
the length of a coverage interval (also see [5]).

Infinite standard uncertainties can also arise due to the 
nature of the measurement model. They may occur when 
a measurand is expressed as a ratio of two inputs. Wesson, 
Stock and Scicluna [22] discuss the flux ratio of doubly 
ionised oxygen emission lines, arising at wavelengths of 
500.7 nm and 495.9 nm:

If the denominator has a Type A evaluation resulting in it 
having a normal or t distribution, then the distribution of V 
has neither a mean nor a standard deviation, due to the pos-
sibility of F495.9 being arbitrarily close to zero. In practice, 
the uncertainty in F495.9 may be small, such that the prob-
ability of being in the neighbourhood of zero is tiny, but 
the distribution of V will nevertheless have infinite standard 
uncertainty.

The same situation arises when the measurand X is mod-
elled as a ratio of differences. For example, a coefficient 
of expansion X may be measured by the ratio of change in 
length to change in temperature

Given a sample of indications of T1 and T0 , even though 
the sample is large and the relative uncertainty around 
the difference T1 − T0 is small, there is still in principle a 
nonzero probability that it might be negative. The result is 
that the standard uncertainty of X is infinite and its mean is 
undefined.

In situations such as these, application of the GUF will 
not reveal the fact that the mean of the measurand is unde-
fined or that the standard uncertainty is infinite. It will yield 
an estimate that is supposed to approximate to the mean and 
a finite combined standard uncertainty.

A Bayesian analysis with noninformative prior distribu-
tions will have the same effect. Furthermore, application 
of the Monte Carlo method as advocated in GUM-S1 will 
always erroneously yield a value for the mean and a finite 
standard uncertainty for X based on a finite Monte Carlo 
sample.

In both cases, the problem arises from representing 
quantities that are necessarily positive by uncertainty dis-
tributions that fail to respect the constraint. For instance, 
it does not occur when working with logarithms, so that 
the implied distributions are lognormal or log t. Nor does it 
occur when the prior knowledge of the constraint is properly 
represented in an informative prior distribution. However, 
the routine application of the GUM’s Type A evaluation for 
a normal sample for quantities that are necessarily positive 

V = F500.7∕F495.9.

X =
L1 − L0

T1 − T0
.

is widespread in metrology, with the result that computations 
of standard uncertainties may be highly unreliable.

Consider Example 2 involving a six-term model. The 
division by vc in model (1) also results in � having infinite 
variance and an undefined mean. The median and charac-
teristic uncertainty are nevertheless well defined and can for 
instance be computed to any desired accuracy by the Monte 
Carlo method. A Monte Carlo sample of size 106 reported a 
mean for � of 1.3 and a standard deviation of 482.5. These 
numbers are completely spurious, would change substantially 
if we took another 106 samples, and would never converge no 
matter how large a sample we generated. (Indeed, the nature 
of the problem would be identified by the nonconvergence 
of the adaptive method in GUM-S1 for evaluating the mean 
and standard uncertainty to a target numerical accuracy.) The 
same 106 sample reported a median of m(�) = 0.8173 and the 
characteristic uncertainty was found to be c(�) = 0.076 . These 
are close to the MCM and CUF figures given earlier, confirm-
ing the applicability of the CUF even in a model of this degree 
of nonlinearity. In contrast, the nonlinearity in this model is 
catastrophic if we insist on using standard uncertainty.

Computing the median and characteristic 
uncertainty

We present various ways to derive the median and charac-
teristic uncertainty of a quantity.

Computation by Monte Carlo

A generic technique, that can be used in several of the con-
texts described below, is computation by a Monte Carlo 
method. Suppose that we have a sample of M values of X, 
drawn randomly from its probability distribution. First, 
arrange them in nondecreasing order, x[1] ≤ … ≤ x[M] . If M 
is an odd number, the median is m(X) = x[(M+1)∕2] , otherwise 
m(X) = (x[M∕2] + x[(M∕2)+1])∕2.

Now define y[1] ≤ ⋯ ≤ y[M] computed by taking all 
the values |x[i] − m(X)| for i = 1,… ,M  and arranging 
them in nondecreasing order. Then c(X) = y[t]∕2 , where 
t = 0.95(M + 1) , rounded up if necessary to the next integer.

For these computations to be sufficiently accurate in prac-
tice we recommend M ≥ 106 ; see also [2, clause 7.2].

Computations for a single evaluation

Suppose now that the distribution for X arises from a single 
Type A or Type B evaluation.

We have of course considered in some detail the most 
widely used Type A evaluation, namely that involving a 
sample of size n from a normal distribution. In this case the 
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distribution of X is a t distribution, the median is the sample 
mean, m(X) = x̄ , and c(X) = kn−1s∕(2

√
n).

If the distribution of X, whether obtained as the posterior 
distribution from a Bayesian Type A evaluation or as the 
metrologist’s judgement in a Type B evaluation, has the form 
of a standard probability distribution in statistics, then there 
may be explicit expressions for the median and/or charac-
teristic uncertainty (possibly involving functions whose val-
ues can be looked up from tables or computed by standard 
software). The t distribution is one example. Another is the 
half-normal distribution featured in Appendix Skew distribu-
tions; the HN(a, b2) distribution has m(X) = a + 0.6745b and 
c(X) = 0.6427b.

