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Executive Summary

This Measurement Good Practice Guide aims to provide guidance to technologists, laboratory
staff and quality assurance personnel on how to characterise and quantify the mechanical
properties of flexible adhesives in order to carry out predictive design calculations. Some
guidance is given on how to perform Finite Element (FE) modelling of components bonded
using flexible adhesives. A general familiarity with laboratory operations and mechanical
testing, but not specifically adhesives testing, is assumed. The objective of this Guide is to
familiarise the operator with the options available for testing and the factors that can
influence the test and design results. It is highly recommended that validation tests be
performed to gain confidence in design calculations.

Finite Element Analysis (FEA) is used extensively in the design of structures and sub-
components. Accurate predictions of component properties require both suitable material
models and accurate material properties data. Highly extensible materials, such as flexible
adhesives, cannot be accurately modelled using conventional elastic-plastic material models.
These materials require the so-called hyperelastic models. The classical Mooney-Rivlin model
is an example of a hyperelastic model that is implemented in FEA packages, such as Abaqus.

Accurate modelling of hyperelastic materials requires material properties data measured to
large strains under different states of stress. In hyperelasticity the strain energy density is
modelled as a function of the deviatoric (shear) and volumetric components of the strain
tensor. Model coefficients are calculated from mechanical test data using least squares fit
routines in the FE software. Methods for obtaining and presenting the required input data are
described in this Guide.

The material properties required to calculate deviatoric coefficients can be determined from
test data measured under conditions of plane stress (uniaxial tension), plane strain (planar
tension) and equibiaxial stress (equibiaxial tension) in order to accurately model the
hyperelastic materials under multi-axial states of stress. These techniques, as developed and
applied by NPL, are described further. A common assumption made, particularly for rubbers,
is that the material is incompressible, and, thus, volumetric properties can be neglected.
However, experimental measurements indicate that flexible adhesives are compressible and
that volumetric terms need to be included in the material properties definitions. Test
procedures have been developed for determining volumetric properties in tension and
compression. The most efficient combination of input test data for performing design
predictions using Finite Element methods was found to be uniaxial tension and volumetric
tension properties. The provision of data from additional tests had little effect on prediction
accuracy but added substantially to the cost and complexity of material characterisation.
Time-dependent properties can be characterised through stress relaxation and creep tests.



Hyperelastic test methods require bulk test specimens. Techniques for preparing and curing
such specimens are outlined in this Guide. The cure state of the bulk test specimens used to
obtain the mechanical properties data should be similar to that of the adhesive in the bonded
structure. Cure schedules should be selected to ensure that the thermal histories of the
materials are similar in each case. Dynamic Mechanical Thermal Analysis (DMTA)
measurements can be made to compare the state of cure of the materials.
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Introduction

The term “flexible adhesives” is used to describe adhesives and sealing materials whose
mechanical responses are characterised by low modulus and large extensions to failure. This
Guide is appropriate to thermosetting elastomers, such as polyurethanes and polybutadienes,
whose physical properties change irreversibly on cure, and rubber adhesives. The flexibility of
the adhesive is strongly rate dependent [1] and these materials can be considered as flexible
at or above their glass transition temperature (Tg). Such materials are said to be in the rubber
phase. Below Ty, the material is glassy with a much higher stiffness, but reduced extensibility
before failure. In comparison with traditional structural adhesives, such as epoxies, little
attention has been paid to the mechanical performance and design methods for flexible
adhesives. Basic design data for structural adhesives [2], adhesive joint durability [3], adhesive
joint testing [4] and modelling structural adhesives [5] are described in other NPL
Measurement Good Practice Guides.

The strength of a flexible adhesive joint, as with structural adhesives, is influenced by:

e  Surface energies of adhesive and substrate
o  material type
o surface preparation and contamination
e  Wetting of the surfaces by the adhesive to cover the bonded area
o surface energies
o flow properties of the adhesive
e  The cohesive strength (or ability to resist rupture) of the adhesive
o the mechanical properties of the adhesive (modulus, yield strength, strain
to failure, visco-elasticity);
. temperature
. strain rate
o the failure mode of the adhesive (brittle or ductile).
e Mode of loading and stress distributions

Adhesive joints tend to be designed on the basis of perfect bonding with the assumption that
the locus of failure will be in either the adhesive layer or the adherends. Thus, the properties
of the interface are ignored in the design. The challenge is to model the continuum behaviour
of the adhesive layer in order to predict joint stiffness and strength. Once a crack has formed
in the adhesive the remaining behaviour will be dominated by crack growth. Failure is
assumed to originate in regions of the joint where the stress exceeds the cohesion strength of
the adhesive. The cohesive strength of the flexible adhesive depends on many factors such as
temperature, strain rate and humidity.
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Even in simple joint configurations, such as a single-lap shear joint, the resulting stress and
strain distributions in the adhesive layer can be extremely complex with a mixture of shear,
peel and hydrostatic pressure stresses occurring. Such situations are not easily amenable to
closed form analytical methods and it is common design practice to employ Finite Element (FE)
methods to predict structural stiffness and stress distributions. In order to accurately predict
the performance of the adhesive joint using Finite Element Analysis (FEA) the following
information is required:

e Mechanical properties for the adherends and the adhesive
e  Dimensions of the parts

e  Constraints and loads on the part

e  Failure criteria for the materials employed

e  Material models for adherends and the adhesive

It is assumed that information on the adherends, joint dimensions, constraints and loading are
available and can be modelled accurately. This Guide focuses on continuum material models,
test methods for the mechanical properties and failure criteria for the flexible adhesives.

The high extension behaviour of the flexible adhesives can be thought of as analogous to those
of rubbers. There is a large body of work on the mechanical performance of rubbers and many
material models have been developed to characterise high strain elastic behaviour, known as
hyperelastic behaviour [6-20]. Although flexible adhesives tend to be highly filled, and are
therefore more complex materials, there is reason to believe that hyperelastic models
represent the most realistic of the available material models. Hyperelastic models are
necessary for characterising the large strain, non-linear behaviour of the flexible adhesive. By
definition hyperelastic materials are elastic, i.e., deformations are recoverable.

Hyperelastic material models are outlined in Appendix Al. All models have the same general
formulation [12] and are expressed in terms of a strain energy density U:

N N
_ o . 1 .
U= E G L -3)@,-3)+ .Zl D, (et — 1) (1)

itj=1

The model comprises two parts representing the deviatoric strain matrices (I; and I,),
modelling the shape change behaviour of the rubberlike material (angular distortion under
stress) and the volumetric elastic strain matrix (J¢!), modelling the volume change behaviour of
the rubberlike material (volume change under stress). Then based on the chosen model (e.g.,
Polynomial, Marlow, Ogden etc.) the above strain energy potential will incorporate different
constants (Cjj, Dj, N) and therefore take a different final form. The coefficients C1o and Co,
are determined from regression fits to test data measured under various states of tension,
carried out within Abaqus. Some forms will fit the test data well, others will have lower
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correlation. It is the user’s responsibility to choose the most appropriate strain energy
potential model based on engineering judgement.

