

**NPL REPORT IR 55** 

CHANGES TO THE UK NATIONAL PRIMARY STANDARDS OF AIR KERMA AND ABSORBED DOSE INCORPORATING ICRU REPORT 90 RECOMMENDATIONS

G A BASS, M A BARRY, S DUANE, M J HOMER, M KELLY, J W MANNING, D J MAUGHAN, R F NUTBROWN, T SANDER, D R SHIPLEY, J A D SNAITH

**AUGUST 2019** 



Changes to the UK national primary standards of air kerma and absorbed dose incorporating ICRU Report 90 recommendations

G A Bass, M A Barry, S Duane, M J Homer, M Kelly, J W Manning, D J Maughan, R F Nutbrown, T Sander, D R Shipley, J A D Snaith Medical Physics Department

# **ABSTRACT**

Changes to the UK national primary standards of air kerma and absorbed dose will take effect from 1<sup>st</sup> of September 2019. The changes are due to (i) the UK adoption of the recommendations of the International Commission on Radiation Units and Measurements Report No. 90 and (ii) the recent introduction of new or re-evaluated primary standards as part of NPL's ongoing programme of research and development.

This report summarises the total changes to the primary standards and the resulting effect on the calibration coefficients of secondary standard ionisation chambers calibrated at NPL.

© NPL Management Limited, 2019

ISSN 1754-2952

National Physical Laboratory Hampton Road, Teddington, Middlesex, TW11 0LW

Extracts from this report may be reproduced provided the source is acknowledged and the extract is not taken out of context.

Approved on behalf of NPLML by Russell A S Thomas, Principal Research Scientist.

# **CONTENTS**

| 1  | INTRODUCTION                                     | 1 |
|----|--------------------------------------------------|---|
| 2  | USE OF THIS REPORT                               | 1 |
| 3  | VERY LOW ENERGY THERAPY LEVEL AIR KERMA          | 2 |
| 4  | MAMMOGRAPHIC X-RAY AIR KERMA                     |   |
| 5  | DIAGNOSTIC X-RAY AIR KERMA                       | 3 |
| 6  | THERAPY LEVEL X-RAY AIR KERMA                    | 4 |
| 7  | PROTECTION LEVEL X-RAY AIR KERMA                 | 5 |
| 8  | HDR 192Ir BRACHYTHERAPY REFERENCE AIR KERMA RATE |   |
| 9  | 60Co THERAPY LEVEL AIR KERMA                     | 6 |
|    | PROTECTION LEVEL AIR KERMA (RADIONUCLIDES)       |   |
| 11 | THERAPY LEVEL MV X-RAY ABSORBED DOSE TO WATER    | 7 |
| 12 | THERAPY LEVEL ELECTRON ABSORBED DOSE TO WATER    | 7 |
| 13 | ACKNOWLEDGEMENTS                                 | 7 |
| 14 | REFERENCES                                       | 8 |
|    |                                                  |   |

#### 1 INTRODUCTION

The International Commission on Radiation Units and Measurements Report No. 90 *Key data for ionizing-radiation dosimetry: measurement standards and applications* (ICRU 2016) makes certain recommendations that, when adopted, may result in changes to the realisation of air kerma and absorbed dose. A review of the UK national primary standards of air kerma and absorbed dose at NPL was therefore initiated to assess and implement the recommendations as necessary. The review coincided with the introduction of new primary standards in some cases and the re-evaluation of other factors unrelated to ICRU 90, also resulting in some changes to the NPL standards and the associated uncertainties.

Changes to the UK national primary standards of air kerma and absorbed dose will take effect from 1<sup>st</sup> of September 2019. This report summarises the effects of these changes on the calibration coefficients of secondary standards.

# 2 USE OF THIS REPORT

All NPL secondary standard calibrations issued after 1st of September 2019 contain the revised factors and so no additional correction is necessary.

