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Abstract/Foreword 
 

A finite element analysis is able to determine stress and strain distributions throughout a 
bonded structure resulting from an applied force or displacement.  It is possible to calculate 
the stiffness of the joint and to locate regions of stress and strain concentration where failure 
is expected to initiate.  Using a suitably fine mesh the influence of geometrical features, such 
as the size and shape of fillets at the ends of the adhesive layer, on stress and strain 
distributions can be evaluated.  The relevance of finite element methods to the design of 
adhesive joints is therefore apparent.  The accuracy of design calculations is however 
dependent upon the validity of the materials models used in the analysis to describe the 
deformation behaviour of the adhesive and adherends and the availability of suitable 
materials property data for these models. 

This Good Practice Guide describes a range of materials models that are suitable for use with 
rigid (glassy) adhesives and adherends.  Reference is made to models for linear elastic and 
viscoelastic behaviour, but emphasis is given to elastic-plastic models that are needed to 
describe the non-linear behaviour of tough adhesives.  Some of the limitations in the use of 
these models with rubber-toughened adhesives are explained and illustrated with extensive 
data on a toughened epoxy. 

Selected test methods for bulk and joint specimens are described that can be used to 
determine the property data and parameters required by these models.  Emphasis is given to 
the determination of properties over a wide range of strain rate to enable predictions to be 
made of performance under impact loading.  Procedures for analysing experimental results to 
obtain the model parameters are explained. 

Guidance on setting up a finite element analysis is also given regarding meshing the geometry 
of a joint and selection of a suitable method of solution.  The application of finite element 
analyses to some common joint geometries is illustrated in the Appendix.  Comparisons are 
made here of force/extension curves and stress and strain distributions calculated using 
different models and solvers.  The influences of simplifying assumptions regarding flow 
behaviour and strain-rate are also illustrated. 
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Introduction 
Finite element analysis is a computational tool that can be used for calculating forces, 
deformations, stresses and strains throughout a bonded structure.  The geometry of the 
structure is represented by a series of nodes that define the corners of a 2 or 3 dimensional 
array of elements.  A loading situation is simulated by applying constraints and forces or 
displacements at the boundary of the structure.  The resulting forces, displacements, stresses 
and strains throughout the structure are then calculated by solving the equations (constitutive 
laws) that describe the deformation behaviour of the materials comprising the structure whilst 
maintaining continuity of displacement at all the nodes.  These are solved for each incremental 
increase in the applied force or displacement.  As a result of the analysis, the following 
quantities can be calculated: 

• the deflection of any point (node) in the structure as a function of the applied force 
(a force/displacement curve) 

• components of stress or strain in any element at particular levels of applied force or 
displacement.  These are often displayed as contour maps. 

The power of finite element analysis is now apparent since these predictions can be made at 
any point in the structure including within the adhesive layer.  Furthermore, the complex 
geometry of the bond line can be accurately described by the element mesh so the influence 
of geometrical features, such as the shape of fillets and boundaries with adherends, on joint 
performance is accounted for in the analysis.  This is particularly important in the design of 
adhesive joints because these features are usually associated with regions of stress and strain 
concentration at which joint failure will generally initiate. 

From the above, it is clearly possible to determine the stiffness of the joint.  This prediction 
involves the generation of small strains in the materials and an elastic analysis is satisfactory 
with suitable elastic properties for the adhesive and adherends.  The prediction of joint failure 
is more complicated.  Untoughened, thermosetting adhesives are generally brittle materials 
that will fail at relatively small strains by the initiation and propagation of a crack.  The 
behaviour of these materials is essentially elastic to failure which can, in principle, be 
predicted if the failure criterion is known.   

Most commercial adhesives are, however, rubber toughened.  The rubber phase occurs as 
finely dispersed particles, which enhance plastic deformation in the matrix polymer between 
particles.  Under stress states where there is a significant component of hydrostatic stress, this 
process is further enhanced by the cavitation of the rubber particles.  These materials 
therefore sustain relatively large strains (>5%) with extensive plastic deformation prior to 
failure.  Prediction of joint performance under these circumstances requires the use of models 
that describe the non-linear mechanical behaviour of the adhesive (and possibly the 
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adherends also). For glassy adhesives (operating at temperatures below the glass transition 
temperature), elastic-plastic models are employed in finite element systems for this purpose. 

There are several models available based on different criteria for plastic deformation.  
Predictions of joint performance at large strains close to joint failure depend on the model 
used, and the accuracy of these predictions is uncertain.  There is therefore interest in 
developing new models with higher predictive accuracy.  This is motivated by the need to 
predict the performance of bonded structures under impact loading so that the load and 
absorbed energy prior to failure can be calculated.  This requires proper consideration of the 
dependence of plastic deformation of the adhesive on the applied strain rate and the 
determination of relevant rate-dependent properties.  For the prediction of failure, stress and 
strain distributions in the adhesive need to be accurately calculated and a failure criterion for 
the adhesive needs to be established.  These topics are still subjects of ongoing research.  
However, using available models, finite element analyses are able to predict the location of 
regions of stress or strain concentration where failure will probably initiate.  These calculations 
then allow the influence of factors, such as the geometry of the ends of the adhesive layer, on 
stress and strain levels to be investigated.  Whilst these calculations may have uncertain 
quantitative accuracy, they can be used to optimise joint performance through choice of joint 
dimensions and geometry. 

In Chapter 2 of this Guide, the various materials models that are commonly used to describe 
the deformation behaviour of adhesives are explained, and the materials properties and 
parameters required for the application of these models are introduced.  In Chapter 3, 
measurement methods are described that can be used to determine these properties and 
parameters.  These procedures are illustrated using selected results from extensive 
measurements made on a rubber-toughened adhesive.  Chapter 4 demonstrates how the 
property data and parameters required by a finite element analysis are determined from 
experimental results.  Chapter 5 describes how a finite element analysis is set up, and results 
of analyses of some common joint geometries are discussed in the Appendix.  A discussion of 
possible criteria for the initiation of failure in an adhesive joint is given in Chapter 6. 
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Nomenclature 
Definitions of all symbols appearing in this guide are provided below. 

σij, εij components of the stress and strain tensor respectively  

σi, εi components of principal stress and strain respectively 

V', H' engineering values of stress and strain respectively 

H't engineering value of transverse strain 

V'T, H'T engineering values of stress and strain respectively under tension 

V, H true values of stress and strain respectively 

VT, VS, VC true stresses under tension, shear and compression respectively 

HT, HS, HC true values of strain under tension, shear and compression respectively 

He, Hp true values of the elastic and plastic components of strain respectively 

εT
e  true value of the elastic strain under tension 

Ht true value of transverse strain 

εi
p principal plastic strains (i=1, 2 or 3) 

εt
e, εt

p true elastic and plastic components of transverse strain under uniaxial tension 

εT
p, εS

p, εC
p true plastic strains under tension, shear and compression respectively 

J, Jp shear strain and plastic component of the shear strain measured in a shear test 

Ve, t, q terms for the effective shear component of stress 

Vm, -p terms for the hydrostatic component of stress 

Vo, εo
p effective shear yield stress and plastic strain respectively 

εe
p the effective plastic strain 

E, G, K the Young’s, shear and bulk modulus respectively 

Q' Poisson’s ratio calculated from engineering strains 

Q Poisson’s ratio calculated from true strains 

Qe the elastic component of Poisson’s ratio 
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νp, νC
p the plastic components of Poisson’s ratio under tension and compression 

respectively 

P, E hydrostatic stress sensitivity parameters in the linear Drucker-Prager yield criterion 

O, a hydrostatic stress sensitivity parameters in the exponent Drucker-Prager yield 
criterion 

pt hardening parameter in the exponent Drucker-Prager yield criterion 

G, F the flow potential for linear and exponent forms of the Drucker-Prager model 
respectively 

P', O' , < parameters in the flow potential for non-associated flow 

ε̇, ε̇T
p  strain rate and tensile plastic strain rate respectively 

Vf, Vy, Hr, n, D parameters in a function used to model plastic strain hardening 

Vfo, Vyo, b, c parameters in an equation used to model rate-dependent plasticity 
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Deformation of tough adhesives 
Figure 1 shows a stress/strain curve for a toughened epoxy adhesive measured under uniaxial 
tension.  The stresses and strains are true values (see equations (5) and (6)).  The plot shows: 

• a region of linear elastic behaviour at small strains 
• the onset of non-linear behaviour at a stress Vy.  In elastic-plastic models, this stress 

marks the beginning of plastic deformation and Vy is the initial yield stress 
• a region of non-linear deformation leading to a plateau in the stress.  In elastic-

plastic models, this region is attributed to strain hardening 
• a region prior to failure where the stress changes very little with increasing strain.  

This is termed the flow region. 
 
The data shown in Figure 1 are a significant proportion of what are required for a stress 
analysis.  The precise data requirements depend on assumptions of materials behaviour.  
Materials models and data requirements for a variety of types of behaviour are considered 
next. 

 

 

 

Figure 1. Tensile stress/strain curve for the toughened epoxy adhesive. 
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Elastic behaviour 
Stress and strain levels up to the initial yield stress Vy in Figure 1 define the region of linear, 
elastic behaviour. 

Strictly, since adhesives (as with all polymers) are viscoelastic materials, the behaviour here is 
linear viscoelastic.  The implications of this will be considered later in this section. 

Where behaviour can be assumed to be linear elastic, stress and strain components, Vij and Hkl 
respectively, are related by the tensor equation 

where Cijkl are components of the stiffness tensor.  For isotropic materials, these stiffness 
components are related to only two elastic properties of the material.  These properties are 
usually chosen to be the Young’s modulus E and Poisson’s ratio Qe, and they can be 
conveniently measured using tensile tests on bulk specimens as described in Chapter 3.  
Alternatively, the Young’s modulus and shear modulus G can be measured. 