The required test data for the hyperelastic models are determined from tests on large bulk
test specimens. Methods for preparing such specimens are outlined in Chapter 2. Suitable
tension test methods are discussed in Chapter 3. Methods for obtaining the volumetric
properties of the adhesive are described in Chapter 4 and methods for time-dependent
properties are covered in Chapter 5. Formatting of test data for input into FEA is discussed in
Chapter 6 and some aspects of FEA are described in Chapter 7. Chapter 8 discusses failure
criteria.
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Specimen Preparation and Conditioning

The most accurate method for determining the material properties for use in design
calculations is through testing bulk materials rather than joints [2]. The stress distribution in
bulk test specimens is known and uniform. There are no contributions to the results from the
adherends. Therefore, the measured results yield material properties with minimal
manipulation. A further advantage of bulk specimen tests is that large gauge sections allow for
more accurate strain measurements [21].

A potential problem with bulk specimen testing is that the material properties of the bulk
material may not be the same as those in thin layers in adhesive joints. A study was
performed to compare the shear properties of adhesives determined using various bulk and
joint specimen tests [22]. This concluded that, for most of the adhesives studied, the
differences between the bulk material and the bonded material were insignificant. However,
some adhesives did exhibit differences between bulk and bonded materials. This was
considered to be due to differences in cure history. It is thought essential that the bulk
material sample experiences the same cure conditions, particularly thermal history, as the
joint material [23-26].

Bulk Specimen Preparation

Procedures for preparing samples of bulk adhesive with properties representative of those
encountered in thin bond layers have been developed [23] and standardised [24, 25]. This
section describes the application of such methods to flexible adhesives [26].

Dispensing Adhesive into a Mould

All specimen preparation methods should consider the hazardous nature of the adhesives.
COSHH procedures should be followed to minimise operator exposure.

The mould for preparing bulk specimens should be made mostly from metal to ensure good
thermal conductivity. Heat needs to flow into the adhesive for heat curing systems and any
excess heat generated by the cure reaction should be conducted away in order to maintain a
constant cure temperature as may be experienced by material in the joint. The surfaces in
contact with the adhesive should be flat, dry and free from defects. They should be covered
with a release coating (e.g., thin PTFE sheet) to facilitate release of the specimen. Frames or
spacers are required to control the specimen thickness, 2-3 mm thickness is suitable for many
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tests [2] although thinner specimens may be more representative of joint layers. Clamps or
weights should be used to hold the mould closed whilst the specimen cures.

a) The nozzle is drawn along the length b) When sufficient
of the plate in a single motion without
removing the tip from the adhesive. The
height of the cast should be greater than
the spacers.

adhesive has been
dispensed, the nozzle is
removed and the top plate
is then applied.

30 degrees

adhesive

spacers—

c) The top plate is lowered from one side
spreading the adhesive. Pressure is then
applied to maintain a uniform thickness
during cure.

Figure 1. Dispensing a viscous adhesive to manufacture a plaque of bulk adhesive having a uniform thickness.

Low viscosity adhesives may be dispensed directly into shaped moulds for the production of
test specimens. However, many adhesives will not flow readily, and such an operation is likely
to be ineffective. These adhesives are best produced as flat plaques from which test
specimens can be taken after the adhesive is cured.

Care is needed during the dispensing operation to ensure that additional air is not trapped in
the final specimen. Procedures such as those shown in Figure 1 can be used, when dispensing
through a nozzle, to produce specimens with minimal porosity.

Where possible, two-part adhesives should be mixed by dispensing through static mixing
nozzles (either from cartridges or using dispensing equipment). This ensures a uniform mix
and a short dispensing time. Hand mixing tends to entrap air into the adhesive. It is essential
to maintain a continual flow through the nozzle when dispensing two-part adhesives since
interrupted flow may lead to incorrect proportions of adhesive, hardener, etc. entering the
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nozzle that will cause weak regions in the cast sheet. It should also be noted that the adhesive
will start to cure in the nozzle.

High viscosity adhesives can be difficult to dispense into a single ‘cast’ as described above. An
alternative method for dispensing these adhesives into the mould is to build up layers of the
adhesive by spreading using a specially shaped spatula (Figure 2). A small amount of adhesive
is applied at first. This is spread as a thin layer. More adhesive is added gradually and
smoothed out along the original layer. The action of spreading the adhesive acts to displace
air that may become entrapped in the adhesive. This is a much slower operation for preparing
specimens than dispensing directly from a cartridge and, consequently, this method is
unsuitable for adhesives with short working lives.

spatula used for spreading viscous adhesives

|

— direction each application

adhesive spread in same

Figure 2. Bulk specimen manufacture technique for a highly viscous adhesive.

As-supplied adhesive contains varying proportions of entrapped air. Techniques such are
vacuum stirring or centrifuging have been suggested as methods for removing air from the
adhesive. These techniques have varying degrees of success depending on the viscosity of the
adhesive but add considerably to the cost of specimen preparation. Plaques can be inspected
after manufacture (either visually or by ultrasonic C-scan) to identify regions of low void
content from which test specimens can be cut [23].
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Curing the Adhesive

Normally, adhesives are cured through cross-linking reactions to solidify the adhesive into a
load bearing structure. Cure reactions may be initiated by either chemical means (e.g., 2-part
adhesives where resin and hardener are mixed to cure the adhesive) or through energy (e.g.,
heat or UV activated adhesives). The final cure state and, hence, the mechanical properties of
the adhesive will depend on the curing history. Many structural, flexible adhesives are either
2-part or heat cured single-part materials. In order that the material properties of the tensile
test specimens are representative of the adhesive layers in the bonded joints it is essential
that the bulk material experience the same thermal history during cure as the joint material.

In the case of room temperature curing two-part adhesives, this is done through curing both
types of specimens at the same temperature for the same cure time. As time progresses the
rate of cure will diminish until an equilibrium structure is obtained in the adhesive.
Differences between material properties due to specimen ageing will become less significant
as the age of the specimen increases. For example, the differences between specimens cured
for nine weeks and ten weeks will be much less significant than for those cured for nine hours
and ten hours.

240

Oven
Temperature

200 -

Bulk Joint

Temperature

M70 Adhesive
Temperature profiles during cure

0 . . . . . . . .
0 5 10 15 20 25 30 35 40 45
time (mins)
Figure 3. Thermal histories of bulk and joint specimens cured under identical conditions.

Bulk adhesive specimens should be cured under conditions that approximate those that occur
in the adhesive when the bonded component is cured. There is a danger that the low thermal
conductivity of the adhesive may not allow the heat generated by exothermic cure reactions to
dissipate. This could lead to excessive temperature rises in the bulk adhesive in comparison to
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those in the thin layers in joints. Metal moulds should act as heat sinks and prevent excessive
temperature rises. However, temperatures in the adhesive during cure should be monitored
using a thermocouple embedded in the adhesive in order to confirm the thermal history.