An NPL secondary standard calibration issued prior to 1<sup>st</sup> of September 2019 may be revised to reflect a change in the primary standard by multiplying the calibration coefficient by the factor  $F_Q$ . Values for  $F_Q$  are presented in the following tables for the different beam quality ranges used at NPL for the calibration of secondary standard ionisation chambers, and the associated uncertainty in the calibration coefficients. The uncertainty values have been estimated according to ISO recommendations (Bentley 2005 and ISO 1995).

#### Example:

Calibration coefficient issued for therapy level absorbed dose to water at 6 MV in NPL certificate dated 1 May 2019:  $10.00 \times 10^7$  Gy/C.  $F_0$  for this beam quality: 1.004.

Revised calibration coefficient = 
$$10.00 \times 10^7$$
 Gy/C × 1.004  
=  $10.04 \times 10^7$  Gy/C.

## 3 VERY LOW ENERGY THERAPY LEVEL AIR KERMA

Table 1 lists values of the multiplying factor  $F_Q$  for very low energy therapy level x-ray air kerma beam qualities in the range 0.024 mm Al HVL to 1.00 mm Al HVL (nominal generating potential 8.5 kV to 50 kV).  $F_Q$  must be applied to pre-1<sup>st</sup> of September 2019-certificated air kerma calibration coefficients  $N_K$  in Gy/C to incorporate changes to the UK primary standard effective from 1<sup>st</sup> of September 2019 (Kelly *et al.* 2019: NPL Report IR 51). The reviewed uncertainty for air kerma calibration coefficients  $N_K$  in this energy range is also given.

Table 1: Very low energy therapy level air kerma

| Nominal<br>generating<br>potential (kV)   | HVL<br>(mm Al) | $F_Q$ |  |
|-------------------------------------------|----------------|-------|--|
| 8.5                                       | 0.024          | 1.003 |  |
| 10                                        | 0.036          | 1.003 |  |
| 11.5                                      | 0.050          | 1.003 |  |
| 14                                        | 0.070          | 1.004 |  |
| 16                                        | 0.10           | 1.004 |  |
| 20                                        | 0.15           | 1.005 |  |
| 25                                        | 0.25           | 1.005 |  |
| 34                                        | 0.35           | 1.005 |  |
| 41                                        | 0.50           | 1.006 |  |
| 44                                        | 0.70           | 1.006 |  |
| 50                                        | 1.00           | 1.006 |  |
| Uncertainty in $N_K = \pm 1.3 \% (k = 2)$ |                |       |  |

#### 4 MAMMOGRAPHIC X-RAY AIR KERMA

Table 2 lists values of the multiplying factor  $F_Q$  for mammographic x-ray air kerma beam qualities designated RQR-M2 and RQN-M2 (nominal generating potential 28 kV).  $F_Q$  must be applied to pre-1<sup>st</sup> of September 2019-certificated air kerma calibration coefficients  $N_K$  in Gy/C to incorporate changes to the UK primary standard effective from 1<sup>st</sup> of September 2019 (Kelly *et al.* 2019: NPL Report IR 51). The reviewed uncertainty for air kerma calibration coefficients  $N_K$  for these beam qualities is also given.

Table 2: Mammographic x-ray air kerma RQR and RQN

| Quality                                   | Nominal generating potential (kV) | HVL (mm Al) | $F_Q$ |
|-------------------------------------------|-----------------------------------|-------------|-------|
| RQR-M2                                    | 28                                | 0.31        | 1.005 |
| RQN-M2                                    | 28                                | 0.62        | 1.005 |
| Uncertainty in $N_K = \pm 1.4 \% (k = 2)$ |                                   |             |       |

## 5 DIAGNOSTIC X-RAY AIR KERMA

Tables 3, 4, 5 and 6 list values of the multiplying factor  $F_Q$  for diagnostic x-ray air kerma beam qualities designated RQC, RQT, RQR and RQA respectively.  $F_Q$  must be applied to pre-1<sup>st</sup> of September 2019-certificated air kerma calibration coefficients  $N_K$  in Gy/C to incorporate changes to the UK primary standard effective from 1<sup>st</sup> of September 2019 (Bass *et al.* 2019: NPL Report IR 54). The reviewed uncertainty for air kerma calibration coefficients  $N_K$  in this energy range is also given.

