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ABSTRACT

The accuracy of data recorded by many measurement systems is limited both by uncertainty
in the measured value and by uncertainty in the trigger input to the system which controls
when a measurement is taken. The former effect, which appears as noise on the underlying
signal, is due, in part, to the sampling process and can often be reduced to an acceptable
level by averaging many measurements. Noise on the trigger input gives rise to uncertainty in
time between the trigger and the measurement points. This effect, known as jitter, causes a
distortion of the signal which cannot be removed by averaging.

We describe and analyse the effects of noise and jitter on a waveform, and an algorithm
for removing, or reducing, these effectsis presented. The work is motivated by an application in
picosecond electrical and optoelectronic metrology where a laser pulse is measured by a system
consisting of a photodiode and a sampling oscilloscope. Here, since the length of the pulseis so
short, perhaps only tens of picoseconds in duration, the effect of jitter is as pronounced as that
of measurement noise. Results obtained by applying the algorithm to simulated data obtained
from this application are presented.

*The work described was presented at the NATO Advanced Research Workshop on Algorithms for
Approximation held at Lady Margaret Hall, Oxford, UK, 27-31 July 1992.
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1 INTRODUCTION

Metrology, or measurement science, is concerned with measuring physical processes. For many
areas of metrology this involves two stages. Firstly, a physical measurement system appropri-
ate to the application is used to give a set of data which represents the process. Secondly,
mathematical modelling and numerical analysis are used to derive from the data a more useful,
and hopefully more accurate, representation of the process than is provided by the data. It is
the latter stage that we address in this paper.

We suppose the physical process of interest can be summarised by an underlying functional
relationship between a control (or independent) variable, ¢, and a response (or dependent)
variable, v. The data returned by any real system used to measure the process is usually
inexact, being subject to errors arising from a number of sources. Having collected the data,
we wish to determine from it the true response or at least a good approximation to the response.
This requires a model (physical or empirical) for the underlying process, as well as knowledge of
the nature of the errorsin the data. The latter may be provided by a model of the measurement
process itself.

A widely used model for the measurement process, suitable for many problems, assumes that
the values of the control variable at which measurements are taken are known exactly, but the
corresponding measured response values are contaminated by random error, known as noise. It
is assumed that the errorsin the measured values are statistically independent, and are samples
of a Normal distribution whose mean is zero. Under these circumstances it is appropriate to
use a least-squares analysis to give an approximation to the underlying function. Unequal
weighting of the measurements may be used to model any dependence of the variance of the
Normal distribution on the control variable.

Since the technology used in measurement science has progressed, and its application has
become more demanding, this model is no longer satisfactory and it is necessary to consider
more complete models of the measurement process used. Humphreys ([9]; Part II, Chapter
3) is concerned with using a measurement system, consisting of a photodiode and sampling
oscilloscope combination, to measure a short laser pulse whose duration may be only a few
tens of picoseconds. A trigger signal to the sampling oscilloscope is used to control when a
measurement is taken. However, noise on the trigger input gives rise to an uncertainty in time
between the trigger and measurement points. This effect is known as jitter, and is in addition
to noise on the measured signal brought about by the sampling process. It is the purpose of
this work to take proper account of the presence of both noise and jitter when analysing data
collected by such measurement systems.

The paper is organised as follows. In Section 2 we present a numerical simulation of these two
sources of error which illustrates their effect on measured data. In Section 3 we provide the
notation to be used throughout the work, and state any assumptions required in the analysis
of the measurement process. This analysis is given in Section 4, and it leads to a description in
Section 5 of an algorithm for finding an approximation to the true response given datarecorded
by such a measurement system. In addition, the algorithm returns estimates of the standard
deviations of the noise and jitter probability distributions. Results obtained by applying the
algorithm to simulated data obtained from an application in picosecond electrical metrology
are presented in Section 6. A conclusion is made in Section 7, where suggestions for futher
work are presented.
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2 SIMULATING THE MEASUREMENT PROCESS

The following numerical simulation of data contaminated by noise and jitter illustrates the effect
of these sources of error on measured data. In this description we denote the control variable,
time, by ¢ and the response variable, voltage, by v. The exact data (¢},v}), ¢ = 1,...,m, for
the example is obtained by sampling at m = 300 uniformly spaced points a signal typical of
that measured by the system considered in [9]. In this application, the signal lasts for about
300 picoseconds (ps), and the measured voltage varies from about —2 x 10~2 millivolts (mv) to
about 7 X 10~2 mv. Moreover, the noise and jitter applied to the exact data in this simulation
are typical for the application considered. For convenience, we have normalised the control
variable to lie in the interval [0, 1].