For adhesives cured at elevated temperatures, differences in the effective thermal mass of the
bulk specimen mould from the bonded joint may lead to differences in the thermal histories of
the adhesives. Simply placing both fixtures into an oven at the same temperature for the
same duration does not guarantee equivalent states of cure. Figure 3 shows temperature
measurements made whilst curing bulk adhesive specimens and adhesively bonded lap joint
specimens. The temperature of the specimens’ lag that of the oven. The joint specimens are
slower to heat than the bulk test specimens. The final temperature of the adhesive in the joint
at the end of the cure period is significantly lower than in the bulk adhesive.

6.E+07
5.E+07 +
_ 4E+07 +
©
o
o >~ measured G'
- 0
»n S 3E+07 4 value
85
w o
S
2.E+07 + Elastomeric Adhesive
Oscillatory Rheometry
Measurements
1.E+07 1 curing at 200C
0.E+00 + + + t +
0 500 1000 1500 2000 2500 3000
time (s)

Figure 4. Development of modulus during cure.

Development of adhesive structural properties during cure can be studied directly from the
increase of the material modulus (Figure 4). This can be measured by either oscillatory shear
rheometry or ultrasonic methods [27, 28]. Such studies enable the establishment of optimised
cure schedules. However, equally important is information on how rapidly the bonding fixture
heats. With this information the cure schedules for the bulk specimens can be adjusted to give
comparable thermal histories and, therefore, representative test specimens can be produced.
In the example shown in Figure 3, it was found that increasing the oven temperature by 15 °C
when curing joint specimens gave material with mechanical properties comparable to the bulk
specimens.
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Assessing Cure State

The cure states of adhesive specimens may be compared using measurements of the glass
transition temperatures (Tg) of the specimens. Ty marks the transition between a rigid glass-
like structure and a flexible rubbery structure. Many material properties, for example thermal
expansion coefficients, thermal conductivity, elastic modulus, will show non-linear
discontinuities around T, and these can be used to determine T,. The most convenient means
are through thermal (Differential Scanning Calorimetry, DSC) or mechanical (Dynamic
Mechanical Thermal Analysis, DMTA) methods [29]. Although it is possible to correlate T
values determined from different test methods it is recommended that samples be compared
using the same test method [29].

DMTA probes the mechanical properties but requires sizeable samples that are typically at
least 20 mm long. Samples can be cured in most joint configurations and, by use of low
surface energy coatings on the adherends, released after cure. DSC requires samples weighing
fractions of a gram. Thus, specimens are smaller and, therefore, easier to obtain.

11 1
bl M70
10 £ T DMTA Results
L 0.8
gl
f gl ;06
W , 7 K
> — E'- bulk tan g c
oy —E"- bulk delta *&, toas
- E' - joint *
61 ~E"-joint
+ tan delta - bulk + 0.2
5 — tan delta - joint HP‘I J;
41 o 0
-100 -80 -60 -40 -20 0

Temp (C)

Figure 5. DMTA results showing the properties of adhesive cured in the bulk specimen and joint
specimen preparation fixtures.

The Dynamic Mechanical Thermal Analysis (DMTA) data in Figure 5 show that the differences
between thermal histories evident in Figure 3 lead to differences between the mechanical
properties. T, is determined from the temperature of the peak in the viscous modulus
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curve (E”). Since the objective of testing the bulk specimens is to determine material
properties for use in designing joints, differences between the material properties will lead to
inaccuracies in the design predictions.

Whilst specimen preparation is key to producing representative test specimens, the storage of
the sample between manufacture and testing can have significant influence on the material
properties. For example, adhesives that cure at room temperature often continue to cure for
a significant period of time after cure is nominally ‘complete’. These specimens should either
be post-cured or stored at low temperatures to reduce the variability in results due to
specimen age. If required, curve-fitting routines can be used to determine the location of the
peak [29]. The moisture content of the adhesive will affect its mechanical properties.
Therefore, post-manufacture moisture adsorption by the specimens is another factor to
consider.
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Testing Flexible Adhesives

Finite Element manuals [12, 30] suggest that the most accurate representation of the
hyperelastic properties of the adhesive will be gained if the input coefficients are determined
from a combination of:

e uniaxial tension
e  plane strain or planar tension
e  equibiaxial tension

Flexible adhesives are visco-elastic materials, i.e., their mechanical properties will depend on
strain rate and temperature [1, 31]. As shown in Figure 6, relatively small changes in test or
service condition can have dramatic consequences for mechanical properties. The sensitivity
of low strain properties to temperature and frequency can be rapidly established using
dynamic test techniques such as DMTA or oscillatory shear rheometry. However, such
techniques are limited to low strain behaviour and cannot provide the accurate large strain
behaviour needed for design [32]. This section discusses large strain mechanical
measurements in tension [19, 33, 34].

(&)
o

—e—0C, 100 mm/min
Polyurethane Adhesive - Tensile Data ——0C, 10 mm/min
—<—20C, 100 mm/min
—=—20C, 10 mm/min
——20C, 1 mm/min

- =--40C , 10 mm/min
- - -40C, 100 mm/min

stress (MPa)
= N N W w H b
o O o0 O o0 o O,

AERY

_ana-'-@"‘é"-'é“r—

0.0 0.2 0.4 .06 0.8 1.0 1.2
strain

Figure 6. Tensile properties of polyurethane adhesive.

It is essential that materials properties are determined under test conditions appropriate for
the service conditions in order for the design predictions to be relevant. Where combinations
of test data are supplied to derive model coefficients, these data must be determined at the
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same temperatures and strain rates. Test speeds will need to be selected in order to achieve
comparable rates of strain in the different test specimens. It is essential that test times are
available from the test data in order that actual strain rates in the specimen can be
determined. Some testing machines have data reduction or data compression routines to
reduce the number of points recorded during testing. These functions can cause problems
with determination of time in the test. Unless time is directly recorded, or the data reduction
algorithms are periodic and well understood it is recommended that these functions be
disabled when performing tests.

Uniaxial Tension Test

The uniaxial tension test determines the properties of the material under plane stress. Various
standard tension test methods are specified for plastics [35, 36] and rubbers [37, 38]. The
main differences between the plastics methods and the rubber methods arise from the test
specimen geometry and loading speeds. As noted above, the test speed needs to be selected
in order to apply strain at a rate representative of the service performance requirements.
Therefore, selected rates are likely to deviate from both types of standard. The standard
rubbers test methods [37, 38] also allow for the testing of ring specimens, but these are
unsuitable for flexible adhesives owing to difficulties in specimen preparation.

Uniaxial Tension Test Specimen

Tension tests are performed on dog-bone shaped test specimens, see Figure 7 and Figure 8
and Tables 1 and 2. This arrangement provides for a uniform stress and strain distribution in
the central gauge section, where these values are at a maximum. Thus, the specimen extends
and fails under well-defined conditions. Flexible adhesives will sustain large extensions prior
to failure. This will place limitations on the geometry of the test specimen to fail specimens
within the travel of the test machine.

The ISO 3167 multi-purpose test specimen [39] with a minimum length of 150 mm and a gauge
width to gripped width ratio of 1:2 is recommended for structural adhesives [2]. However, this
is probably too large for flexible adhesives. A smaller test specimen may be more appropriate
and the plastics tensile standard [35] allows for a half-sized test-piece (Figure 7). The rubber
test standards specify a sample with a smaller gauge width to gripped width ratio (Figure 8).
Dimensions for standard plastic and rubber test specimens are shown in Tables 1 and 2,
respectively. There is no preference as to which type of specimen is tested but it should be
noted that test results obtained from different geometries might not be identical. All tensile
properties discussed in this Guide were obtained from Table 1, Type 1BA specimens.
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Figure 7. 1SO 3167 or ISO 527-2 plastics tesi-piece.