Table 3: Diagnostic x-ray air kerma RQC

| Quality                                   | Nominal generating potential (kV) | HVL (mm Al) | $F_Q$ |
|-------------------------------------------|-----------------------------------|-------------|-------|
| RQC 3                                     | 50                                | 4.5         | 0.998 |
| RQC 5                                     | 70                                | 8.4         | 0.998 |
| RQC 8                                     | 100                               | 11.5        | 0.998 |
| Uncertainty in $N_K = \pm 1.4 \% (k = 2)$ |                                   |             |       |

Table 4: Diagnostic x-ray air kerma RQT

| Quality                                   | Nominal generating potential (kV) | HVL (mm Al) | $F_Q$ |
|-------------------------------------------|-----------------------------------|-------------|-------|
| RQT 8                                     | 100                               | 0.2         | 0.998 |
| RQT 9                                     | 120                               | 0.25        | 0.998 |
| RQT 10                                    | 150                               | 0.3         | 0.998 |
| Uncertainty in $N_K = \pm 1.4 \% (k = 2)$ |                                   |             |       |

Table 5: Diagnostic x-ray air kerma – entrance qualities

| Quality                                   | Nominal generating potential (kV) | HVL (mm Al) | $F_Q$ |
|-------------------------------------------|-----------------------------------|-------------|-------|
| RQR 2                                     | 40                                | 1.42        | 0.998 |
| RQR 3                                     | 50                                | 1.78        | 0.998 |
| RQR 4                                     | 60                                | 2.19        | 0.998 |
| RQR 5                                     | 70                                | 2.58        | 0.998 |
| RQR 6                                     | 80                                | 3.01        | 0.998 |
| RQR 7                                     | 90                                | 3.48        | 0.998 |
| RQR 8                                     | 100                               | 3.97        | 0.998 |
| RQR 9                                     | 120                               | 5.00        | 0.998 |
| RQR 10                                    | 150                               | 6.57        | 0.998 |
| Uncertainty in $N_K = \pm 1.4 \% (k = 2)$ |                                   |             |       |

Table 6: Diagnostic x-ray air kerma – exit qualities

| Quality                                   | Nominal generating potential (kV) | HVL (mm Al) | $F_Q$ |
|-------------------------------------------|-----------------------------------|-------------|-------|
| RQA 2                                     | 40                                | 2.2         | 0.998 |
| RQA 3                                     | 50                                | 3.8         | 0.998 |
| RQA 4                                     | 60                                | 5.4         | 0.998 |
| RQA 5                                     | 70                                | 6.8         | 0.998 |
| RQA 6                                     | 80                                | 8.2         | 0.998 |
| RQA 7                                     | 90                                | 9.2         | 0.998 |
| RQA 8                                     | 100                               | 10.1        | 0.998 |
| RQA 9                                     | 120                               | 11.6        | 0.998 |
| RQA 10                                    | 150                               | 13.3        | 0.998 |
| Uncertainty in $N_K = \pm 1.4 \% (k = 2)$ |                                   |             |       |

# 6 THERAPY LEVEL X-RAY AIR KERMA

Table 7 lists values of the multiplying factor  $F_Q$  for therapy level x-ray air kerma beam qualities in the range 1.00 mm Al HVL to 20.0 mm Al HVL (nominal generating potential 50 kV to 280 kV).  $F_Q$  must be applied to pre-1<sup>st</sup> of September 2019-certificated air kerma calibration coefficients  $N_K$  in Gy/C to incorporate changes to the UK primary standard effective from 1<sup>st</sup> of September 2019 (Bass *et al.* 2019: NPL Report IR 54). The reviewed uncertainty for air kerma calibration coefficients  $N_K$  in this energy range is also given.