 

Extension to linear viscoelasticity 

Polymers, and hence adhesives, are viscoelastic materials.  Properties will therefore depend 
upon the timescale over which measurements are made.  For glassy adhesives at 
temperatures that are well below their glass-to-rubber transition temperature, these changes 
will be small in the timescale of most experiments.  As the temperature approaches the glass 
transition temperature, the effects arising from viscoelasticity will be more evident.  In tests 
under constant deformation rate (crosshead speed), the initial slope of the stress/strain curve 
(the modulus) will depend upon the strain rate.  Associated with this, there will be some slight 
curvature even at small strains where behaviour is usually assumed to be linear.  Viscoelastic 
effects are also evident in other tests.  Under constant stress (creep) or constant strain (stress 
relaxation) moduli will decrease with time.  In dynamic mechanical tests, moduli will increase 
with frequency, and damping properties will be apparent through a phase difference between 
the stress and strain cycles. 

It is possible to take account of viscoelasticity in an analysis.  The most rigorous approach is to 
use a creep or stress relaxation function to characterise time-dependent behaviour and 
calculate the response to a time-varying applied load or displacement by assuming 
superposition of strain or stress increments respectively.  Recovery, arising from the removal 
of load or the reversal of displacement, is taken care of by adding the response from negative 

 
σij =  Cijklεkl (1)  
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stresses or strains respectively.  An approximation for monotonic loading is possible by 
expressing Young’s modulus as a function of strain rate, obtained from constant strain rate 
tests, and using an elastic analysis with the appropriate modulus for each element depending 
on the strain rate seen by that element.  A “rate-dependent elasticity model” such as this is 
not commonly available in finite element systems so it would be necessary to code a user-
defined materials model (UMAT) for use with an FE solver. 

Materials models for dynamic mechanical behaviour are available and enable stiffness and 
damping calculations to be made in a bonded structure in response to vibrations or the 
excitation of resonances.  Data for the dynamic modulus and loss factor in tension are needed 
either at a single frequency or, for higher accuracy, over a range of frequencies.  A value for 
Poisson’s ratio, assumed to be real, can be taken from a tensile test under constant strain rate 
without any significant loss of accuracy. 

 

Models for non-linear behaviour 
A brief introduction to elastic-plastic models 

At stress and strain levels above the limit for linear behaviour, relationships between stress 
and strain are non-linear.  The non-linear behaviour of plastics materials is generally 
interpreted as enhanced viscoelastic deformation arising from an increase in molecular 
mobility caused by the application of stresses above the limit for linear behaviour.  At these 
stress levels, relaxation times are reduced leading to enhanced creep and stress relaxation.  
Satisfactory models of this non-linear viscoelasticity have yet to be developed, and FE 
packages generally consider material non-linearity in rigid materials in terms of elastic-plastic 
models that were developed for metals. 

With elastic-plastic models, calculations of stress and strain distributions at low strains are 
based on linear elasticity.  The onset of non-linearity is then ascribed to plastic deformation 
and occurs at a stress level regarded as the first yield stress.  The subsequent increase in stress 
with strain is associated with the effects of strain hardening.  In this non-linear region, the 
total strain εij is considered to be the sum of a recoverable elastic component εij

e  and a plastic 

component εij
p, which is non-recoverable.  Thus 

 
εij =  εij

e + εij
p  (2)  
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Stress analysis calculations then involve the use of multiaxial yield criteria and a flow law.  
Some of the yield criteria that have been used to model plastic deformation in adhesives are 
described in the following sections. 

The yield criterion relates components of applied stress field to material parameters after the 
onset of yielding.  The material parameters will depend upon the plastic strain for a strain 
hardening material.  This is a material having a range of yield stress varying from an initial 
value Vy, marking the onset of non-linearity, to a maximum value corresponding to the flow 
region (see Figure 1). 

The calculation of plastic strain components is achieved in plasticity theory using a flow rule 
(see equation (19)), which relates increments of plastic strain to a plastic flow potential.  If the 
flow behaviour for a particular material is such that the flow potential can be identified with 
the yield function then this is termed associated flow.  In general, this will be an approximation 
and the extra information needed to characterise non-associated flow is described later. 

In order to calculate some of the parameters in elastic-plastic models, it is necessary to select 
stress values from different tests under the same state of yielding.  This requires the definition 
of an effective plastic strain (equation (26)), and equivalent stresses are then a set of stresses 
that characterise stress states having the same effective plastic strain. 

 

The von Mises criterion 
The most simple yield criterion interprets yielding as a purely shear deformation process which 
occurs when the effective shear stress Ve reaches a critical value.  This effective stress is 
defined in terms of principal stress components σi (i = 1, 2 or 3) by 

 

σe = {
1
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]}
1

2⁄

    (3)  

The von Mises criterion then relates Ve to the yield stress in tension VT by 

 
σe =  σT    (4)  

The tensile yield stress VT is now a material parameter and has a minimum value, which 
denotes the limit of elastic behaviour and the start of plastic deformation (see Figure 1) and 
will increase tensile plastic strain εT

p.  The function σT(εT
p) is called the tensile strain hardening 

function. 
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In equations (2), (3) and (4) and the equations that follow, stresses V and strains H are true 
values and are related to nominal (engineering) values σT

′  and εT
′  based on the original 

specimen dimensions by 

 

σT =
σT

′

(1 − ν′εT
′ )2 (5)  

and 
εT = ln(1 + εT

′ )   (6)  

It is evident from equations (5) and (6) that true and engineering values of stress and strain are 
effectively the same at strains below about 0.05.  The need to calculate true values therefore 
only arises in analyses involving relatively large strain plasticity. 

It follows from equation (2) that 

 

εT = εT
e + εT

p =
σT

E + εT
p  (7)  

 

εt = εt
e + εt

p =
-νeσT

E + εt
p (8)  

 

𝜈′ = −
𝜀𝑡

′

𝜀𝑇
′  (9)  

and 

 

𝜈 = −
𝜀𝑡

𝜀𝑇
 (10)  

where εt
′  and εt are negative quantities. 

The von Mises criterion predicts that the tensile yield stress, shear yield stress and 
compressive yield stress are related by 

 
σT =  σC =  √3σS    (11)  
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Tests on adhesives under additional stress states such as shear and compression reveal that 
yielding is sensitive to the hydrostatic component of stress in addition to the shear 
component.  The von Mises criterion is therefore not realistic, and alternative criteria are 
considered in the next sections. 

 

The linear Drucker-Prager criterion 
A simple modification of the von Mises criterion that includes hydrostatic stress sensitivity 
follows from equation (4) 

 
σe =  σo  −  μσm  (12)  

Here σo is a material parameter which is now related to the shear yield stress σS by  

 
σo =  √σS    (13)  

And σm is the hydrostatic component of stress given in terms of principal stresses by  

 

σm =
1
3 (σ1 + σ2 + σ3)    (14)  

Equation (12) is identical to the linear Drucker-Prager model in the finite element package 
Abaqus where the notation used is 

 
t − p tanβ = d    (15)  

where t = σe, p = −𝜎𝑚, tan E = P and d = σo. E is termed the friction angle. 

 

The parameter P depends on the adhesive material and characterises the sensitivity of yielding 
to hydrostatic stress.  A value for P can be determined from tests under two different stress 
states, and procedures for this are described in Chapter 4.  Using yield stresses from shear and 
tensile tests 

 
μ = 3[(√3 σS σT⁄ ) − 1]      (16)  
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From shear and compression data 

 
μ = 3[1 − (√3σS/σC)]       (17)  

and from compression and tension data 

 

μ =
3[(σC/σT) − 1]
[(σC/σT) + 1]    (18)  

It should be noted that the above yield stresses σC, σT and σS are associated with the same 
effective plastic strain (see equation (26)). 

 

Associated flow 

The calculation of plastic strain components is achieved in plasticity theory using the flow rule 
in which increments of plastic strain are related to a plastic flow potential F by the equation 

 

dεij
p = dλ

∂F
∂σij

   (19)  

where dO is a factor that depends on stress state and is determined by ensuring equivalence of 
the plastic work done under all stress states using the expression 

 
σedεe

p = σijdεij
p   (20)  

where σe and εe
p are the effective stress (equation (3)) and effective plastic strain 

(equation (26)) respectively. 

 

For some materials, the flow potential F can be identified with the yield function, in which case 
the flow is said to be associated and from equation (12) 

 
F = σe + μσm − σo  (21)  
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This relationship is valid if the resultant of the strain increment during flow is directed normal 
to the yield surface.  The validity of this assumption for adhesives needs to be verified and a 
more general expression for F is based on non-associated flow. 

 

Non-associated flow 

Under non-associated flow, a more general expression for F is 

 
F = σe + μ′σm − σo  (22)  

The flow parameter P' is then a material parameter that must be measured. 

From equations (19) and (22), it follows that 

 

μ′ =
3(1 − 2νp)
2(1 + νp)    (23)  

Where νp is the plastic component of Poisson’s ratio determined under uniaxial tension and is 
given by 

 

νp =
-εt

p

εT
p    (24)  

In Abaqus the flow potential, G, by analogy with equation (22) is 

 
G = t − p tanΨ   (25)  

where tanΨ  has replaced P'. Ψ is termed the dilation angle.  If the calculated value of 
parameter P' is not equal to P then flow is termed non-associated.  Associated flow is obtained 
by setting P' equal to P. 

An effective plastic strain εe
p is defined in terms of principal plastic strains εi

p by 

 

εe
p =

√2
3 [(ε1

p − ε2
p)2 + (ε2

p − ε3
p)2 + (ε3

p − ε1
p)2]

1
2⁄

   (26)  
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Effective plastic strains in shear, tension and compression are therefore given by 

 

εe
p =

2εS
p

√3
=

γp

√3
=

2
3 εT

p(1 + νp) =
2
3 εC

p(1 + νC
p)   (27)  

where νC
p is the plastic component of Poisson’s ratio measured in compression and εS

p, εT
p and 

εC
p are plastic strains measured in shear, tension and compression. γp is the plastic shear strain 

measured in a shear test and is equal to twice the tensor component εS
p.  Also, it should be 

noted that the compressive strain εC
p has a negative value.  Relationships between νp and νC

p 
and the flow parameter P' can be derived from the flow law, equation (19).  Thus, for the 
linear Drucker-Prager model 

 

νp =
3-2 μ'

2(3 + μ') (28)  

and 

 

νC
p =

3 + 2 μ'
2(3 − μ') (29)  

It then follows from equation (27) that 

 

εe
p =

εT
p

(1 + μ'/3) =
εC

p

(1 − μ'/3) (30)  

The flow behaviour of adhesives is generally non-associated.  Non-associated flow results in a 
nonsymmetrical stiffness matrix and negative eigenvalues can occur even when the hardening 
data doesn’t show softening.  When an analysis reaches such a bifurcation point, an implicit 
solver may have difficulty converging.  For simplicity, associated flow can be assumed by 
setting P = P' but the resulting loss in the accuracy of stress and strain calculations will be 
uncertain. 