‘ Dimension ‘ Type 1A ‘ Type 1B ‘ Type 1BA ‘ Type 1BB ‘
Length of narrow parallel-sided
h . 80+2 80+2 30+0.5 12+0.5
portion
Distance between broad parallel-
b . . 104-113 106-120 58+2 23+2
sided portions
I Overall length >150 >150 >75 >75
r Shoulder radius 20-25 >60 >30 >12
b1 | Width of narrow portion 10+0.2 10+0.2 5+0.5 2+0.2
b, | Width at ends 20+0.2 20+0.2 10+ 0.5 4+0.2
h Preferred thickness 40+0.2 | 40£02 | >2 >2
Lo | Preferred gauge length 50+0.5 50+0.5 25+0.5 10+£0.2
L Initial distance between grips 115+1 5L+5 L+2 L+1

Table 1. Dimensions (in mm) of ISO 527 test specimens for plastics (Figure 7).
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N

R2

GL

Figure 8. SO 37 test-piece.

Minimum total length

GL Length of gauge section 33.0+2.0 25+1.0 16.0+1.0 | 12.0+0.5
B Width of ends 25.0+1.0 125+1.0 8.5+0.5 6.0+0.5
% Width of gauge section 6.0+ 0.4 40+0.1 40+0.1 20+0.1
R1 Transition radius (inner) 14.0+1.0 8.0+0.5 7.5+£0.5 3.0+0.1

R2 Transition radius (outer) 25.0+2.0 12.5+1.0 10.0+0.5 | 3.0+0.1

Table 2. Dimensions (in mm) of ISO 37 test specimens for rubbers (Figure 8).

These specimens can be moulded directly provided that a suitable mould is available and the
adhesive flows sufficiently well to fill the mould. The specimens can also be cut from sheets
of bulk material. Owing to their low stiffness, flexible adhesives can be difficult to machine
using milling equipment. Specimens can be cut using a sharp scalpel blade and a shaped
former, but care must be taken to avoid nicking the edge of the specimens. Shaped cutters
mounted on punches provide the most efficient means of producing the uniaxial tension test
specimens.

Tensile Strain Measurement

Strains are the normalised extensions in the test sample. They are normally determined from
the relative movement of two gauge marks separated by a known distance. Strains can be
measured in any direction, but in the uniaxial tension test it is normal to determine the axial
strain in the direction of the specimen and machine axis and the transverse contraction strains
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perpendicular to the machine axis across the width of the specimen. The nominal or
engineering strains in each direction are calculated using the following expression:

(2)

where, € is the strain at time t, d, is the initial distance between the gauge-lines (t=0) and d is
the distance between the gauge lines at time t. The axial strain is used in the determination of
the modulus and stress-strain curves required as input for the FE analyses. The ratio of
transverse strain (&) to axial strain (g,) is used to calculate Poisson’s ratio v.

v=—— 3)

True strains (&), including the effects of incremental increase in gauge length are defined
from the nominal strains (&)

er =In(1+¢) (4)

The low stiffness and large strain to failure of rubbery flexible adhesives prohibit the use of
contacting strain measurement devices, such as strain gauges or clip-on knife-edged
displacement transducers [21]. Non-contacting strain measurement methods are necessary.
Video extensometry or measurement of grip movements are commonly used non-contacting
measurement methods.

Strains can be calculated through analysis of the positions of contrasting gauge marks on the
surface of the test specimens. These can be recorded in photographs or video recordings
made during the test. From the analysed mark separations, the strain can be determined.
This is the basis of video extensometry where real-time determination of extensions occurs. If
no video extensometer is available, then a series of photographs made at known loads can be
used to determine stress-strain curves from uniaxial tension tests. Gauge extensions can be
determined through visual examination of photographs using an appropriate graticule or using
various image analysis software packages commonly available for the computer.

Video extensometers automate the analysis of images and calculate real-time strains during
the tests. Video extensometers are a valuable tool for the characterisation of highly extensible
materials, which have been used successfully to determine strains, particularly at high
extensions, in tension tests [21]. Several test equipment manufacturers supply such
equipment. Video extensometers are extremely flexible with regard to strain measurement
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ranges. Since the strain determination is from an image, with the appropriate zoom lens, wide
ranges of gauge sections can be measured. The camera can zoom in to a small region for more
accurate, low strain measurements or zoom out to follow larger extensions. Since the
measurement device is remote from the sample strain measurement should be unaffected by
the specimen environment (for example by looking through a window into an environmental
chamber strain measurements can be made at extreme temperatures).

In the Flexible Adhesives project, strain measurements were made using a non-contacting
Messphysik ME64 video-extensometer. In this instrument, images in the field of view of the
camera are analysed to locate the positions of contrasting gauge marks on the specimen
surface. The changes of gauge mark positions relative to their starting positions are used to
determine strains. This device has the capability of measuring extensions simultaneously in
two orthogonal directions. This is particularly useful for the simultaneous determination of
the axial extension and transverse contraction in a uniaxial test specimen to determine
Poisson’s ratio and, as outlined in Chapter 4, input data to model volumetric properties.

Accurate strain measurements using video extensometry require a stable, sharp, high-contrast
image of the test specimen. The gauge marks should give good contrast against the specimen
surface:

The specimen should be well lit. Where no environmental chamber is used on the test

machine then the specimen can be lit using spotlights. However, the light intensity and
arrangement should be selected such that the lights do not heat the specimen. If an
environmental chamber is used, then this should have a sufficiently sized window for viewing
the specimen gauge section. The sample can be lit using lights inside the chamber, but it is
generally preferable to light from outside of the chamber to avoid heating the specimen. The
sample can be lit through the chamber window although spotlights tend to be reflected off the
glass. A better solution is to mount more diffuse strip lighting by the chamber window. The
lights used should not flicker as this may be interpreted as strain.

The camera should be stable. Cameras for video extensometry should be mounted securely to

avoid camera shake that can affect strain measurement. Cameras may be mounted on tripod
stands, although this will take up quite a lot of floor space and impede access to the test
machine. It is preferable to mount the camera on the test machine using a bracket. Where
environmental chambers are used, a mounting bracket containing a light source is
recommended.

High contrast gauge marks are required. Normally axial gauge marks are applied

perpendicular to the axis of the specimen, using a marker pen in a colour (normally black or
white) that gives a high contrast to the specimen surface. It is important that the ink wets the
specimen surface, forms a uniform layer and does not degrade at large strains. Highly
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reflective (e.g., silver) markers can also give high contrast in the correct lighting. A further
method is to attach contrasting marks (e.g., self-adhesive labels or tapes) to the specimen
surface. Attached marks enable high contrast, for example by printing a black line on a white
label, with neutrally coloured or grey specimens. The attached marking system is also
insensitive to colour changes of the specimen, e.g., stress whitening, or thinning of the marks
during extension. However, it is vital that the marks do not move during extension. Such
marking strategies can be also used to measure transverse contractions. Provided that the
video extensometer is square to the surface of the specimen so that the edges are not visible
then the sides of the narrow parallel section of the specimen can be used as gauge marks.
Contrast can be maximised through placing black or white card behind the specimen.