Firstly, and in order to illustrate measurement noise alone, we add to each value v} a random
sample taken from a Normal distribution with mean zero and standard deviation 5.0 x 10-3
mv. We carry out this procedure thirty-two times in order to generate repeat measurements at
each of the values ¢} of the control variable. The resulting data set, consisting of 9600 points,
is plotted in Figure 1. As we might expect, by averaging the replicate values corresponding to
each time-point, we can reduce the effect of measurement noise to a more acceptable level. This
is illustrated in Figure 2 where we show the mean value (solid curve) and standard deviation
(broken curve) of the data at each temporal point together with a plot of the original signal
(dotted curve). The mean values provide a reasonable approximation to the true response.
Moreover, the standard deviation values allow us to estimate the amount of measurement error
in the data, expressed in terms of the standard deviation of the probability distribution from
which the noise is sampled.

To simulate the effect of jitter alone, we add to each value ¢} a random sample taken from a
Normal distribution with mean zero and standard deviation 1.6 x 102 ps to give a value ¢;
for the control variable at which the actual measurement is taken. The collected data point
consists of ¢! paired with the true value of the underlying signal at ¢;. The procedure is again
carried out thirty-two times in order to generate repeat measurements for each of the values ¢}.
The complete set of data is shown in Figure 3, and in Figure 4 we have plotted the mean value
and standard deviation of the data at each time-point. It is clear that the presence of jitter
has produced a distortion of the signal, notably where the signal exhibits peaks and troughs,
that cannot be removed by averaging. Moreover, even though the jitter added to each point
comes from the same probability distribution, the standard deviation curve for the measured
data varies with time.

Finally, Figures 5 and 6 show data generated by the addition of both noise and jitter. Using
the notation introduced above, a collected data point consists of ¢¥ paired with the value of the
underlying signal, contaminated by noise, at ¢;. The mean and standard deviation functions
plotted in Figure 6 exhibit many of the features of those illustrated in Figure 4; averaging of
the data produces a similar distortion in the mean function, and the standard deviation curve
varies with the control variable.

3 NOTATION

We suppose that v = g(t) describes the underlying signal which we wish to model, and we
require that g is twice continuously differentiable and that the derivative functions g(l)(t) and
g(2)(t) are not identically zero. Let ¥, ¢ = 1,...,m, denote the nominal values for the time
points at which the signal is sampled, and suppose that for each sampling point R measurements
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Data generated by adding measurement noise to samples of a true signal.
Thirty-two repeat measurements are made at each value of the control variable.
The units for the vertical scale are millivolts; the horizontal scale, nominally
0-300 picoseconds, has been normalised to the interval [0, 1].
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Mean value (solid curve) and standard deviation (broken curve) of the data
shown in Figure 1. The true response is shown as a dotted curve.
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Figure 3 Data generated by adding jitter to samples of a true signal. Thirty-two repeat
' measurements are made at each value of the control variable.
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Figure 4 Mean value (solid curve) and standard deviation (broken curve) of the data

shown in Figure 3. The true response is shown as a dotted curve.
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shown in Figure 5. The true response is shown as a dotted curve.
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of the signal are taken. Let (t(-j) v(j)), i=1,...,m, j=1,..., R, be the jt* replicate value

T 27t

measured at the i** sampling point, corresponding to the true point (¢}, g(t¥)) lying on the
underlying curve.