It should be mentioned here that the linear Drucker-Prager model is not capable of accurately 
describing the non-linear behaviour of an important class of tough adhesive, the rubber-
toughened materials.  
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The exponent Drucker-Prager criterion 

Although the linear Drucker-Prager yield criterion includes some sensitivity of yielding to the 
hydrostatic stress, it is not able to describe behaviour with any accuracy under stress states in 
which there is a high component of hydrostatic tension.  Such stress states are common locally 
in adhesive bonds because of the high constraint imposed by the adherend under forces 
directed normal to the interface.  An alternative criterion is significantly more accurate under 
these conditions and is often written in the form 

 
σe

2 = λσT
2 − 3(λ − 1)σTσm  (31)  

where O is another hydrostatic stress sensitivity parameter and relates stresses σC, σS and σT  
under uniaxial compression, shear and uniaxial tension by the equations 

 

λ =
σC

σT
  (32)  

 

λ =
σC

2

3σS
2  (33)  

and 

 

λ =
3σS

2

σT
2    (34)  

In Abaqus the yield function is expressed as 

For the exponent form of the Drucker-Prager model with the exponent parameter, b, set equal 
to 2.  The yield criterion equation (31) is then expressed as 

 

Similarly to the linear Drucker-Prager model, q = σe and p = −σm, so it follows that 

 
F = aqb − p − pt =  0  (35)  

 
aqb = p + pt  (36)  
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a =
1

3σT(λ − 1)   and   pt = aλσT
2    (37)  

If the flow potential F is associated with the yield potential, it takes the form 

Non-associated flow can be modelled by allowing O to take an alternative value O' (cf. equation 
(22)) which could be determined experimentally through measurement of Poisson’s ratio in 
tension or compression.  In Abaqus the exponent Drucker-Prager model only models non-
associated flow.  The expression for calculating O' can be derived by substituting equation (38) 
with O replaced by O' into equation (19).  It should however be noted that a hyperbolic 
function has been chosen for the flow potential F.  The asymptote of the hyperbola coincides 
with the flow potential for the linear Drucker-Prager model, equation (25).  The relevant 
material parameter in the flow law is therefore tan\ = P' which can be calculated using 
equation (23). 

 

Applicability to rubber toughened adhesives 
If the materials models described above are used to analyse data from uniaxial compression, 
tension and shear, some limitations of the models are revealed. Figure 2 compares 
experimental data for true yield stress against true plastic strain measured on the rubber-
toughened adhesive.  Stresses and strains from the shear test have been scaled as shown to 
facilitate comparisons between the curves.  When compared with the curve derived from a 
shear test, the data under compression and tension reveal a dependence of yielding on the 
hydrostatic component of stress.  This is typical for this type of material and demonstrates that 
the von Mises criterion is inaccurate. 

 

  

 
F = σe

2 − λσT
2 + 3(λ − 1)σTσm pt  (38)  
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Figure 2. Comparison of stress/plastic strain curves determined under uniaxial tension, shear and uniaxial 
compression for the determination of stresses at the same effective plastic strain.  Stresses and strains 

from shear data have been scaled as shown to facilitate comparisons between the curves. 

Figure 3. Plot of equivalent stresses under tension, shear and compression at an effective plastic strain of 
0.03 on axes of effective shear stress Ve against hydrostatic stress Vm. 
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The hydrostatic stress sensitivity parameters P and O can be determined from data measured 
under two different states of stress (see equations (16) to (18) and (32) to (34)).  The derived 
values for these parameters, however, depend upon which test data are selected.  This is 
illustrated in Figure 3 which shows measured yield stresses obtained from the curves in 
Figure 2 and plotted on axes of deviatoric stress Ve against hydrostatic stress Vm (see 
equations (3) and (14)).  The yield stresses were determined at an effective plastic strain 
(equation (27)) of 0.03.  Figure 3 allows direct comparison of experimental data with the yield 
criteria in equations (4), (12) and (31).  The inadequacy of the von Mises criterion is 
immediately apparent.  The parameter P in the linear Drucker-Prager criterion is the gradient 
of the line joining two data points, and this gradient is seen to be dependent on the data pair 
selected.  Similarly, the value for the parameter O derived for the quadratic criterion (exponent 
Drucker-Prager) also depends on the data set selected.  These curves also indicate the need for 
experimental points at large hydrostatic stresses in order to fully characterise the yield 
surface.  The butt-joint tension test described in Chapter 3 can provide such data. 

These inconsistencies between measured and predicted behaviour for the rubber-toughened 
epoxy can be explained by the nucleation of cavities in the rubber phase.  The nucleation of 
cavities requires a dilatational stress component and does not therefore occur under shear or 
compression.  Its effect is to lower the tensile yield stress relative to the shear or compression 
stresses.  Furthermore, cavitation creates the additional volumetric strain under tension which 
gives rise to a decrease in Poisson’s ratio with plastic strain. 

Material models which include the influence of void nucleation on ductility do not currently 
exist in FE packages.  It is possible to include adaptations to elastic-plastic models through the 
use of a user subroutine.  A model has previously been developed at NPL to include the effect 
of void nucleation on ductility through adaptations to existing elastic-plastic models.  A 
detailed description of this cavitation model has been reported in the literature [1-4]. 
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Rate-dependent plasticity 
 

Both the linear and non-linear properties of adhesives are dependent on the rate at which the 
adhesive is deformed.  A proper description of rate-dependent behaviour is needed for 
accurate calculations of strain distributions and performance under impact loading.  The 
dependence of elastic properties on strain rate has been discussed briefly earlier in this 
chapter and is small enough to be negligible for glassy adhesives that are at temperatures well 
below their glass-to-rubber transition.  Rate-dependent plasticity is accommodated in finite 
element systems through the presentation of hardening curves that vary with plastic strain 
rate.  The measurement of these curves is described in Chapter 3.  Data up to a maximum 
strain rate of around 10 s-1 can be measured using these tests.  Data for rates above this are 
best determined by extrapolation.  For this purpose, hardening curves can be modelled using 
the function 

where σy, σf, εr, n and D are parameters which are chosen to give the best fit to experimental 
data.  For the toughened epoxy used to illustrate results in this Guide, the yield stress 
parameters σf and σy are the only ones that vary significantly with plastic strain rate, and this 
dependence can be modelled using the relationships 

and 

where σfo, σyo, b and c are parameters determined from linear fits to plots of σy and σf 
against log plastic strain rate. 

 

  

 
σT = [σy + (σf − σy)(1 − exp − (εT

p/εr)n)](1 + αεT
p)  (39)  

 
σf = σfo(1 + b log ε̇T

p)  (40)  

 
σy = σyo(1 + c log ε̇T

p)  (41)  
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Measurement of the properties of adhesives for FEA 

 

Chapter 3 

Measurement of the 
properties of adhesives for 
FEA 
• Data requirements 
• Bulk specimen tests 
• Joint specimen tests 
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Data requirements 
 

Table 1 summarises the data needed for the different types of analysis described in Chapter 2.  
Much of the data requirements have been expressed in terms of tensile data, and these can be 
measured accurately and conveniently using standard test methods for plastics if bulk 
specimens are available.  For some models, additional data are needed from compression or 
shear tests, and these can also be determined using bulk specimens as described in the 
following sections.  Methods for preparing bulk specimens of adhesives have been described in 
ISO standards [5] and a Good Practice Guide [6]. 

For some adhesives, it is difficult or impossible to prepare bulk specimens of suitable size for 
testing.  For other materials, there may be some concern over whether bulk specimen 
properties accurately represent the properties of the thin layer of the adhesive in a bonded 
joint.  The characterisation of these materials can be achieved using joint specimen tests.  The 
most appropriate ones for determining data for finite element analysis are described in this 
chapter.  With joint tests, a lower accuracy in property measurement is usually obtained 
because of the very small gauge length (the bond thickness) of the specimen available for the 
measurement of strain. 

Analysis Type of behaviour Data requirement 
linear elastic  E and G or Qe 
linear viscoelastic time or rate dependent Stress relaxation modulus or creep 

compliance as a function of time 
frequency dependent Dynamic modulus and loss factor 

as functions of frequency 
elastic plastic 
 
 

yielding not sensitive to 
hydrostatic stress 

Elastic properties 
σT(εT

p)  or  σS(γp) 
yielding sensitive to 
hydrostatic stress 

Elastic properties 
σT(εT

p) and σS(γp) or σC(εC
p) 

O (=a) or P (= tan E) 
O' or P' (= tan <) 

rate-dependent 
elastic-plastic  

Same as elastic-plastic analyses 
and in addition σT(εT

p, ε̇T
p) 

Table 1. Summary of data requirements for finite element analyses with different types of materials 
behaviour. 
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Bulk specimen tests 
Tensile measurements 

The modelling of dynamic or impact events requires the determination of elastic properties 
and hardening curves at various strain rates, covering the range of rates expected in the 
analyses.  Standard electro-mechanical machines are suitable for determining data at strain 
rates up to 0.1 s-1.  Higher strain rates require a servo-hydraulic test machine [7]. 