Values for axial extensions can be estimated from the movement of the grips [40]. The grip
extension should equal the crosshead displacement since the flexible adhesive specimens have
low stiffness in comparison to the test machine and extension of the load train should be
insignificant. Crosshead displacement can be determined directly from displacement
transducers that are part of the machine control system. An axial strain value can then be
derived from the ratio of this displacement to initial grip separation. This value will differ from
the actual strain in the centre of the specimen since the strain distribution in the specimen is
not uniform and strains are further distorted due to gripping effects. It is possible to correlate
strains determined through crosshead extension measurements with those measured locally
through the concept of an effective gauge length [40]. Regression fits of plots of measured
local strain against crosshead extension can be used to calculate an effective gauge length,
although the relationship between extension and strain could be non-linear. This effective
gauge length could also depend on factors such as specimen geometry, test machine and grip
compliance, specimen stiffness and specimen extension. With a rigid, well-clamped load train
and a low stiffness flexible adhesive specimen it is probable that there is a reasonable linear
relationship between local strain and crosshead displacement that will produce an effective
gauge length that is not overly sensitive to specimen geometry or stiffness.

Tensile Testing

In all tests, the specimen should be allowed to equilibrate at the test temperature for a
sufficient period to ensure a uniform specimen temperature. Generally, the greater the
difference between storage and test temperatures the longer the equilibration period, but it
should be noted that exposure to elevated temperatures may lead to additional cure or
thermal ageing of the specimen. The sample should not be tightly clamped in the grips while
the temperature changes as thermal expansion/contraction could over stress the specimen.
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Tests should be conducted, at constant rates of extension, using a tensile test frame fitted with
a low capacity load cell so that sufficient measurement resolution can be obtained. A data
acquisition system should be used to record the test time, load cell, extensometer and the
crosshead displacement outputs. Nominal or engineering stress is calculated from the load
values obtained from the load cell and the undeformed cross-section using the following
equation:

. (5)
o= Woto

where o is the stress, F is the applied load; wg and t, are the initial width and thickness of the
specimen, respectively. The strain is determined using Equation (2). The true stress can be
calculated from the nominal stress and the deformed cross-section area:

F _ F _ o
wt wo(1 —eto(1 — &) (- €r)?

(6)

Oy =

where w and t are the deformed width and thickness respectively, €; is the transverse
contraction strain (assumed to be the same in the width and thickness directions to simplify
data determination).

Initial low strain tests (limited to 5 % strain or less) should be performed to determine the
strain rate in the specimen during the test. The test strain should be determined from the
slope of the strain-time plot and the test speed adjusted to achieve the desired strain rate.
Once the test speed required to achieve the desired strain rate has been determined then the
test specimen should be allowed to recover for a period at least ten times longer than it was
loaded before further testing. The test should be run until the specimen fails. Typical stress-
strain behaviour is shown in Figure 9.

It is most likely that flexible adhesives will exhibit behaviour type (c) in Figure 9 although both
types (a) and (b) are possible. The tensile strength is defined as the maximum stress sustained
by the specimen whether that is at break or yield.

It is recommended that a minimum of five specimens be tested in order to examine
repeatability of measurements. If the results are scattered, then the stress-strain curve
required for determining hyperelastic properties can be obtained either by selecting a
representative curve (with the option of choosing extreme curves to investigate sensitivity to
material variability) or by averaging the measured curves (one method of doing this is to
extract stress values at defined strains from each curve and average these stress values at each

Page 21 of 86



strain to produce an ‘average’ curve). Data are formatted for FEA as nominal stress and

nominal strain values as described in Chapter 6.

TS=T5,

(a)

£x 3
s TSeTS,
O
TS = tensile strength
(b) s TS, = tensile strength at break

Y = yield strength

s1O 5

s, - 5

(©)

£y & £

Figure 9. Typical tensile test stress-strain curves for rubbers.
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Planar Tension Test

Planar tension test specimens have large aspect ratios (ratio of width to gauge length). If the
material is incompressible, then the principal stretches A; along the i =1, 2, 3 axes
(corresponding to length, width and thickness respectively) are:

}\1 2)\5'}\2 = landlg = 1/7\5

Where A is the stretch in the loading direction (and the nominal strain in the loading direction
&5 = Ag — 1. The Abaqus manual [12] claims that this test is a ‘pure shear test’ since, in terms
of the logarithmic strains: &, =InA; = —InA; = —gzand e, = —InA, = 0, which
corresponds to a state of pure shear at 45° to the loading direction. However, this ‘pure shear
state’ may not occur with flexible adhesives since most flexible adhesives are slightly
compressible.

Test Specimen and Fixtures

The key feature of the planar test is that, unlike conventional uniaxial tensile tests, there are
no lateral strains. Experimentally this is achieved by using specimens with an extremely high
aspect ratio (Figure 10). A minimum ratio of width to gauge length (grip separation) of four is
recommended. Experimental studies [33] on 200 mm wide x 60 mm long test specimens
gripped at different lengths have shown that stress-strain curves are unaffected by aspect
ratios between four and ten (Figure 11). A free length of 40 mm, giving an aspect ratio of five,
was chosen as a suitable test gauge length. Thus, the specimen is tested in a condition of
plane strain rather than the plane stress state that characterises the uniaxial tension test.

Figure 10. Planar tension specimen and grips.
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In order to test the flexible adhesives under plane strain conditions lateral contraction of the
specimen during extension must be minimised. This is normally achieved by testing short,
wide specimens. A typical test arrangement and suitable grips, with 300 mm wide jaws, are
shown in Figure 10. For reliable planar test results, it is essential that the specimen be firmly
gripped so that the specimen does not slip. The grips have to constrain contraction along the
whole width of the specimen. The jaws shown in Figure 10 can be tightened at the centre and
at each end in order to distribute clamping pressure over the whole width of the specimen. To
ensure the specimens were securely held in the grips and improve the uniformity of clamping
four additional clamping bolts were later added to the apparatus shown in Figure 10. Itis also
possible to reduce the likelihood of the specimen slipping by bonding rigid strips (e.g., 1 mm
thick aluminium) to the top and bottom edges of the specimen using a high strength anaerobic
adhesive. The adhesive used to attach the strips must not degrade the test sample. This
arrangement allows uniform distribution of force on the sample even if the clamping pressure
is not equally distributed.

The adhesive test specimen is obtained from bulk sheets manufactured using the techniques
outlined in Chapter 2. Specimens are cut to shape using a shaped template and a sharp scalpel
blade. Care must be taken to avoid nicking the edges of the test specimen. The test is more
tolerant of damage to the edges in the gripped regions than it is to damage to the free edges.
If there are nicks on the free edges the specimens should be discarded.