Table 7: Therapy level x-ray air kerma

| Nominal<br>generating<br>potential (kV)   | HVL<br>(mm Al) | HVL<br>(mm Cu) | $F_Q$ |
|-------------------------------------------|----------------|----------------|-------|
| 50                                        | 1.00           | 0.030          | 0.997 |
| 70                                        | 2.0            | 0.062          | 0.998 |
| 100                                       | 4.0            | 0.15           | 0.999 |
| 105                                       | 5.0            | 0.20           | 0.999 |
| 135                                       | 8.8            | 0.50           | 0.999 |
| 180                                       | 12.3           | 1.0            | 1.001 |
| 220                                       | 16.1           | 2.0            | 1.001 |
| 280                                       | 20.0           | 4.0            | 1.002 |
| Uncertainty in $N_K = \pm 1.4 \% (k = 2)$ |                |                |       |

## 7 PROTECTION LEVEL X-RAY AIR KERMA

Table 8 lists values of the multiplying factor  $F_Q$  for protection level x-ray air kerma beam qualities in the nominal generating potential range 10 kV to 300 kV.  $F_Q$  must be applied to pre-1<sup>st</sup> of September 2019-certificated air kerma calibration coefficients  $N_K$  in Gy/C to incorporate changes to the UK primary standard effective from 1<sup>st</sup> of September 2019 (Kelly *et al.* 2019: NPL Report IR 51 and Bass *et al.* 2019: NPL Report IR 54). The reviewed uncertainty for air kerma calibration coefficients  $N_K$  in this energy range is also given.

Table 8: Protection level x-ray air kerma

| Nominal<br>generating<br>potential (kV)   | HVL<br>(mm Al) | HVL<br>(mm Cu) | $F_Q$ |
|-------------------------------------------|----------------|----------------|-------|
| 10                                        | 0.058          | -              | 0.996 |
| 15                                        | 0.17           | -              | 0.997 |
| 20                                        | 0.36           | -              | 0.997 |
| 25                                        | 0.69           | 1              | 0.998 |
| 30                                        | 1.21           | 1              | 0.998 |
| 40                                        | -              | 0.085          | 0.998 |
| 60                                        | -              | 0.234          | 0.998 |
| 80                                        | -              | 0.581          | 0.999 |
| 100                                       | -              | 1.12           | 0.998 |
| 120                                       | -              | 1.73           | 0.998 |
| 150                                       | -              | 2.42           | 0.998 |
| 200                                       | -              | 4.10           | 0.999 |
| 250                                       | -              | 5.33           | 0.999 |
| 300                                       | -              | 6.26           | 0.999 |
| Uncertainty in $N_K = \pm 1.6 \% (k = 2)$ |                |                |       |

# 8 HDR 192 Ir BRACHYTHERAPY REFERENCE AIR KERMA RATE

Table 9 gives the value of the multiplying factor  $F_Q$  for HDR  $^{192}$ Ir brachytherapy reference air kerma rate.  $F_Q$  must be applied to pre-1st of September 2019-certificated reference air kerma rate calibration coefficients  $N_{K_R}$  in Gy/C to incorporate changes to the UK primary standard effective from 1st of September 2019 (NPL Report 2019a). The reviewed uncertainty for reference air kerma rate calibration coefficient  $N_{K_R}$  is also given.