Elastic properties are normally assumed to have little dependence on strain rate.  Therefore, 
tensile tests [6] for the determination of Young’s modulus and Poisson’s ratio are carried out 
on standard specimens [8, 9] under constant deformation rate in a tensile test machine at 
relatively low strain rates.  For best accuracy, contacting extensometers should be used for the 
measurement of axial and transverse strain, εT and εt.  Two extensometers mounted on 
opposite faces of the specimen should preferably be used for the axial strain measurement to 
eliminate small non-uniformity in the strain through the thickness of the specimen caused by 
bending.  The transverse strain measurement should be made close to the axial gauge section 
and, if possible, between the contact points of the extensometers.  The contact pressure used 
to attach the extensometers to the specimen should be large enough to prevent slippage but 
insufficient to indent the specimen surface.  Strain gauges are not recommended as they 
locally stiffen the specimen [6]. 

Values for Young’s modulus and Poisson’s ratio are calculated from the regression slopes in 
the linear region of the σT − εT and εt − εT curves.  Use of regression slopes is preferable to 
single point values owing to the potential scatter in the data points (particularly the εt − εT 
data) that is mainly due to uncertainties in the small extensions measured.  Whilst elastic 
values can be determined over any strain range where the data appear linear, the slight 
curvature due to viscoelastic effects will tend to reduce the value of E as the strain range 
widens. 

The measurement of tensile hardening curves involves use of the same tests out to larger 
strains.  Contacting extensometers, unless they have been modified, typically have an upper 
strain limit of around 0.05.  They may also initiate premature failure in the specimen at a point 
of contact.  For these tests, the use of a video extensometer is therefore preferable for the 
measurement of axial strain.  These instruments are generally unsatisfactory for the 
measurement of small displacements, so a contacting device is best used to measure the 
lateral strain for the determination of true stresses and the plastic component of Poisson’s 
ratio.  Normal video extensometers are limited to low rate tests owing to relatively slow 
sampling rates so a combination of contacting extensometers and crosshead movement is 
used to determine strains in higher rate tests.  Standard test machine data loggers tend to 
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have too limited sampling rates to fully capture all the data points needed to determine stress-
strain curves from high rate tests.  Data capture using transient recorders or digital storage 
oscilloscopes can overcome this limitation.  In high rate tests, errors in force measurement can 
result from resonance of the force transducer and the propagation of stress-wave pulses in the 
specimen.  These errors can be reduced through the use of a piezo-electric force transducer 
and lightweight grips. 

The dependence of strain hardening curves on strain rate (σT(εT
p, ε̇T

p)) is determined from 
tests carried out over a range of speeds.  The acquisition of data at strain rates up to about 
1 s-1 or possibly 10 s-1 is possible using the instrumentation described above.  The 
measurement of strain generally causes problems at strain rates much above this, and there 
are no standard procedures for determining these data.  Some experimental results up to a 
strain rate of 40 s-1 and the extrapolation of these to a rate of 1000 s-1 are discussed in the 
next section. 

 

Illustrative data from tensile measurements 

Figure 4 shows true tensile stress and Poisson’s ratio data against true axial strain obtained 
from a tensile test on the toughened epoxy adhesive at a cross-head speed of 10 mm/min.  In 
this test, the strain rate increased from 1x10-3 s-1 in the linear region to 2x10-3 s-1 at strains 
near the peak stress due to the specimen softening.  The nominal strain rate of the test is 
taken as the strain rate near the peak stress.  True stress and true strain values were derived 
using equations (5) and (6). 

Figure 5 shows the variation of the tensile yield stress VT with the plastic strain εT
p derived from 

the data in Figure 4 using equation (7).  These data constitute the tensile hardening curve 
σT(εT

p) at the plastic strain rate of 2x10-3 s-1. 

Figure 6 shows how the hardening behaviour depends upon strain rate.  The data at the strain 
rate of 40 s-1 were estimated from measurements of the cross-head displacement and a 
correlation between this and strain obtained from tests at lower speeds.  The continuous 
curves are best fits to the data using equation (39) obtained using curve fitting software and 
enable the determination of hardening curves at higher strain rates by extrapolation using 
equations (40) and (41) [10]. 
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Figure 5. Variation of tensile and shear properties with plastic strain used for the determination of 
parameters in elastic-plastic models. 

Figure 4. Stress/strain curves and Poisson’s ratio for the epoxy adhesive in tension and shear measured at the 
same effective plastic strain rate of 0.002 s-1. 

 

0

10

20

30

40

50

60

70

0 0.02 0.04 0.06 0.08 0.1

strain

st
re

ss
 (M

P
a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
oi

ss
o

n
's

 r
at

io

 shear

tension



 

Page 26 of 66 
 

 

 

 

 

 

 

 

 

 

 

 

 

Shear measurements 
Shear tests on bulk specimens can be carried out using the notched-plate shear (Arcan) [11] or 
notched-beam shear (Iosipescu) [12] methods.  These methods are similar in that they use a 
double-notched specimen to achieve a region of predominantly pure shear in the centre of the 
specimen between the notches.  Of these methods, the notched-plate shear test is probably 
the preferred one because the loading stage is simpler to construct, extensometers can be 
more conveniently used for strain measurement [13] and thinner test specimens can be 
employed.  A schematic diagram of the specimen and loading arrangement is shown in 
Figure 7. 

Specimen dimensions of 12 mm for the notch separation with a radius of the notches of 
1.5 mm have been used successfully.  A purpose-built extensometer [13] has been used for 
measuring the relative displacement of two points either side of a vertical line through the 
centre of the specimen.  The separation of these points is 3 mm.  Finite element analyses of 
the stress and strain distributions in the specimen reveal some non-uniformity in the shear 
stress between the notches and a small contribution to the measured displacements from 
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bending.  These give rise to typical errors of about 7% in shear modulus and 2% in the shear 
flow stress. 

 

 

 

This test is unlikely to be suitable for brittle adhesives since a tensile failure will initiate near 
one of the notches before the full shape of the shear stress/strain curve is obtained. 

 

Illustrative data from shear measurements 

Figure 4 shows a shear stress/shear strain curve measured on the toughened epoxy using the 
notched-plate shear test.  The test speed was 2 mm/min, and this gave a shear, plastic strain 
rate of 4x10-3 s-1.  The effective plastic strain rate (see equation (27)) is therefore about 
2x10-3 s1, which is comparable with that for the tensile test.  Figure 5 shows the shear yield 
stresses in Figure 4 plotted against plastic strain.  To aid comparison with the tensile results, 
the shear data have been plotted as √3σ vs γp √3⁄ .  The differences between the shear and 
tensile yield stresses when plotted in this way illustrate the inadequacy of the von Mises yield 
criterion for modelling plastic deformation.  It is worth noting that shear stress-strain curves 
generally show similar strain rate dependence to the tensile curves. 

 

Figure 7. Schematic diagram of apparatus for testing bulk specimens using the notched plate shear method. 
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Compressive measurements 

Measurements under uniaxial compression can be used instead of shear data to determine the 
sensitivity of plastic deformation to the hydrostatic component of stress and to derive the 
hydrostatic stress sensitivity parameter in the appropriate yield criterion.  Furthermore, as 
explained previously, the results of measurements under tension, shear and compression can 
be used to assess the validity of candidate yield criteria. 

Tests under uniaxial compression are difficult to perform because of the promotion of buckling 
of the specimen under high forces.  The ISO 604 [14] standard test can be used to produce 
satisfactory results.  This test employs short specimens with approximate dimensions 10 mm 
high x 10 mm wide.  The thickness should be at least 3 mm and preferably higher.  The top and 
bottom faces of the specimen must be machined smooth and accurately parallel.  These are 
loaded in a testing machine between platens whose faces are smooth and accurately parallel.  
To minimise constraints by the platen surfaces to lateral expansion of the specimen during 
loading, the surfaces of the platens are lubricated with oil.  Extensometers are used to 
measure changes in the platen separation, and nominal strain values are derived from the 
original specimen length.  At small strains, errors in strain values arise through non-uniformity 
of the strain along the length of the specimen by this loading method.  It is possible to apply a 
correction to these strains using a knowledge of Young’s modulus from tensile tests.  However, 
it is the properties under plastic deformation that are of most interest from this test.  Plastic 
strains are derived using equation (7) with tensile stress and strain values replaced by 
compression values that are negative and with an apparent value for the Young’s modulus 
under compression obtained from these tests.  At small strains, uncertainties in plastic strains 
will be large but should become smaller at larger plastic strains. 

 

Illustrative data from compression tests 

Figure 2 compares the true stress/true plastic strain curve for the toughened epoxy under 
compression with curves measured under tension and shear.  Data from these curves have 
been used in the section on Applicability to rubber toughened adhesives within Chapter 2, to 
assess the validity of elastic-plastic models for describing the non-linear behaviour of the 
toughened epoxy. 
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Joint specimen tests 
Joint specimen tests offer the opportunity to test the adhesive in a form close to the form that 
it will have in the bonded structure.  However, the accuracy and reliability of the materials 
properties obtained from joint specimen tests is reduced in comparison to bulk specimen tests 
because of higher uncertainties in strain resulting from small gauge lengths (normally the bond 
line thickness) and inclusion of adherend deformation in the measurement.  It is also not 
possible to extract all of the required parameters (such as Qp) from joint tests and assumptions 
concerning these parameters would need to be made when model predictions are made. 

 

Shear property measurements 

There are a number of joint-specimen tests that have been developed for determining the 
shear properties of adhesives.  Some of these have been reviewed in reference [13].  Tests 
based on the torsion of butt-joint specimens are probably the most accurate but require 
special apparatus for load application and strain measurement.  The relevant ISO standard is 
ISO 11003-1 [15].  The use of solid adherends leads to a variation of stress and strain across 
the specimen diameter and the need for data correction [16] to derive stress and strain values 
when the deformation is non-linear.  The use of hollow, circular adherends avoids the need for 
this correction, but specimen preparation is more complicated. 