1.4
12+ 30 mm
— 1 T
©
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b . .
n ——50mm grip separation
0.4 . .
-=40mm grip separation
— 30mm grip separation
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0 : : : :
0 0.05 0.1 0.15 0.2 0.25 0.3
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Figure 11. Evaluation of the effect of aspect ratio on planar tension results.
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Test Procedures

The planar tension test is performed in a universal testing machine. The specimen should be
conditioned at the test temperature before it is clamped in the grips. The specimen is pulled
in tension at a constant extension speed, selected to give a strain rate in the sample that is
appropriate for the design analysis. It is recommended that preliminary tests be performed, at
low extensions, to determine the relationship between extension speed and strain rate. The
planar stress (op) is straightforward to calculate from the measured force (Fp) and the
specimen width (w) and thickness (t):

op = ‘l/:v—i (7)
Strains are more complicated to determine. It is recommended that video extensometry is
used to determine strains directly from the movement of contrasting gauge marks on the
specimen surfaces. If video extensometry is not available, then it is preferable to estimate
strains from measured movements of the test grips rather than the crosshead movement. An
area of concern was that the planar test specimen might not necessarily experience pure plane
strain during testing. Experimental measurements were made to confirm plane strain
conditions. Video extensometry was used to show that lateral contractions in the specimen
width are minimal and that the axial strain distribution is uniform across the width of the
specimen [32].

Termination of the test normally occurs due to two reasons.

e  The first cause for ending the test is that the specimen starts slipping in the grips.
This is accompanied by a reduction in load or a saw tooth pattern if there is a slip-
stick occurrence. The chances of this happening can be minimised by altering the
clamping to produce a uniform clamping pressure. Contractions in the thickness of
the specimen will occur under extension and, thus the clamping pressure will reduce
throughout the test. Wedge or pneumatic grips would help maintain the clamping
pressure throughout the test but are not readily available with the appropriate
widths.

e  The second cause of test termination is failure of the specimen. There are large
stress concentrations at the corners of the specimen. Rupture of the specimen
originating at the corners can lead to the specimen tearing along the grips. Itis
thought that the initiation of rupture will have some dependence on the clamping
pressure and the sharpness of the grip edge. The jaw faces indent the soft sample
when they are tightened. This increases the local stress on the specimen and, if the
edge of the jaw is sharp, may ‘cut into’ the material producing a ‘notch’. The obvious
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solution is to reduce clamping forces, but this increases the risk of the sample
slipping. Tabbing the specimen helps to reduce this notching effect. Adhesive tape
(e.g., electrical insulating tape) can be applied to the long edges of the specimen.
The indentation of the jaws is thus ‘blunted’ and the specimen should reach greater
loads before tearing.

Any tests carried out on the planar test specimen have tended to fail at strains that are less
than 50 % of the strains achieved in the corresponding uniaxial tension test. The cause of
failure was either the specimen slipping from the grips or specimens tearing at the corners.
Test specimen preparation is time consuming, as a large volume of adhesive has to be
dispensed and formed into a uniformly thick sheet that is free of major flaws. In practice, it is
difficult to make bulk sheets of sufficient quality to test. This test method is not easily
applicable to flexible adhesives.

Test data are formatted for FEA as nominal stress, nominal strain as described in Chapter 6.

Equibiaxial Tension Test

Biaxial tension is produced through deforming a specimen simultaneously in two directions.
Equibiaxial tension tests require a stress state with equal tensile stresses along two orthogonal
directions. Assuming incompressibility, this deformation mode is characterised in terms of the

principal stretches: Ay = A, = Ay and A3 = 1/)\1,2 where 2y, is the stretch in the perpendicular

loading directions. The nominal strain is defined by €, = A, — 1.
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Figure 12. Biaxial testing machine and specimens.
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Biaxial Test Equipment and Specimens

The equibiaxial stress state is obtained by stretching a square sheet in a biaxial test machine.
Mechanical testing machines with two independently moving loading axes are rare in test
laboratories owing to their size and expense. Schematics of a typical biaxial test arrangement
and cruciform test specimens [41] are shown in Figure 12. The cruciform specimens required
for biaxial testing in this type of equipment are relatively large (the specimen arms are
approximately 200 mm long) and so may present problems for specimen manufacture.

The scale and expense of this testing was thought unsuitable for flexible adhesives or similar
materials and a test fixture has been developed to enable the performance of equibiaxial
tension measurements in uniaxial test machines (Figure 13).

{r

45 mm

Figure 13. NPL Biaxial test frame and specimen.

This test fixture consists of pivoted scissor arms that resolve the machine crosshead
movement into extension of the test specimen at + 45° to the axis of the test machine. As the
frame is extended the outer pivots move inwards, applying forces to the inner arms that pull
the inner grips apart symmetrically in orthogonal directions. The specimen is extended in local
axes at £ 45° to the axis of the test machine. The total force measured on the pull rod of the
test machine can be resolved into biaxial components through a geometrical correction factor,
calculated from the geometry of the moving lever arms of the frame. For the frame employed
in this work the correction factor was calculated as 0.355. Stress was calculated on the
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assumption that all stress was uniformly distributed within the region of specimen, between
the grips. This region is 28 mm square when the frame is in the initial, closed position and the
sample is undeformed.

Some studies have been carried out to validate the biaxial test frame [33]. Two virtually
identical tensile specimens were tested in the biaxial frame to validate that biaxial extension
was occurring (each specimen was held by two of the grips using the crossed arrangement
shown in the inset in Figure 14). The stress-strain curves determined are shown in Figure 14.
The responses are very similar, confirming equibiaxial extension. Strain measurements made,
by following the movement of a grid pattern of dots, demonstrated the biaxial nature of the
strain distribution in the centre of the test-piece. FE analysis of the test specimen also
supported the view that the stress and strain distributions in the centre of the specimen are
equibiaxial [33]. The load correction factor was confirmed experimentally by testing uniaxial
tension specimens in the test frame. The determined stress-strain curves from uniaxial
tension specimens tested in the biaxial were very similar to those measured in a standard
uniaxial tension test (Figure 15).

0.8
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Figure 14. Validation of equibiaxial stretch from test frame.
The equibiaxial test specimen is made by cutting a 45 mm square from flat sheets of bulk
adhesive. The corners of the square are then removed to reduce stress concentrations
between the grips. A typical test specimen, shown in the orientation in which it would be
gripped, is shown in Figure 13. The specimen shown has been tested. Gauge marks made for
video extensometry are clearly visible. A crack can be seen running from the right hand edge
of the specimen. The region where the specimen started to tear corresponds to the region of
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the specimen between the corners of the gripping blocks, where stress concentrations are
highest. At large strains, thinning of the test specimen may lead to slippage in the grips.

Strain Measurement

Strain measurement in the biaxial test is best performed using non-contact methods such as
video extensometry. Strains can be determined from the extension of two gauge marks in the
vertical axis of the test machine (Figure 13) as it can be shown geometrically that in equibiaxial
tension this strain is equivalent to the equibiaxial strain in specimen (which is at + 45° to the
test machine axis). Strains can also be determined from the grip movement although, since
the strain distribution near the grips is non-linear, these will be inherently inaccurate. Grip
movement should be measured using displacement transducers attached to opposite grips.
Crosshead movement cannot be easily converted into strain.