Table 9: HDR 192 Ir brachytherapy reference air kerma rate

| Radionuclide                                          | $F_Q$ |  |
|-------------------------------------------------------|-------|--|
| <sup>192</sup> Ir                                     | 1.000 |  |
| Uncertainty in $N_{\dot{K}_R} = \pm 0.8 \% (k = 2)^*$ |       |  |

<sup>\*</sup>For a well-type ionisation chamber

# 9 60Co THERAPY LEVEL AIR KERMA

Table 10 gives the value of the multiplying factor  $F_Q$  for therapy level air kerma  $^{60}$ Co  $\gamma$ -rays.  $F_Q$  must be applied to pre-1<sup>st</sup> of September 2019-certificated air kerma calibration coefficients  $N_K$  in Gy/C to incorporate changes to the UK primary standard effective from 1<sup>st</sup> of September 2019 (Bass *et al.* 2019: NPL Report IR 53. Two nominally-identical cavity ionisation chambers designated PS5/1 and PS5/2 comprise the primary standard.) The reviewed uncertainty for air kerma calibration coefficient  $N_K$  is also given.

Table 10: 60Co therapy level air kerma

| Radionuclide                              | $F_Q$ |
|-------------------------------------------|-------|
| <sup>60</sup> Co                          | 0.995 |
| Uncertainty in $N_K = \pm 0.7 \% (k = 2)$ |       |

## 10 PROTECTION LEVEL AIR KERMA (RADIONUCLIDES)

Table 11 gives values of the multiplying factor  $F_Q$  for protection level air kerma  $^{241}$ Am,  $^{137}$ Cs and  $^{60}$ Co  $\gamma$ -rays.  $F_Q$  must be applied to pre-1<sup>st</sup> of September 2019-certificated air kerma calibration coefficients  $N_K$  in Gy/C to incorporate changes to the UK primary standard effective from 1<sup>st</sup> of September 2019 (Bass *et al.* 2019: NPL Report IR 53 and Bass *et al.* 2019: NPL Report IR 54. A transfer standard is used as a reference for the  $^{241}$ Am air kerma secondary calibration, traceable to the medium energy x-ray primary standard.) The reviewed uncertainty for air kerma calibration coefficients  $N_k$  in this range is also given.

Table 11: Protection level air kerma (radionuclides)

| Radionuclide                              | $F_Q$ |
|-------------------------------------------|-------|
| <sup>241</sup> Am                         | 0.998 |
| <sup>137</sup> Cs                         | 0.995 |
| <sup>60</sup> Co                          | 0.995 |
| Uncertainty in $N_K = \pm 1.7 \% (k = 2)$ |       |

## 11 THERAPY LEVEL MV X-RAY ABSORBED DOSE TO WATER

Table 12 lists values of the multiplying factor  $F_Q$  for therapy level absorbed dose  $^{60}$ Co  $\gamma$ -rays and high energy x-ray beam qualities in the TPR<sub>20,10</sub> quality index range 0.568 – 0.800.  $F_Q$  must be applied to pre-1<sup>st</sup> of September 2019-certificated absorbed dose calibration coefficients  $N_D$  in Gy/C to incorporate changes to the UK primary standard effective from 1<sup>st</sup> of September 2019 (NPL Report 2019b). The reviewed uncertainty for absorbed dose calibration coefficients  $N_D$  in this range is also given.

Table 12: Therapy level MV x-ray absorbed dose to water

| Quality index                             | Beam energy        | Depth in water       | $F_Q$ |  |
|-------------------------------------------|--------------------|----------------------|-------|--|
| $(TPR_{20,10})$                           | (MV)               | (g/cm <sup>2</sup> ) | Ų     |  |
| 0.568                                     | $(^{60}\text{Co})$ | 5                    | 1.004 |  |
| 0.633                                     | 4                  | 5                    | 1.004 |  |
| 0.682                                     | 6                  | 5                    | 1.004 |  |
| 0.713                                     | 8                  | 5                    | 1.004 |  |
| 0.733                                     | 10                 | 5                    | 1.004 |  |
| 0.758                                     | 15                 | 7                    | 1.004 |  |
| 0.775                                     | 18                 | 7                    | 1.004 |  |
| 0.800                                     | 25                 | 7                    | 1.004 |  |
| Uncertainty in $N_D = \pm 1.3 \% (k = 2)$ |                    |                      |       |  |