The thick-adherend shear test is probably the most commonly used joint-specimen test for 
producing material properties under shear.  An ISO standard (ISO 11003-2 [17]) exists for this 
test.  The thick and specially profiled adherends in this test produce more uniform stress and 
strain distributions in the adhesive than are obtained in a lap-shear test.  The latter should be 
used only for the acquisition of qualitative data on adhesive performance. 
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Tensile property measurements 
Joint specimen tests are not used routinely for determining tensile property data for 
adhesives.  Tensile tests on butt-joint specimens can however be used with suitable 
instrumentation to produce elastic properties and also plastic property results that serve to 
check the validity of elastic-plastic models.  A suitable specimen geometry, together with 
extensometers for the measurement of strain in the adhesive, are shown in Figure 8.  The 
specimen consists of two 25 mm diameter, cylindrical adherends that are bonded together at 
end faces.  The V-shape groove in each adherend near the adhesive layer serves to locate an 
extensometer consisting of two rings with knife edges on their inner surfaces.  Each ring 
locates in one of the grooves in the test specimen.  One of the rings supports three precision 
displacement transducers that are equally spaced around the ring.  The core of each 
transducer contacts the surface of the second ring.  A value for the nominal axial strain in the 
adhesive under tension is determined from the average displacement divided by the adhesive 
layer thickness.  A small correction can be applied for the contribution from the elastic 
deformation of the adherends to the total displacement recorded by the extensometer. 

 

Figure 8. Section detail of the extensometer for the butt-joint tensile test showing location 
grooves on the specimen. 
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Accurate alignment of test specimen and loading assembly is critical in this test.  The specimen 
is loaded through collet grips [18] that are rigidly mounted in the test assembly to minimise 
any lateral deformation of the specimen during loading.  Without this constraint to lateral 
movement, the specimen is observed to bend during plastic deformation causing a non-
uniform strain in the adhesive.  An alignment fixture is used to position one grip and enable 
the specimen to be mounted precisely in the test assembly.  The three individual displacement 
transducers provide a check on the axiality of the loading during the test.  The readings will 
diverge should the specimen be misaligned. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 shows a typical stress/strain curve for the toughened epoxy determined from a butt-
tension test.  Despite the large diameter-to-thickness ratio of the adhesive layer, the stress 
distribution in the adhesive is not strictly uniform so stress and strain data are nominal values.  
The slope of the curve in the region of small strains where behaviour is linear is the elastic 
modulus corresponding to the stress state where lateral stresses imposed by the adherends 
ensure that lateral strains are zero (in practice, only in the central region of the adhesive).  The 
modulus under this stress state is 

 

 
σa

εa
=

E(1 − νe)
(1 + νe)(1 − 2νe) = K +

4
3 G  (42)  
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Figure 9. Stress/strain curve for a butt-joint specimen tested in tension. 
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where σa and εa are the axial stress and strain respectively in the linear range of strain and K 
and G are the bulk and shear moduli respectively.  Whilst this modulus value could be used 
with shear data from other joint-specimen tests to characterise elastic behaviour, it should be 
recalled that there is an uncertain error in this value arising from the non-uniformity of stress 
in the adhesive. 

 

The data shown in Figure 9 can be used to assess the validity of a selected elastic-plastic model 
and associated parameters derived from tensile and shear or compression data.  Predicted 
stress/strain curves for this test vary widely between the various models.  The exponent 
Drucker-Prager model gives the closest agreement with experiment and predicts lateral 
stresses that increase to the value of the axial stress (implying pure hydrostatic tension) during 
plastic deformation.  Other models predict lateral stresses that increase to values significantly 
less than this.  This result suggests that stress and strain distributions calculated by the various 
models in regions of high peel stress will be significantly different and their accuracy is 
uncertain.  This has hindered studies of failure in adhesive joint specimens and the 
development of a valid failure criterion (Chapter 6). 
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Determination of model parameters for FEA 

Chapter 4 

Determination of model 
parameters for FEA 

• Elastic properties 
• Strain hardening functions 
• Hydrostatic stress sensitivity factor µ 
• Hydrostatic stress sensitivity factors λ and a 
• Flow parameter µ’ 
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This chapter describes the determination of property data and parameters required for stress 
analyses of joints and uses results on the toughened adhesives for purposes of illustration.  
The results of finite element analyses of some common joint geometries using these data are 
presented and discussed in the Appendix. 

 

Elastic properties 
Values for Young’s modulus and the elastic component of Poisson’s ratio were calculated from 
tensile stress/strain data obtained in the linear, low strain region, employing contact 
extensometers for the measurement of both longitudinal and transverse strains.  Derived 
values are shown in Table 3. 

 

Strain hardening functions 
A tensile strain hardening function σT(εT

p) is derived from a tensile stress/strain curve by 
subtracting the elastic component of strain from the total tensile strain (see Figure 1).  Derived 
values for plastic strain are therefore sensitive to the value chosen for the slope of the linear 
region (nominally a Young’s modulus).  Since this quantity will depend upon test speed and 
experimental accuracy, it is recommended that elastic strains are determined using the best 
linear fit to the data being analysed.  Stress/strain curves vary with strain rate, so analyses that 
take account of rate-dependent plasticity require hardening curves derived from tensile tests 
carried out over a range of loading speeds.  These are shown in Figure 6. 

Strain hardening data can be given in either single or multiple rate form.  If a single strain rate 
hardening curve is used, this strain rate is assumed to be the average strain rate in the 
adhesive layer.  The use of multiple rate hardening curves allows for regions of varying strain 
rate within the adhesive layer.  Generally, four strain hardening curves separated by a factor of 
10 in strain rate are used. One is chosen with a strain rate approximately the same as the 
average strain rate in the lap joint, one higher rate curve and one lower rate curve.  An 
extremely low rate curve is also required and is designated the zero rate curve.  Analysis 
difficulties can occur if more hardening curves are used or if too many data points are used to 
characterise each curve.  The plastic strain value must always increase otherwise the analysis 
will not run.  The best approach is to sample the hardening data until a representative curve is 
achieved.  The sampling density of the hardening curves shown in Figure 6 has been used 
successfully. 

The hardening curve data are required in the tabular form of yield stress with plastic strain 
where the first pair of numbers must correspond to the initial yield stress at zero plastic strain.  
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An example of hardening data is shown in Table 2.  If strains in the analysis exceed the 
maximum effective strain supplied in the hardening curve, then the analysis will assume that 
additional extension occurs with no hardening.  This can cause problems with successful 
convergence of the solution.  One means of getting around this is to extrapolate a point on the 
hardening curve at a significantly higher strain using equation (39) or linear extrapolation of a 
supplied curve. 

Yield stress (MPa) Plastic strain 
22.08 0 
34.59 0.0004 
45.48 0.0014 
56.28 0.0034 
65.98 0.0070 
72.63 0.0120 
76.89 0.0180 
79.40 0.0240 
81.05 0.0300 
82.25 0.0360 
83.18 0.0420 
83.94 0.0480 
84.58 0.0540 

 

Table 2. Typical hardening curve data for a rubber-toughened epoxy at a strain rate of 3 s-1. 

 

Hydrostatic stress sensitivity factor µ = tan β 
This parameter occurs in the linear Drucker-Prager model (see equations (12) and (15)) and is 
determined from yield stresses under two different stress states using equation (16), (17) or 
(18) depending on the tests chosen.  Yield stress data under different stress states are shown 
in Figure 2.  The yield stress values used for the calculation must be at the same effective 
plastic strain given by equations (27) or (30).  If yield stress data are available in the plateau 
region of the stress strain curves, then yield stresses do not vary much with effective plastic 
strain.  Accurate determinations of effective plastic strains are then not necessary.  If this 
assumption cannot be made, effective plastic strains are derived from a knowledge of the 
plastic component of Poisson’s ratio or the derived value for P' from equation (23).  As 
discussed in Chapter 2 and illustrated in Figure 3, the value obtained for P depends upon 
which stress states are chosen.  The value also depends on the plastic strain level chosen (a 
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further indication of limitations in the model) but this dependence becomes small at higher 
plastic strains.  For the finite element analyses presented here, a value for P was determined 
from the tensile and shear data in Figure 2 at an effective plastic strain of 0.03.  From Figure 2 
it can be seen that these values are located in the plateau regions of the shear and tensile 
data.  The plastic Poisson’s ratio, measured from the plateau of a νp versus  εp plot (see Figure 
5), was νp = 0.27.  Hence, from equation (27), values of εS

p and εT
p could be obtained.  These 

values were: 

The relevant yield stress values could then be obtained from Figure 2 at εT
p=0.035 and 

γS
p= 0.052, although as the shear data is plotted as γS

p/√3 then the yield shear stress value 
needs to be read from the graph at an effective plastic strain of 0.03.  Thus: 

These yield stress values are the data, along with the plastic Poisson’s ratio νp, required to 
calculate the Drucker-Prager parameters.  The value for P is then calculated from equation 
(16) so that: 

Values for νpand P are given in Table 3. 

 

Hydrostatic stress sensitivity factors λ and a 
These parameters are related and occur in the two versions of the exponent Drucker-Prager 
criterion equations (31) and (36).  By selecting a pair of yield stresses at the same effective 
plastic strain from Figure 2, a value for O can be calculated using equation (32), (33) or (34), 
and using equation (37) for the parameter a.  In Abaqus, the flow potential assumed for this 
model is very similar to that used in the linear Drucker-Prager model (equation (25)).  Effective 
plastic strains and the associated equivalent stresses may then be taken to be the same for the 
two models. 

As described in the previous section, tensile and shear stresses at an effective plastic strain of 
0.03 were selected for the determination of values for the parameters O and a, which are 
recorded in Table 3. 

 

 p
Sγ = 0.052  and  p

Tε =0.035   

 
√3σS = 73 MPa σT= 58 MPa    σS = 42 MPa   

 
μ = 3 [(73

58⁄ ) − 1] = 0.78   
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 The parameter O is calculated using equation (34) as follows: 

The parameter a is then calculated using equation (37): 

 

Flow parameter µ’= tan < 
The flow parameter was determined from the measured value of the plastic component of 
Poisson’s ratio νp at an effective plastic strain of 0.03 using equation (23).  The values for P' 
and νpare given in Table 3.  The parameter P' is calculated from equation (23) where: 

If experimental values for νp are not available, then associated flow can be assumed with 
P' = P.  This will lead to some loss of accuracy in local stress and strain calculations as discussed 
in section A3 of the Appendix. 