Biaxial Tests

When carrying out biaxial tests it is essential that the test frame and the specimen are allowed
to equilibrate at the test temperature. The load cell reading should be zeroed before the
specimen is clamped. It is recommended that the frame be extended empty to check for
friction in the pivots and lubricated if this friction is significant.

The test speed should be set to give a local strain rate in the specimen equivalent to that in the
other bulk specimen tests and in the joint being analysed. Some set-up tests may need to be
performed to determine the speed setting for the specimen being tested. Strains are
determined from the vertical extension of two gauge marks on the specimen using a video
extensometer. Loads (F) are determined from the load cell and resolved into biaxial loads (P)
using the calculated correction factor (k = 0.35476). Nominal stress is calculated from the
measured biaxial load divided by the initial cross-section area where c is the sheet thickness
and a is the initial separation of the biaxial grips (28 mm). As the cross-section area of the
specimen increases during the test the true stress will be lower than the nominal stress (N.B.
Abaqus uses the measured nominal stress data as input).

o P KF
Biaxial Stress = — = — (8)
ac  ac

The measure data are formatted as nominal stress, nominal strain for input as material
properties data (Chapter 6).
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There are however many uncertainties associated with such biaxial tests. The major
uncertainty is in the interpretation of stress from the test. The calculation of biaxial stress
from biaxial force divided by initial cross-section yields an averaged stress. However, the
stress distribution is highly non-uniform and local stress in the centre of the specimen, where
strain is biaxial, is unknown. The stress in this region can be predicted using FEA, but a number
of assumptions need to be made. It has been observed that the choice of materials model can
significantly influence the stress value obtained, which increases uncertainties in the test.
There is no experimental method for determining local stress in the central region (unlike
strain). The problems in determining stress are not confined to the biaxial frame described but
are generic to all biaxial stretching methods [41].

A further disadvantage with the biaxial test is that the specimens fail at low average biaxial
strains owing to large stress concentrations in the corners of the specimen between the ends
of the grips. The strain range available from this test is limited and, again, the same problems
are encountered in cruciform specimens tested on multi-axial test machines [41].

An alternative method of producing biaxial stress is through inflation of a clamped sheet of
material using pneumatic pressure. This was not investigated in the current study, because
interpretation of stress and strain is too complicated. There are also a number of safety
implications involved in inflating specimens to failure.

Measurements for Modelling Hyperelastic Properties

Figure 15 shows a comparison between stress-strain curves produced by the uniaxial, planar
and equibiaxial tension tests. As the degree of constraint and, hence, the hydrostastic stress
increases, so the ‘stiffness’ of the test specimen increases. It is noticeable that, in comparison
to the uniaxial test, the strains to failure are reduced for the planar and equibiaxial tests.

Test data from all three of the tension test methods outlined in this Chapter are recommended
for accurate modelling of multi-axial stress states using hyperelastic models [12]. Only one of
the tests, the uniaxial tension, could be described as routine or readily available. The planar
test specimen is large, requiring large quantities of adhesive. Specimens are also difficult to
prepare. The biaxial test requires either an expensive multi-arm test machine or a special
fixture. No matter which arrangement is selected there are technical difficulties in
determining the biaxial stress in the specimen from measured loads. Due to the geometry and
clamping of the planar and biaxial specimens, stress concentrations at the corners of the grips
tend to limit the maximum strains that can be achieved in these tests. These tend to be
significantly lower than strains that are measured in the uniaxial tension test. Potentially, such
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differences in strain ranges could destabilise numerical fitting of the data for the hyperelastic

coefficients.
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Figure 15. Comparison of stress-strain curves produced from different tension test methods.

A series of FEA experiments was performed on a single-lap joint configuration as part of a

more general investigation into factors influencing the accuracy of FEA predictions of the
force-extension behaviour of bonded joints [20]. This examined the effect of the type of input
test data supplied on FE model and also factors such as material model, strain rate and
temperature. The accuracy of the fit of the predicted force-extension curves to the
corresponding experimental curves was evaluated through a divergence parameter. The lower
the divergence parameter the better the fit. These results were analysed using a statistical
design of experiments approach and the average effects of each parameter are summarised in
Table 3.

Level | Model EAEFEEA I N
1 Mooney-Rivlin 0.83 U 0.80 0°C 0.84 3.0E-04 0.65
2 Ogden, N=1 0.79 UBP 0.82 20 °C 0.61 3.0E-03 0.78
3 Ogden, N=3 1.04 U+Vv 0.74 40 °C 0.92 3.0E-02 0.94
4 Neo Hooke 0.64 UBP+V 0.78

5 Arruda-Boyce 0.65

Table 3. Analysis results for full experimental matrix (180 standard FEA experiments).
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Four different combinations of input data were evaluated: uniaxial tension only (U), combined
uniaxial, biaxial and planar tension (UBP), uniaxial tension and volumetric properties (U+V), as
described in Chapter 4, and combined uniaxial, biaxial and planar tension and volumetric
properties (UBP+V). Where volumetric properties data were not used the D; volumetric
coefficients in the models were by definition O (i.e., the materials were assumed to be
incompressible). The averaged results show that there is little difference between the
accuracy of predictions made using uniaxial data only and those made using the combined
uniaxial, biaxial and planar tension data [20]. Therefore, it appears that the biaxial and planar
tests can be omitted with little effect on accuracy, thus simplifying testing requirements. The
addition of volumetric data to calculate the volumetric coefficients improves the accuracy of
the fits. The best combination of input data was uniaxial tension and volumetric tension.
Therefore, uniaxial tension and volumetric tension appear the most effective input data for
modelling flexible adhesives. Chapter 4 outlines a method for obtaining volumetric properties
from the uniaxial tension test allowing all the required data to be obtained from a single
measurement.
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Determining Volumetric Properties

It is common when modelling natural rubbers to assume that the material is incompressible,
thus the volumetric properties can be ignored. Therefore, in the hyperelastic models all the
volumetric D; coefficients can be assigned the value zero. Incompressibility corresponds to a
Poisson’s ratio approaching 0.5. However, measurements on flexible adhesives [1, 20] tended
to indicate that Poisson’s ratio values for flexible adhesives were approximately 0.30 to 0.35.
Thus, the assumption of incompressibility is invalid.

When using hyperelastic material models to predict the behaviour of flexible adhesives with a
Poisson’s ratio of less than 0.5, it is prudent to account for the materials compressibility. This
is achieved by including a volumetric term (calculated from volumetric data) along with the
hyperelastic coefficients. The user manuals for Abaqus [12] recommend that coefficients (D;)
required to define the volumetric contribution are calculated from data obtained from
volumetric compression of a specimen. The volumetric compression test of a sample with
known dimensions (sample radius and height) produces data in the form of a load and a piston
displacement. Abaqus requires data in a tabular form as the pressure, P, and the
corresponding volume ratio, J (current volume/original volume), throughout the test.