In cases where the distribution has a standard form but 
does not have explicit formulae for median and/or character-
istic uncertainty, there are two simple computational tech-
niques to evaluate them. One is to use numerical integration 
to compute the cumulative distribution function G(x) at any 
x, and then numerical methods to solve G(m(X)) = 0.5 and 
G(m(X) + 2c(X)) − G(m(X) − 2c(X)) = 0.95.

The second technique is to draw a random sample of M 
values from the distribution and then apply the Monte Carlo 
computation given in Appendix Computation by Monte Carlo.

Finally, some Bayesian Type A evaluations will not give a 
posterior distribution of a standard form such that numerical 
integration or direct sampling is possible. Instead, Markov 
chain Monte Carlo [23] is another, rather more complex, tool 
to obtain a sample of M values from the distribution.

Computations for a measurement model

Now suppose that the measurand X is expressed through a 
measurement model in terms of a number of input quantities. 
As described earlier when discussing propagation guidelines, 
the characteristic uncertainty framework provides a simple 
way to compute the median and characteristic uncertainty of 
X approximately from those of the inputs, while the Monte 
Carlo method outlined earlier does so to any desired accuracy.

Skew distributions

Three example distributions were presented earlier in dis-
cussing the new measures in practice. All would fit the crite-
rion for the GUF and CUF to be applicable, namely that they 
have a symmetric (or almost symmetric) form similar to a 
normal or t distribution. The family of skew-normal distribu-
tions includes distributions that are far from symmetric (as 
their name suggests), but the case presented when consider-
ing the new measures in practice has only moderate skew-
ness. The same is true of the gamma family of distributions; 
gamma distributions can be markedly skew but the earlier 
example involving such a distribution is only modestly so.

To illustrate the use of median and characteristic uncer-
tainty in more strongly asymmetric distributions, we present 
two more examples.

Half-normal distribution The half-normal distribution is 
the same as the normal distribution except that the density is 
reduced to zero for all values below what would have been 
the mean of the normal distribution. It is a particular case of 
a truncated normal distribution, which can be appropriate as 
a judgement distribution when the value of the quantity is 
bounded either above or below (or both). We now suppose 
that a metrologist judges, based on the available evidence, 
that X is necessarily non-negative, and represents uncertainty 
about X with the half-normal distribution HN(0, 0.04812) . 
The density is shown in Fig. 6. It has mean E(X) = 0.0384 , 
standard deviation u(X) = 0.0290 , median m(X) = 0.0324 
and characteristic uncertainty c(X) = 0.0309 . The skewness 
is more marked for this distribution and there are larger 
differences between m(X) and E(X) , and between c(X) and 
u(X) than we saw in the examples when considering the new 
measures in practice.

Lognormal distribution A lognormal distribution can be 
another representation of a metrologist’s uncertainty about 
a quantity that must be non-negative. It can also arise in 
Type A evaluation when the errors in the sample of indi-
cations are believed to follow a normal distribution on the 
log scale. Suppose that X has the lognormal distribution 
lN(−4.311, 1) so that lnX has the normal distribution with 
mean −4.311 and variance 1. As shown in Fig. 7, this dis-
tribution is strongly skewed. It has mean E(X) = 0.0221 , 
standard deviation u(X) = 0.0290 , median m(X) = 0.0134 
and characteristic uncertainty c(X) = 0.0281 . The mean is 
no longer a useful estimate because X is twice as likely to be 
below 0.0221 as to be above it. The median value of 0.0134 
can be seen as a more representative value for X.

As the distribution of X becomes increasingly skew, the 
mean is found further into the long tail of the distribution 
and is increasingly unrepresentative as an estimate of X. The 
median value is always a more representative estimate and 
its status as a central value, with equal probability for X to be 
above or below the median, gives it a clear and unambiguous 
interpretation.

However, when the distribution has appreciable skewness 
some care may be required when interpreting c(X) as a meas-
ure of uncertainty. For instance, in both these examples the 
interval m(X) ± 2c(X) extends below zero, which is not ideal 
for a quantity X that cannot be negative. In the case of the 
lognormal example, for instance, m(X) − 2c(X) = −0.0428 . 
It remains true that there is a 95 % probability that X will lie 
in the range m(X) ± 2c(X) = (−0.0428, 0.0696) . The mean-
ing of characteristic uncertainty is not affected, but in this 
case there is clearly a 95 % probability that X will lie in the 
narrower interval of (0, 0.0696).
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We suggest that in such cases the recipient would benefit 
from being given additional summaries of the distribution.

It will generally be useful to present a plot of the PDF of 
the distribution. In the examples above, Figs. 6 and 7 show 
the skewness clearly and will aid the recipient’s interpreta-
tion of the median and characteristic uncertainty. Indeed, we 
recommend that a PDF plot should form a standard compo-
nent of the measurement result. Even when the distribution 
has a symmetric (or almost symmetric) form similar to a 
normal or t distribution, a PDF plot such as in Figs. 2, 3 and 
4 provides a meaningful visual summary of the distribution, 
showing which values of X are more or less probable.

Various quantitative summaries of skewness can also be 
proposed, but may be of limited practical value. Although 
skew distributions arise occasionally in practice—Possolo 
et al. [24] give some examples—they are not covered explic-
itly in the GUM, except through a simple example, and have 
received little attention in the metrology literature.
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