Parameter Value 
E (GPa) 2.97 

Qe 0.35 

P = tan E 0.78 

O 1.58 

a (MPa-1) 0.01 
Qp 0.27 

P' = tan < 0.54 
σT(εT

p) (MPa) Fig 6 
 

Table 3. Materials properties and parameters used in finite element analyses of joints prepared with 
toughened epoxy. 

  

 
λ = (3x422)

582⁄ = 1.58   

 
a =

1
[3x58(1.58 − 1)] = 0.0099   

 
P' = 3(1-2x0.27) / 2(1+0.27) = 0.54 μ = 3 [(73

58⁄ ) − 1] = 0.78   
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Application of Finite Element Analysis 

Chapter 5 

Application of Finite 
Element Analysis 
• Meshing 
• Choice of solver 
• Validity of FE predictions 
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Meshing 
An element mesh is used to model the required geometry.  The geometry needs to be 
modelled as accurately as possible, taking account of any symmetry, which would reduce the 
size of the model.  One problem to be aware of when quantitatively analysing stress/strain 
predictions is the effect of geometric singularities i.e., sharp corners.  In an elastic analysis, the 
stresses will go to infinity at the singularity.  In an elastic-plastic analysis, stresses will only 
reach the plastic limit, but the predicted strains around the singularity will be unreliable, 
appearing much higher than expected.  It is best to design both test-pieces and mesh 
geometry to remove geometric singularities by incorporating a radius on edges.  If this is not 
possible, one should be aware of the unreliable predictions obtained in the small region 
surrounding a singularity.  For example, the experimental joints modelled as part of recent 
work at NPL [10, 19] and illustrated in the Appendix (Figures A1 and A6) were prepared with 
radiused adherends, plus radiused fillets on the lap joint, to reduce stress concentrations.  
These radii were all included in the FE models to avoid singularities.  Software such as Abaqus 
CAE [20] can be used to generate the geometry and mesh.  It is best to apply boundary 
conditions and loads to features in the geometry as the mesh can then be changed at any time 
without having to alter the constraints.  The boundary conditions and loads need to be applied 
carefully to duplicate the real situation as closely as possible. 

Once the geometry has been created, an FE mesh can be applied to it.  There are several 
factors to consider when meshing a geometry, such as element type, mesh density etc.  The 
choice of elements can greatly influence results obtained from an analysis.  In some cases, the 
difference in results between element types may not be visible in force/extension plots but 
observed in the stress or strain contours.  There is a wide range of element families available in 
FE packages such as Abaqus [20], ranging from simple beam elements to solid (continuum) 
elements.  There are also a variety of elements within each element family, each with their 
own advantages and disadvantages. 

The elements used to model the adhesive joints mentioned above were solid (continuum) 
elements, which are suitable for linear analysis and also for complex nonlinear analyses 
involving plasticity and large deformations.  There are a number of continuum elements 
available within the FE element libraries.  The elements selected need to be appropriate for 
each particular analysis.  For example, in a cylindrical butt joint specimen, axisymmetric 
elements can be used which represent the whole cylindrical structure with just one plane of 
elements.  In the case of lap and scarf joints the adhesive layer would be modelled with 
quadrilateral elements rather than triangular elements as quadrilateral elements have a better 
convergence rate.  Triangular elements could be used in small sections of the scarf joint 
adherends to mesh the angled sections of the joint.  Quadrilateral elements perform best if 
their initial shape is approximately rectangular with a maximum aspect ratio of 7:1. The 
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elements become much less accurate when they are initially distorted.  When modelling high 
loading rates e.g., in a lap joint analysis, the first order form of continuum elements is 
recommended.  Second order elements are also available, and these provide higher accuracy 
than first order elements for ‘smooth’ problems that do not involve complex contact 
conditions of impact.  Second order elements have more nodes per element than first order 
elements i.e., have a mid-side node.  First and second order elements should not be mixed 
within a mesh without applying constraints, otherwise problems can be caused due to the 
different types of interpolation used within the two element types. 

For structural applications, the FE element libraries, for two-dimensional continuum elements, 
include plane stress, plane strain and generalised plane strain elements.  Plane stress elements 
can be used when the out-of-plane dimension of a body is small relative to its in-plane 
dimensions.  The plane stress element assumes that the out-of-plane stress is zero.  Modelling 
with this element generally applies to thin, flat bodies.  In contrast, plane strain elements are 
generally used for modelling bodies where the out-of-plane dimension is much larger than the 
in-plane dimensions.  In these elements it is assumed that the out-of-plane strains are zero.  
An alternative form of plane strain element is the generalised plane strain element.  In this 
case the formulation used places the model between two rigid planes that can only move 
closer or further apart.  It is assumed that the deformation of the model is independent of the 
axial position so the relative motion of the two planes causes a direct strain in the axial 
direction only.  There are no transverse shear strains.  Three-dimensional continuum elements 
avoid the artificial distinction between plane stress and plane strain.  However, 3D elements 
normally lead to larger computational problems and hence, longer run times, so tend to be 
used less. 

Another issue is the mesh density i.e., the number (and therefore size) of elements used within 
the mesh.  It is general practice to run an initial analysis with a coarse mesh.  Within the post-
processing the deformed shape obtained should be checked to verify that the boundary 
conditions and loads are behaving as expected.  From this analysis, force/extension data can 
be obtained and checked to make sure that they are physically reasonable.  If this is the only 
required output, then it is not necessary to refine the mesh any further as this should not alter 
the force/extension behaviour of the model.  But if localised stress or strain predictions are 
required then further mesh refinement is necessary.  Mesh density can affect the strain (and 
stress) predictions in regions of strain (or stress) concentrations (see Appendix A2).  A smaller 
element size will generally give a higher maximum value although at very small elements sizes 
further dimension changes should cause little effect (mesh convergence). 

It is unnecessary to refine the whole mesh if there is only interest in quantitative predictions 
from areas of strain (or stress) concentration, and a highly refined mesh with high element 
density would lead to long analysis process times.  With the coarse mesh, once satisfied that 
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the model is physically reasonable, contours of stress and strain can be plotted.  These 
contours will highlight any area of interest that needs mesh refinement.  The size of elements 
in this area should be reduced until a stable maximum value is achieved i.e., mesh 
convergence.  Ideally, the peak stress or strain contour should be larger than the dimension of 
a single element (see contour plots in Appendix).  In previous work it was found that, if too 
small an area of mesh is refined, strain localisations became ‘trapped’ within the refined mesh.  
Therefore, a reasonable area needs to be refined with gradually increasing element size out to 
a coarse mesh in areas where stress and strain values are relatively low and uniform.  Once the 
mesh has been refined satisfactorily and the analysis run, post-processing should be used to 
check the continuity of stress contours.  With averaged stresses plotted, the contours will look 
smooth.  Unaveraged stresses should also be plotted (Quilt plot in Abaqus).  If very 
discontinuous contours are observed, the mesh is no good for stress localisation investigations 
(although it would be suitable for obtaining force/displacements).  When the mesh has been 
refined enough, even the unaveraged contours appear relatively smooth. 

To recap on meshing issues, select the appropriate elements for the type of analysis.  Use a 
coarse mesh for global loads/displacements.  Use a refined mesh for localised stresses/strains, 
where one needs to be aware that singularities could artificially raise the predicted values. 

 

Choice of solver 
During an FE simulation, the numerical problem defined in an input file is solved using a 
mathematical code.  The FE package Abaqus has a choice of solver codes.  The standard 
(implicit) code can solve a wide range of linear and nonlinear problems.  The explicit code is 
suitable for short, transient dynamic events, such as impact, and is also very efficient for highly 
nonlinear problems. 

In nonlinear analyses the term “convergence” is used to indicate that the solution process for 
the nonlinear equation system converges.  The solution at the end of an increment is, by 
definition, converged.  If the solver cannot find a solution for a given increment of applied 
load, another attempt will be made to obtain a converged solution.  When a new attempt is 
made, the solver cuts back the magnitude of the load increment.  Several attempts may be 
used in any increment of the analysis.  If too many attempts are made in a single increment, 
the solver terminates the analysis – the model has failed to converge.  With the joint 
predictions, failure to converge is probably due to unstable material behaviour – the 
symptoms in these nonconvergence problems are most often divergence warnings.  
Convergence problems are less likely to occur if the model is loaded with applied 
displacements rather than applied loads. 



 

Page 42 of 66 
 

A static analysis using the standard solver is the simplest form of elastic-plastic analysis.  The 
models require a single tensile hardening curve for the adhesive material, thereby assuming an 
average strain rate in the adhesive layer.  A static analysis is sufficient if only the long-term 
response of a structure to an applied load is of interest.  However, if the duration of the 
applied load is short, a dynamic analysis should be performed.  A dynamic analysis is one in 
which the inertia forces as well as rate-dependent plasticity are included in the dynamic 
equation of equilibrium. 

In the FE package Abaqus, dynamic analyses can be carried out using either the standard 
(implicit) solver or the explicit solver.  One limitation of using the explicit solver is that the time 
step is determined by the time for a stress wave to cross the smallest element dimension.  The 
result is that processing times can be excessive, especially when a refined mesh is being used, 
or when the analysis is at a low loading rate.  The processing time can be reduced by mass 
scaling i.e., using artificially high values of material density, but care must be taken to ensure 
that inertial forces still remain insignificant.  The advantage with the standard solver is that the 
initial time increment size can be chosen manually.  The automatic time incrementation 
scheme adjusts the increment size as necessary to obtain solutions.  This means that the 
computer processing times are significantly shorter than when using the explicit solver, 
especially at the lower loading rates. 

The explicit solver is particularly useful for analysing bonded joints made with tough adhesives 
that sustain large extensions before failure.  The main advantage of the explicit code is that 
solutions can be obtained at larger extensions than with the standard dynamic analysis.  This is 
illustrated in Figure 10, which compares standard dynamic analyses and standard quasi-static 
analyses for both linear and exponent Drucker-Prager models, and the explicit analysis using 
the linear Drucker-Prager model.  A single hardening curve with a strain rate of 2.65 s-1 was 
used for each analysis, thereby assuming an average strain rate of 2.65 s-1 in the lap joint 
adhesive layer.  It can be seen that the explicit dynamic analysis obtained solutions at higher 
extensions than the standard dynamic analysis.  The standard dynamic analysis failed to obtain 
a solution at a smaller extension than the standard quasi-static analysis for both models.  This 
failure is due to convergence problems. 