Now, the error between the measured and true points may be decomposed into a “horizontal”
component
§t =400 _ gz
3 (] 2

due to jitter, and a “vertical” component
sv? = o) — g(17)

due to measurement error. These errors are samples of probability distribution functions Py
and Py, respectively, that are assumed to be independent of time and response and of each
other. The true and measured values are thus related by the equations

v = g1+ 6t + 609, i=1,...,m, j=1,...,R, (1)
or, regarded as a continuous function of time ¢, by the equation
v(t)=g(t+ &)+ ¥, (2)

where £ and i are independent random variables with probability distribution functions Py
and Py, respectively. We assume further that P; and Py have zero means and, respectively,
nonzero variances 72 and w?.

4 ANALYSIS OF THE MEASUREMENT PROCESS

In this section we derive expressions for the mean and variance of the measured signal v(t) as
functions of ¢t and the parameters 7 and w. These expressions form the basis of an algorithm
for computing an approximation to the true underlying signal g(¢).

4.1 THE MEAN OF THE MEASURED SIGNAL

We denote by E( f(t)) the mean of a function f at time ¢. From (2) we may write

E(v(t))= E(g(t+€))+ E(¥),
and since E(9) =0, so

[e¢}

o().<1(734I~§)PJ(€) dg.

E(v(t) = E(s(t+6)= [

Applying Taylor’s Theorem,

E(®) = [ {9(0)+ €90+ 5€%9P0) + O(€)} PAOE, 3)

and, since
| B = 1, (4)
| errgyae = o, (5)

/ Z E2P(6)de = 1, (6)

6
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we have, assuming higher order terms are negligible,
1
B(s(1)) = 9(2) + 57%22). o

Thus, the mean or expected value of v(t) differs from ¢g(¢) by an amount %ng(z)(t). This quan-
tity represents a non-constant bias or systematic error in the measured response. We notice
that the bias is (a) independent of any measurement noise in the data, and (b) greatest where
the magnitude of the second derivative of the underlying function is greatest. Consequently,
as Figures 4 and 6 illustrate, the departure between the true signal and the computed mean
signal is greatest where there are peaks and troughs in the underlying signal.

4.2 THE VARIANCE OF THE MEASURED SIGNAL

We denote by var(v(t)) the variance of the measured signal where

var(v(t)) = E{v(t)— E(v(?))}?
= E{(v(1))’} - {E(v(1))}~

Now,

E{(g(t+ &) +v)}
= [T [T (a4 0+ vy Pu(e)Pife) o de

/_o:o /_o:o{(g(t+ )2+ 2g(t+ &)y + ¥*} Pn(v) dyp Py(€) dE
/_0;{(9“ +6))? + W} Py(€) de,

E{(o(t))})

using the counterparts of (4)—(6) for Py(%). Thus,
E{(0)% = [ (a(t+€)?Pr(€) de + .

Again, ignoring higher order terms,

B0} = [ {o)+gM(0E+ 39PN Po(E) dE +07
o /_ o;[(g(t))2 +29(1)g ()€ + {9(1)gP(t) + (9V(2)) I PA(E) dE + o
= (g + 7H{g(t)gP(t) + (¢V (1))} + w2
Therefore,

var(v(1)) = (9(1))*+ m*{9()g D) + (¢(1))*} + ® — {9(1) + %T29(2)(t)}2
~ 72(g(1))? + W2 (8)

Here, we notice that (a) where g(1)(t) is zero, the jitter makes no contribution to the standard
deviation of the measured data, and (b) the standard deviation is greatest where |g{1)(2)| is
greatest; for example, at points of inflexion between peaks and troughs in the underlying signal.
Both these properties are exhibited in Figures 4 and 6 for the numerical example described in
Section 1.
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4.3 SUMMARY

From the results of the previous two sections, it follows that an unbiased estimate s of g is
given by approximating v(¢) by s(t) + %ng@)(t) using a (squared) weighting function inversely
proportional to the variance function 72(g()(¢))2 + w2. It is this observation that forms the
basis of the algorithm presented in the next section.