#### 12 THERAPY LEVEL ELECTRON ABSORBED DOSE TO WATER

Table 13 lists values of the multiplying factor  $F_Q$  for therapy level electron beams in the  $R_{50,D}$  quality index range 1.54 cm to 7.83 cm (nominal energy 4 MeV to 20 MeV).  $F_Q$  must be applied to pre-1<sup>st</sup> of September 2019-certificated therapy level absorbed dose calibration coefficients  $N_{D,w}$  in Gy/C to incorporate changes to the UK primary standard effective from 1<sup>st</sup> of September 2019 (NPL Report 2019c). The reviewed uncertainty for absorbed dose calibration coefficients  $N_{D,w}$  in this range is also given.

Table 13: Therapy level electron absorbed dose to water

| Nominal energy (MeV)                          | R <sub>50,D</sub> (cm) | Z <sub>ref</sub><br>(cm) | $F_Q$ |  |
|-----------------------------------------------|------------------------|--------------------------|-------|--|
| 4                                             | 1.54                   | 0.82                     | 1.016 |  |
| 6                                             | 2.30                   | 1.28                     | 1.013 |  |
| 10                                            | 3.90                   | 2.24                     | 1.007 |  |
| 12                                            | 4.58                   | 2.65                     | 1.005 |  |
| 15                                            | 5.75                   | 3.35                     | 1.001 |  |
| 20                                            | 7.83                   | 4.60                     | 0.997 |  |
| Uncertainty in $N_{D,w} = \pm 2.0 \% (k = 2)$ |                        |                          |       |  |

#### 13 ACKNOWLEDGEMENTS

The authors acknowledge the financial support of the National Measurement System Policy Unit of the UK Department for Business, Energy and Industrial Strategy.

#### 14 REFERENCES

Bass G A, Duane S, Homer M J, Kelly M, Manning J W, Maughan D J, Nutbrown R F, Sander T, Shipley D R, Snaith J A D 2019 The NPL air kerma primary standard PS5-1/PS5-2 for <sup>137</sup>Cs and <sup>60</sup>Co: summary of factors incorporating ICRU Report 90 recommendations, NPL Report IR 53, National Physical Laboratory, UK

Bass G A, Duane S, Kelly M, Manning J W, Maughan D J, Nutbrown R F, Sander T, Shipley D R 2019 The NPL air kerma primary standard free-air chamber for medium energy x-rays: summary of factors incorporating ICRU Report 90 recommendations, NPL Report IR 54, National Physical Laboratory, UK

Bentley R E 2005 Uncertainty in Measurement: The ISO Guide, Monograph 1: NMI Technology Transfer Series, tenth edition, National Measurement Institute, Australia

ICRU 2016 Key data for ionizing-radiation dosimetry: measurement standards and applications, ICRU Report 90 vol 14 Oxford University Press

ISO 1995 Guide to the expression of uncertainty in measurement, International Organization for Standardization, Geneva

Kelly M, Bass G A, Manning J W, Maughan D J, Nutbrown R F, Sander T, Shipley D R 2019 The NPL air kerma primary standard free air chamber for low energy x-rays: summary of factors incorporating ICRU Report 90 recommendations, NPL Report IR 51, National Physical Laboratory, UK

NPL report 2019a The NPL reference air kerma rate primary standard for HDR <sup>192</sup>Ir brachytherapy: summary of factors incorporating ICRU Report 90 recommendations *Unpublished, in preparation* 

NPL report 2019b The NPL absorbed dose to water primary standard for MV x-rays: summary of factors incorporating ICRU Report 90 recommendations *Unpublished*, *in preparation* 

NPL report 2019c The NPL absorbed dose to water primary standard for electron beams: summary of factors incorporating ICRU Report 90 recommendations *Unpublished*, *in preparation*