A dynamic analysis can be used to consider the rate-dependent behaviour of adhesive 
properties.  The accuracy of strain predictions is considered to be higher if a dynamic analysis 
is undertaken with rate-dependent hardening data i.e., multiple hardening curves, rather than 
a single strain rate hardening curve.  This is because strain localisation, which is caused by 
enhanced softening of the adhesive in regions of high strain, is alleviated with rate-dependent 
data.  This arises because the regions of high strain are also subjected to high strain rates, 
which increase the yield stress and reduce the strain softening associated with rate 
independent yielding. 
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When dynamic behaviour (with either single or multiple hardening curves) is modelled with an 
implicit solver, the analysis often fails at lower extensions.  This may prevent predictions being 
obtained at the extensions of interest when investigating joint behaviour.  The convergence 
problems appear to be due to unstable material behaviour.  In the work illustrated in Figure 
10, a single strain rate hardening curve was input for each analysis type.  When a set of 
hardening curves was used, the standard dynamic analysis failed at extremely low extensions 
(~0.015 mm).  This suggests that when modelling rate dependent adhesives, it may be 
necessary to use the explicit solver, with the associated increase in analysis time. 

 

Variability of FE predictions 
There are a number of choices made when first setting up an FE analysis that will affect the 
predictions obtained.  This section gives a brief outline of the variability in predictions of 
localised strain and stress, illustrating that the choice of material model and analysis type can 
affect both the global loads/displacements and the localized stress and strain predictions.  A 
more in-depth study is provided in the Appendix, covering predictions obtained from scarf and 
lap joint geometries in the form of force/extension curves and contour plots. 
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Figure 10. Comparison of force/extension predictions obtained using both static and dynamic 
analyses.  A single hardening curve obtained at a strain rate of 2.65 s-1 was used. 
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Mesh density can affect localised strain predictions.  For example, a study on scarf joint 
behaviour showed a large increase in peak maximum principal strain as the element size was 
decreased (mesh density increasing).  Although the force/extension curves predicted for both 
analyses were identical, the peak maximum principal strain for a coarse mesh was 0.193, 
increasing to 0.364 in a refined mesh. 

The choice of materials model is of great importance, affecting both the force/extension 
curves and the stress and strain predictions.  In the scarf joint study mentioned above analyses 
were carried out using Elastic, von Mises, linear Drucker-Prager and exponent Drucker-Prager 
materials models.  Inspection of maximum principal strain and stress shows that the peak 
values vary greatly.  The peak maximum principal strains range from 0.0569 for the elastic 
model to 0.364 for the exponent Drucker-Prager model.  The peak maximum principal stresses 
go from 170 MPa for the elastic model to 62.3 MPa for the exponent Drucker-Prager model. 

The choice of solver can also affect predictions.  This was investigated during the study of a lap 
joint.  It was found that, although all analyses followed the same force/extension curve, using 
an explicit code produced different strain and stress predictions e.g., a peak maximum 
principal logarithmic strain of 0.636 obtained using an implicit solver reduced to 0.592 if the 
explicit solver were used.  The stresses also changed from 95.9 MPa to 97.1 MPa.  Using 
multiple strain hardening curves with an explicit solver rather that a single curve decreased the 
peak maximum principal logarithmic strain values predicted from 0.592 to 0.462, though the 
predicted stresses decreased from 97.1 MPa to 94.7 MPa. 
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Criteria for joint failure 
Adhesive joints fail by the initiation and growth of a crack.  Depending on certain factors such 
as the adhesive type, the geometry of the joint and the load history, the growth phase can be 
rapid after crack initiation or slow until a critical crack length is reached for rapid fracture.  A 
failure criterion defines a critical level of stress or strain, or a combination of these quantities, 
at which a crack will initiate.  Since the crack in adhesive joints will initiate in a region of stress 
or strain concentration, which will generally be highly localised, the critical stress or strain level 
should ideally be determined in that region.  Studies aimed at identifying a valid failure 
criterion therefore involve: 

• measuring the force needed to initiate a crack in different geometries 
• using a finite element analysis to predict the stress and strain components in the 

regions of maximum stress and strain where crack initiation is expected 
• exploring various expressions of stress and/or strain that have a critical value at 

failure common to all joint geometries 

Such studies are aided by simultaneous visual inspection to confirm the precise point and 
applied load corresponding to crack initiation.  The failure criterion for untoughened 
thermosetting adhesives that exhibit little plasticity prior to a brittle failure in tension is likely 
to be based on a critical component of stress.  On the other hand, tough adhesives that fail in a 
ductile manner after significant plastic deformation and flow (such as the toughened epoxy in 
Figure 4) are more likely to have a critical strain-based failure criterion.  However, it should be 
noted that in many joint geometries, failure occurs in regions of high peel stress that have a 
relatively high component of hydrostatic stress and hence volumetric strain.  These are 
conditions that are not simulated in a bulk specimen under uniaxial tension, and a criterion for 
failure of bulk specimens may not be appropriate to the failure of a bonded joint. 

Probably the main factor inhibiting the identification of a failure criterion that is applicable to a 
wide variety of joint geometries is the ability to make accurate predictions of stress and strain 
components in the region where these are concentrated and where failure thus initiates.  It is 
necessary to remove singularities in the analysis by imposing a radius on all edges and to use a 
suitably fine mesh to accurately represent the joint geometry, especially the shape of the 
fillets at the end of the bond.  Even then, the results of analyses depend on the materials 
model used to describe the adhesive.  This is illustrated in Figures A4 and A5 in the Appendix.  
These compare calculated distributions of the maximum principal stress and strain in a scarf 
joint obtained using four materials models.  The stress and strain distributions predicted by the 
two Drucker-Prager models differ in both the magnitude of peak values and also in where 
these are located.  In Chapter 2 of this Guide, it was demonstrated that neither of these 
models is able to accurately describe the deformation behaviour of this adhesive over all stress 
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states.  This makes it difficult to determine, with sufficient confidence, stress and strain 
components responsible for the initiation of failure.  The limitations of a chosen material 
model to represent a selected adhesive must be taken into account when using FEA to predict 
the initiation of failure. 
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A1 Application of FEA to some common joint 
geometries 
This appendix provides an illustration of the application of FEA to a scarf joint (section A2) and 
a lap joint (section A3).  Both joints were assembled using the toughened epoxy adhesive used 
for illustration throughout this Guide.  In both cases the results of analyses give a comparison 
of predicted maximum principal stresses and strains for a variety of analyses.  The material 
parameters and properties used in these analyses are listed in Table 3.  This examination of 
predictions obtained from analyses using various materials models for the scarf joint geometry 
and from different analysis types for the lap joint geometry highlight how the choice of 
material model and analysis type can affect both the global loads/displacements and the 
localized stress and strain predictions. 

 

A2 Analysis of a scarf joint 
For the scarf-joint specimen, adherends had an angle of 65° between the bond face and side of 
the adherend (see Figure A1).  This angle was chosen as calculations indicated that it would 
produce an average strain state in the adhesive composed of roughly equal proportions of 
volumetric and shear components.  The ends of the adherends have a radius of 1 mm to 
remove geometric singularities. 

The FE results presented here have been obtained using various materials models, see 
Chapter 2.  These models include the simple elastic model, and three variations of elastic-
plastic model: the commonly used von Mises, the linear Drucker-Prager and the exponent 
Drucker-Prager.  Figure A2 shows the force/extension curves obtained from analyses of the 
scarf joint using these four different models.  A typical experimental curve is also shown for 
comparison.  It can be seen that all models match the experimental curve initially, but that 
after this linear elastic region the predictions diverge.  The elastic analysis continues in a linear 
manner, predicting increasingly high loads as the extension increases.  The elastic-plastic 
models all exhibit non-linear behaviour but with varying degrees of accuracy.  The von Mises 
model, which does not allow for hydrostatic stress sensitivity, over predicts the loads 
throughout the whole non-linear region.  At the average failure extension for the scarf joint 
(0.035 mm) the von Mises predicted load is nearly 60% higher that the experimental load.  
Both the linear and exponent Drucker-Prager models allow for hydrostatic stress sensitivity, 
and this brings the predictions much closer to the experimental data, although the linear 
Drucker-Prager still slightly overestimates the load.  The exponent Drucker-Prager prediction 
gives a good fit to the data.  Two force/extension curves have been plotted for the exponent 
Drucker-Prager model.  One was obtained using a coarse mesh, the other using a refined 
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mesh.  The predictions correlate confirming that mesh density does not affect global 
force/displacement predictions. 

The effect of mesh density on localised strain predictions is demonstrated in Figure A3.  Figure 
A3 shows contour plots of maximum principal strain in the adhesive layer of the scarf joint for 
(a) a coarse mesh and (b) a refined mesh.  Although the contour plots appear similar, the 
maximum principal strain predicted in the coarse mesh is 0.193 compared to 0.364 for the 
refined mesh.  Refining the mesh has increased the local strain predictions. 

All contour plots presented for the scarf joint analyses are obtained at an extension of 0.035 
mm, which represents the average experimental failure extension.  The contour plots of 
maximum principal strain from analyses using the refined mesh are shown for all four models 
in Figure A4.  The elastic analysis (Figure A4(a)) gives a maximum principal strain of 0.0569, 
which is very small compared to the elastic-plastic analyses.  For these analyses, the von Mises 
model (Figure A4(b)) predicts a maximum principal strain of 0.279 and the linear Drucker-
Prager model (Figure A4(c)) gives a value of 0.148, while the exponent Drucker-Prager (Figure 
A4(d)) predicts the highest maximum principal strain, with a value of 0.364.  The contour plots 
all look very different.  For the exponent Drucker-Prager model with both the coarse and 
refined mesh, a localised zone of high strain has developed.  This was seen to initiate close to 
the radius at the acute angle of the adherend at smaller extension, then grow through the 
thickness of the adhesive and is finally concentrated along the opposing interface.  None of the 
other models produce a localised zone of this sort, although the von Mises and linear Drucker-
Prager models both predict localised high strains along the interface with the lower adherend. 