In the algorithm we require a sensible choice S for the class of functions from which the
approximation s is to be taken, as well as estimates of 7, w, ¢g()(¢) and g(z)(t). Assuming
these estimates can be provided (this is discussed in the next section), S could usefully be
taken as a set of (cubic) polynomial splines having suitably selected knots. An interesting
consequence of this particular choice is that if we replace g by s in the analysis, (3) takes the
form

I3 memepaee

® k=0 """

3 0O
> ¥ [ e

k=0 "

E(v(t))

If we further assume that the probability distribution function Pj is symmetric, then the
counterpart of (7),

B(o(t)) = s(t) + 37s(0),

is ezact. We conclude that the only essential limitation of our proposed approach is the ability of
s to represent adequately the underlying function. In practice, this limitation can be minimized
by paying careful attention to the distribution and number of knots used to define S.

5 AN ALGORITHM FOR REMOVING NOISE AND JITTER

Given the data (7, v,w), t=1,...,m,j=1,..., R, wedescribein this section an algorithm for
determining a cubic polynomial spline approximation to the true response function represented
by the data. The algorithm returns also estimates of the variances 72 and w?. We assume that
interior knots defining the spline function are given. The proposed algorithm consists of the
following steps.

Step 1 Compute a weighted least-squares spline fit to the data (7, v,(’)), t=1,...,m, j =
1,..., R, to give an initial approximation s to g. At this stage we ignore the bias in the
data caused by the effect of jitter, and assign to each measurement a weight wz(’ ) derived
by a simple analysis of the replicate data. Thus,

wfj): ot, i=1,...,m, j=1,...,R,
where o; is the standard deviation of the values vgj ), j=1,...,R.

Step 2 Evaluate s(1) at each measurement pointt}, :=1,...,m.

Step 3 Using the values computed at Step 2, determine estimates for 72 and w? by fitting in
a weighted least-squares sense the linear model

2 (sM(t))? + w?
2

to the measured variance values o7, i = 1,...,m. The particular weighting of the mea-
sured variance values that is used is discussed in Section 5.1.
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Step 4 Using the values 3(1)(t;9‘), it =1,...,m, 7 and w obtained at Steps 2 and 3, compute
a new approximation 3 (to g) which takes into account the bias and correct weighting of
the measurements. We write 5 in terms of the cubic B-spline basis functions Ny x(t) ([4],
[5], [6], [7]) defined on the chosen knot set:

5(t) =D exNax(t).
k

The coefficients cx defining 5 are given by fitting the data in a weighted least-squares
sense by the function

1
Do er{Na() + TN}
k
using weights
-(J) = {r¥ (D)2 + 02, i=1,...,m, j=1,...,R.

Step 5 Setting s = 3, repeat from Step 2 until the process has stabilized. The termination
criterion used is to require that

max_|s(t7) - 5(&1)] < tol
t=1,...,m
for some user-prescribed tolerance tol.

Routines from DASL, the National Physical Laboratory’s Data Approximation Subroutine
Library [1], may be used to evaluate the B-spline basis and the spline s and its derivatives, and
to solve the weighted least-squares problems indicated in the algorithm. -

It should be noticed that no proof of “convergence” of our algorithm is available. In practice,
the calculations stabilize after fewer than ten iterations (see Section 6). In this regard, our
process bears some resemblance to de Boor’s knot-placement technique [7], in which the spline
s and its derivatives at each stage are used to obtain an improved spline at the next.

5.1 WEIGHTING OF THE MEASURED VARIANCE VALUES

In an original version of the algorithm described above, estimates of 72 and w? Were obtained at
Step 3 using an unweighted least-squares fit to the measured variance values o} i=1,.

This is appropriate if the random uncertainties associated with the values 02 are assumed to
be equal. However, when applied to simulated data, the approach gave estimates of 72 and
w? that were poor and also exhibited a blas Consequently, the assumption of equal weighting
may not be valid.

In order to remove these problems, and thus improve the performance of the algorithm, the
uncertainties in the values o7 are estimated using the jackknife [8], a technique used in non-
parametric statistical analysis. This shows that the assumption of equal weighting is indeed
inappropriate, and provides a means of assigning weights in Step 3 to the values o? that gives
much improved results. The application of the jackknife is described below.