Figure A5 shows the maximum principal stress predictions obtained using the four material 
models.  The elastic analysis (Figure A5(a)) gives a maximum principal stress of 170 MPa, which 
is much higher than the elastic-plastic predictions.  The von Mises model (Figure A5(b)) 
predicts a value of 106 MPa, while the linear Drucker-Prager (Figure A5(c)) gives a maximum 
principal stress of 69.9 MPa.  The exponent Drucker-Prager model (Figure A5(d)) produces the 
lowest maximum principal stress with a value of 62.3 MPa.  In all cases, the maximum principal 
stress is highest in the adhesive away from the radius.  Further investigation into stress 
predictions using the exponent Drucker-Prager model has shown that the hydrostatic stress 
(the average of the three principal components) is highest at the interface near the middle of 
the radiused region. 
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Figure A2.  Comparison of force/extension predictions of the scarf-joint specimen obtained using four 
material models and a typical experimental curve: quasi-static analyses using the standard 
solver. 

80 mm 

10 mm 

25° 

15 mm deep 
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Figure A1.  Schematic diagram of the scarf-joint specimen showing the dimensions and the geometry 
of the adherends. 
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(a) 

(b) 

Figure A3.  Comparison of maximum principal strain predictions from (a) a coarse mesh and 
(b) a refined mesh. Exponent Drucker-Prager analysis: quasi-static analysis, 
standard solver. 
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Figure A4.  Contour plots of maximum principal strain in the adhesive at an extension of 0.035 
mm obtained from analyses using four different material models. Same data and 
analyses as Figures A2 and A3. 

(a) elastic analysis 

(b) von Mises analysis 

(c) linear Drucker-Prager analysis 

(d) exponent Drucker-Prager analysis 
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Figure A5.  Contour plots of maximum principal stress in the adhesive at an extension of 0.035 mm 
obtained from analyses using four different material models. Same data and analyses as 
Figure A4. 

(a) elastic analysis 

(b) von Mises analysis 

(d) exponent Drucker-Prager analysis 

(c) linear Drucker-Prager analysis 
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A3 Analysis of a lap joint 
 

Figure A6 shows a diagram of the lap joint specimen.  Radii were included on the adhesive 
fillet and the end of each adherend within the bond to avoid geometric singularities.  The FE 
results presented for the lap joint analyses have been obtained with the linear Drucker-Prager 
material model using a variety of analysis types and a test speed of 1 mm/s.  The following 
analyses have been performed: 

• static analysis with a single rate hardening curve (3 s-1) using Abaqus/Standard 
• dynamic analysis with a single rate hardening curve (3 s-1) using Abaqus/Standard 
• dynamic analysis with multiple rate hardening curves using Abaqus/Standard 
• dynamic analysis with a single rate hardening curve (3 s-1) using Abaqus/Explicit 
• dynamic analysis with multiple rate hardening curves using Abaqus/Explicit 

Figure A7 shows force/extension predictions for the five analyses.  The extension refers to a 25 
mm gauge length centred on the bonded region.  It can be seen that all the analyses follow the 
same force/extension curve, although the standard dynamic analysis with multiple rate 
hardening curves failed to converge at a very small extension (~ 0.04 mm).  The standard 
static/single rate, explicit/single rate and explicit/multiple rates analyses all reached the 
required extension.  The standard dynamic analysis with single rate was stopped at an 
extension of 0.2 mm as it had taken 3000 increments to reach this point and had generated 
very large output files.  The explicit, rate-dependent force/extension curve is very similar to 
those obtained using a single hardening curve at a strain rate of 3 s-1.  In earlier work [10] the 
curve at a strain rate of 3 s-1 was specifically chosen as a single ‘effective’ strain hardening 
curve for a test speed of 1 mm/s as it gave a comparable force/extension curve to that 
obtained from an analysis using four hardening curves at that loading speed.  A lower, strain-
rate hardening curve would lower the plateau load predicted for the joint and vice versa. 

In both the scarf and lap joint analyses, the linear Drucker-Prager model has been run with 
non-associated flow i.e., the dilation angle (\ = tan-1P') does not equal the material friction 
angle (E = tan-1P), where \, E� P' and P are linear Drucker-Prager model parameters.  In the 
Abaqus exponent Drucker-Prager model, flow is always non-associated.  With the linear 
Drucker-Prager model, flow can be associated by setting \ = E.  The effect of this can be seen 
in Figure A7 where it is seen that the linear  Drucker-Prager prediction with associated flow 
gives higher load predictions than the equivalent model with non-associated flow.  The linear 
Drucker-Prager model with associated flow predicts higher maximum principal strains and 
lower maximum principal stresses in the adhesive than the equivalent model with non-
associated flow.  These differences in localized strain and stress predictions can be seen in 
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Figure A8 which shows contour plots of maximum principal strain for (a) non-associated flow 
and (b) associated flow and also Figure A9 showing contour plots of maximum principal stress 
for (a) non-associated flow and (b) associated flow, all obtained at an extension of 0.1 mm. 

The following section examines the differences in localized strain and stress predictions within 
the lap joint adhesive using different solvers and single or multiple hardening curves.  All 
results have been obtained with the linear Drucker-Prager model.  Stress and strain 
distributions are obtained at an extension of 0.2 mm.  In Abaqus/Explicit the only available 
principal strain output is the principal logarithmic (or true) strain (equation (6)); hence contour 
plots of maximum principal logarithmic strain have been obtained for all analyses, along with 
contour plots of maximum principal stress. 

Figure A10 shows contour plots of maximum logarithmic principal strain for analyses run using 
a single rate hardening curve (3 s-1) and different solvers.  The standard static (a) and explicit 
(b) analyses produce very similar maximum principal logarithmic strains, with peak values of 
0.636 and 0.592 respectively.  The contour plots of maximum principal logarithmic strain show 
the same localized strain concentration near the radius of the adherend.  Contour plots of 
maximum principal stress from the two analyses run with single rate hardening curves are 
shown in Figure A11.  The maximum principal stress peaks at the interface with the adherend 
but slightly further around the radius than the location of the peak in the maximum principal 
logarithmic strain.  Once again, the standard static and explicit analyses, Figure A11 (a) and (b) 
respectively, predict similar results with peak values of 95.9 MPa and 97.1 MPa. This implies 
that there is little difference between results obtained from standard and explicit analyses. 

Figures A12 and A13 compare the predictions obtained from analyses using single rate 
hardening curves with those from rate dependent dynamic analyses (multiple rate hardening 
curves).  Figure A12 shows contour plots of maximum principal logarithmic strain from (a) 
single rate and (b) multiple rate explicit analyses respectively.  It can be seen that including 
rate dependent data lowers the peak values from 0.592 (single rate) to 0.462 (rate 
dependent).  Figure A13 shows contour plots of maximum principal stress.  It is apparent that 
the inclusion of rate dependent data decreases the peak values of maximum principal stress 
from 97.1 MPa (single rate) to 94.7 MPa (rate dependent).  The selection of single or multiple 
rate hardening curves clearly has a significant effect on predictions of strain values. 

These predictions of lap joint behaviour are for illustration only.  Stresses and strains of these 
magnitudes would not be obtained experimentally as, at this extension, cracks would already 
have initiated in the adhesive layer. 
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r = 1.0
r = 0.5

52.5 mm

15 
mm

10 mm

3 mm
0.5 mm

r = 1.0
r = 0.5

52.5 mm

15 
mm

10 mm

3 mm
0.5 mm

r = 1.0r = 1.0
r = 0.5r = 0.5

52.5 mm52.5 mm

15 
mm
15 
mm

10 mm10 mm

3 mm3 mm
0.5 mm0.5 mm0.5 mm

Figure A6.  Schematic diagram of the lap joint specimen showing radii on the adherends and adhesive. 
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Figure A7.  Comparison of force/extension predictions of the lap joint specimen obtained using 
standard and explicit solvers and single rate and multiple rate hardening curves with the 
linear Drucker-Prager model. 
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(a) linear Drucker-Prager analysis with non-associated flow 

(b) linear Drucker-Prager analysis with associated flow 

Figure A8.  Contour plots of maximum principal strain showing localised strain and stress predictions 
obtained using the linear Drucker-Prager model with either (a) non-associated or (b) associated 
flow, using Abaqus/Standard at an extension of 0.1 mm. 
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Figure A9.  Contour plots of maximum principal stress showing localised strain and stress predictions 
obtained using the linear Drucker-Prager model with either (a) non-associated or (b) 
associated flow, using Abaqus/Standard at an extension of 0.1 mm. 

 
(a) linear Drucker-Prager analysis with non-associated flow 

(b) linear Drucker-Prager analysis with associated flow 
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Figure A10.  Contour plots of maximum principal logarithmic strain at an extension of 0.2 mm for two 
different analyses: (a) standard static and (b) explicit. Both analyses run with the linear 
Drucker-Prager model and a single rate hardening curve (3 s-1). 

(a) 

(b) 
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Figure A11.  Contour plots of maximum principal stress at an extension of 0.2 mm for two different 
analyses: (a) standard static and (b) explicit. Both analyses run with the linear Drucker-
Prager model and a single rate hardening curve (3 s-1). 

(a) 

(b) 
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Figure A12.  Contour plots of maximum principal logarithmic strain in the adhesive at an extension of 
0.2 mm obtained from an explicit analysis using (a) a single rate hardening curve (3 s-1) and 
(b) multiple rate hardening curves. Linear Drucker-Prager model. 

(a) 

(b) 
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Figure A13.  Contour plots of maximum principal stress in the adhesive at an extension of 0.2 mm 

obtained from an explicit analysis using (a) a single rate hardening curve (3 s-1) and (b) 
multiple rate hardening curves. Linear Drucker-Prager model. 

(a) 

(b) 