Recall that o? is the variance of the values 'v,m, ceny va);

0‘2? var{v;

M By,
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2

i

M M

To estimate the uncertainty in 0? we compute for each j the variance of the valuesv; 7, . ..

with 'vz(j ) removed, and denote this by af’ It

1 R j
ol;= var{vg ). .,vf )\vfj)}.
Each of the values 62, j = 1,..., R, provides an estimate of 02, and the variance of these
1,7? J ? p 13

values gives a measure of the uncertainty in o?. Thus,
2y _ 2 2
var{c} = var{o},,...,0; g},

and in the least-squares analysis carried out at Step 3 of the algorithm, the weight associated
with o2 is taken to be inversely proportional to the square root of this uncertainty.

6 EXAMPLES

In this section we present results obtained by applying the algorithm described in Section 5 to
simulated data obtained from an application in picosecond electrical metrology. We hopein the
future to report on the results obtained for real data arising from this application. However,
for the purpose of assessing the behaviour of the algorithm, it is more useful to consider data
generated from a known underlying function. The procedure for simulating data contaminated
by noise and jitter given an underlying function and values for w and 7 is discussed in Section
1. For the two examples considered, the true response underlying the data sets is the same as
that used in Section 1. This function is illustrated by the dotted curve in, for example, Figure
6. Moreover, the data sets are constructed to have thirty-two repeat measurements for each of
the values ¢} of the control variable.

6.1 EXAMPLE 1

In our first example, the data is generated by setting w = 2.5 x 1072 and 7 = 8.0 x 1075,
The complete set of data is illustrated in Figure 7. The model used to approximate the true
response is a fourth order polynomial spline function with twenty interior knots. The knots,
marked as asterisks on the independent variable axes in Figures 8 and 9, are chosen in such a
way that the underlying function may be adequately represented by a fourth order spline with
these knots. In Section 7 we make some further comments about (automatic) knot placement
when choosing a suitable model. The tolerance tol used to control the convergence of the
algorithm (see Step 5) is set as 1.0 x 10~

In Figure 8 we show the weighted least-squares fit to the complete set of data, as generated

"at Step 1 of the algorithm, together with the true response (dotted curve). This fit is used to
initialize the algorithm. An “iteration” of the algorithm consists of using the current spline
approximation s to provide estimates for w and 7 (Steps 2 and 3), and then to determine a
new spline approximation 3 (Step 4). In Table 1 we give the results produced at each iteration
of the algorithm which proceeds until a measure of the change between s and 35 is judged to
be small (Step 5). In Figure 9 we illustrate the final computed fit to the data together with
the true response that we wish to approximate. We observe that we have realised reasonable
approximations to w and 7, as well as an acceptable approximation to the true response. In
particular, in the region of the main peak and trough the approximation is much improved,
although this is less so in the regions of the secondary peaks and troughs. The use of well-chosen
knots in these regions would, we expect, give improvement.

10
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Table 1

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
A second set of data generated by adding measurement noise and jitter to

samples of a true signal. Thirty-two repeat measurements are made at each
value of the control variable.

Results produced by the algorithm for the data shown in Figure 7. For this
dataw = 2.5 x 1073 and 7 = 8.0 x 1073, The model chosen is a fourth order
polynomial spline function with twenty interior knots.

Iteration | Estimate of w Estimate of 7 | Error ||s — §||¢,,
1 2.394605 x 10~° | 7.236869 x 10~° | 2.050455 x 10~3
2 2.394876 x 1073 | 6.883045 x 1073 | 2.078842 x 10~*
3 2.394838 x 1072 | 6.927162 x 10~3 | 2.603884 x 10~°

11
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Figure 8 Initial weighted least-squares spline fit (Step 1) to the data shown in Figure 7.
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Figure 9 Finalfit (after 3 iterations) to the data shown in Figure 7; this takesinto account

the bias and correct weighting of the measurements using estimates of w and 7.

12
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Table 2 Results produced by the algorithm for the data shown in Figure 5. For this
dataw = 5.0x 1073 and 7 = 1.6 x 1072, The model chosen is a fourth order
polynomial spline function with twenty interior knots.

Iteration | Estimate of w Estimate of 7 | Error ||s — 8¢,
1 4.800556 x 107> | 1.601684 x 102 | 8.597203 x 10~3
2 4.813575 x 1072 | 1.231002 x 1072 | 7.978492 x 103
3 4.819147 x 1073 | 1.287071 x 1072 | 3.165307 x 10~
4 4.816172 x 1073 | 1.324244 x 1072 | 5.728471 x 10~*
5 4.815111 x 1073 | 1.316436 x 1072 | 1.679683 x 10~*
6 4.815509 x 1072 | 1.315809 x 10~2 | 1.174168 x 10~°
Oo08 v ¥ ¥ T T H T ¥ T
0.06 >
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Figure 10 Initial weighted least-squares spline fit (Step 1) to the data shown in Figure 5.

6.2 EXAMPLE 2

For our second example we use the data shown in Figure 5 and constructed withw = 5.0x 1073
and 7 = 1.6 x 10~2. We use the same model for the true response as used for Example 1, and
again set tol to be 1.0 x 107*. The initial and final final fits are shown in Figures 10 and
11, respectively, and the results produced by the algorithm for each iteration are presented in
Table 2. We observe that the final fit provides an acceptable approximation to the underlymg
function, and a substantial improvement over the initial fit.

7 CONCLUSION

In this paper we have been concerned with measurement processes for which the recorded
measured data is contaminated by noise (random error in the response value) and jitter (random
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Figure 11 Final fit (after 6 iterations) to the data shown in Figure 5; this takes into
account the bias and correct weighting of the measurements using estimates of
wand T.

error in the control value at which a measurement is taken). An analysis of such measurement
processes has shown the existence of a systematic bias in the measured data, and has related the
variance of a measured value to the amount of noise and jitter that is present. Consequently,
we have presented an algorithm for removing, or at least reducing, the effects of noise and jitter
from a measured signal. To apply the algorithm we require that repeat measurements taken at
each of a number of values of the control variable are available. Such replicate observations are
readily available in the electrical measurement application considered. The algorithm returns
estimates of the amount of noise and jitter present as well as an approximation to the true
response underlying the data.

We conclude by listing a number of aspects of the work and related ideas that we believe
warrant further consideration.

1. When computing estimates of w and 7 at Step 3 of the algorithm we have taken account
of the uncertainty in the measured variance values ¢? but not of the uncertainty in the
values (s(1)(t;))2. If these uncertainties were available, it might be more appropriate to
compute a linear fit to the data by total least-squares. Estimates of these uncertainties
can be obtained using DASL [1].

2. We have indicated (Section 4.3) that a limitation of the proposed algorithm is the ability
of the model s to represent adequately the underlying function g. If s is taken from the
class of polynomial splines, this limitation can be minimized by suitable choice of the
number and distribution of interior knots used to define s. The topic of automatic knot
placement in the context of least-squares data fitting by splines is the subject of [2] and
[3], and many other useful references are given therein. An automatic knot placement
algorithm could be used at Step 1 to generate an initial approximation s together with an
appropriate set of interior knots, although we have no experience of doing this. Moreover,
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although desirable, it is not obvious how the knots themselves should be updated as part
of each iteration of the algorithm.

3. We have no experience of how the results produced by the algorithm depend on the
quantity of data available, in particular the dependence on the number R of replicate
measurements taken. It would be useful to the experimenter to quantify, if possible, this
dependence.

4. Finally, Humphreys ([9]; Part II, Chapter 3) discusses the possibility of signal dependent
jitter which arises in his measurement system where the trigger signal for the sampling
oscilloscope is derived from the signal being measured. As a consequence, fluctuations
in the signal amplitude give rise to variations in the triggering point, and the jitter
distribution is no longer a fixed probability distribution. An analysis of this type of
measurement process has not been considered, but is of practical interest.
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