. o . piten
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Figure 16. Schematic of (a) True hydrostatic compression and (b) Quasi-hydrostatic compression.
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Volumetric Compression

One method of measuring true volumetric compression is a dilatometer (Figure 16 (a)). Thisis
an application of true hydrostatic pressure. The stress is applied to a fluid and acts equally on
the sample in all directions. Measurements using this method are the most accurate, but the
requirement for a liquid to transmit the pressure to the sample limits the pressures range [42].

A simpler but more approximate way of conducting a volumetric compression test involves
applying stress to the sample in one direction only. The sample is a small cylinder of material
inside a rigid container. As the surface of the sample is compressed the sides try to move
outwards in response to the stress but are restrained by the rigid container (Figure 16 (b)).
Stresses are thus generated on the sides as well as the top and bottom of the sample. The
stress field is quasi-hydrostatic as the stresses on the sides are lower than those at the top and
bottom. Although both volumetric and deviatoric deformations are present, the deviatoric
stresses will be several orders of magnitude smaller than the hydrostatic stresses (because the
bulk modulus is much higher than the shear modulus) and can be neglected. The limitation of
this type of apparatus is the stiffness and yield strength of the container [43].

;R—l Piston

‘1[ : Adhesive
Il

\ /
N/

2 of 3 transducers

Figure 17. Schematic of volumetric compression fixture.

Apparatus for performing a quasi-hydrostatic volumetric compression test is illustrated in
Figure 17. The steel base plate, piston and cylinder are very much stiffer than the adhesive,
and FEA investigations show insignificant deformation of these parts under test loads. The test
specimen is formed within the 20 mm diameter central cylinder of the test fixture, compressed
under light pressure, using the weight of the piston to ensure a level surface, and cured in the
test fixture (Figure 18). To test, the fixture is compressed between two parallel platensin a
universal test machine. Three displacement transducers are clamped at three equally spaced
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points around the fixture. These determine the compression of the sample and provide a
check for uniform compression.

Spacers

rras C Release film

Sample

Figure 18. Set-up for preparing volumetric compression specimen.

The compressive stress imposed by the piston is effectively the pressure data and can be
calculated as

where P is the pressure, F is the measured load and r is the sample radius.

The volume ratio, J, is calculated as

v nr?h _hg — piston displacement (10)
I= Vo mrzhy ho

where V = current volume, V; = original volume, r = sample radius, h = current sample height
and hy= original sample height.

The calculated pressure and volume ratio data should be formatted as described in Chapter 6.
Data are supplied as pressure, volume ratio.
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Volumetric Tension

Although FEA manuals recommend the use of volumetric compression data, it is considered
that properties in tension are critical to joint failure and that volumetric behaviour in tension
may be more relevant. A form of volumetric data can be obtained from the uniaxial test [44].
During testing both the axial strain and transverse contraction should be obtained along with
the load. From the strain measurements a form of volume ratio can be obtained, assuming
that the through-thickness strain is equivalent to the transverse strain in the direction of width
(i.e., &5 = €3, €, and &3 have negative signs during tensile extension). The pressure P required
by Abaqus is equivalent in magnitude to the true tensile stress ot obtained from the measured
load using Equation (6).

The volumetric strain can be determined from the original and current volumes of the tensile
gauge volume as follows:

A

17 /ﬂ
> 2
[

Figure 19. Tensile volume element.

Original volume; Vo = 111,15 (12)

Current volume; Vo = I; (1 +&)l,(1 + £,)I3(1 + £3) (12)
1= V — 2

Volume ratio ] = /V0 = 1+e)A+egyp) (13)

where [; is the extensometer gauge length, [, is the specimen width, 5 is the specimen
thickness as shown in Figure 19, g is the axial strain and ¢, is the transverse strain.

When considering tensile volumetric data, the current volume is larger than the original
volume, hence J=1 at zero stress and increases with increasing tensile stress. As the
compressive pressure is deemed positive in Abaqus, then the tensile pressure stress should be
regarded as negative, in other words input data should be in the form P = —cand ] > 1.
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When the FE analysis is carried out using these data the following Abaqus warning message is
generated “The nominal strain is opposite in sign to the stress. This is not physically
reasonable”. This warning message does not imply failure of the analysis as D; values can be
successfully calculated.

An alternative approach is to calculate the inverse volume ratio giving ] <1 and using positive

pressure values. In thiscase] = V/Vo (original volume/current volume). The D;value is

calculated in this instance without a warning message. After investigation, the D; values
obtained from both methods were found to be comparable. An example set of volumetric
tension data is provided in Appendix A2.
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Determining Visco-Elastic Properties

Flexible adhesives are visco-elastic materials, i.e., their behaviour is a combination of strain-
dependent elastic (recoverable) and strain rate dependent viscous (irrecoverable) processes.
The visco-elasticity provides beneficial properties, such as damping, but can complicate the
prediction of mechanical performance through strain rate and temperature sensitivity of the
response and creep behaviour under constant loading conditions.

Strain rate and temperature sensitivity of the mechanical properties can be explored through
tests under different conditions. Where data are available under conditions appropriate to the
design then these can be used directly but in order to evaluate the joint performance under
different conditions it is necessary to either measure or interpolate material properties.

It is difficult to predict the derived hyperelastic coefficients as functions of strain rate and
temperature, particularly if the selected model contains several coefficients [20]. Generally,
the volumetric behaviour has a minor effect on the predictions and, therefore, assuming
constant values for the D; components should not introduce excessive errors [20]. Where the
model contains only one deviatoric coefficient (such as Arruda-Boyce or Neo Hooke) then
there is a greater chance of deriving functions to interpolate the value of this coefficient [20].
However, if two or more fitted coefficients are required then these tend to have scattered
values and cannot be accurately interpolated. In such cases it may be more effective to
interpolate values from sets of stress-strain curves at different rates/temperatures to
determine a ‘new set of data’ to use in the analyses.

Finite Element models can include rate dependency through visco-elastic functions. In Abaqus
[12], for example, rate dependent responses can be modelled as a sum of relaxations to the
stiffness matrix that can be characterised from either stress relaxation or creep measurements
[45-47]. The analysis must be run using a step that includes time. In Abaqus quasi-dynamic
behaviour can be modelled using a *VISCO step and full dynamic behaviour, including inertia
effects, through Abaqus Explicit analyses.

Stress Relaxation

A stress relaxation measurement is performed by rapidly applying a strain, holding that strain
constant and monitoring the load over a set period of time [45-47]. Measurements can be
performed on either bulk test specimens (e.g., uniaxial tension) or joint specimens (e.g., single-
lap shear). Relaxation tests can be performed using tensile test machines although for longer-
term measurements a static test frame (Figure 20) where the specimen can be extended in
tension by a set amount may be preferable. Although only the load data are truly needed to
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determined stress relaxation, it is good practice to also measure strain as this determines the
strain at which the relaxation occurs (important if the relaxation function is strain dependent).
This is needed to calculate the relaxation modulus and can be used to confirm that the applied
strain remains constant.

The data produced are time-dependent load curves, it is important that the time from the
start of each test can be determined in the test record. Care should be taken when using data
collection equipment that has data reduction or data collection features as the essential
information on when a point was recorded may not be available. It is preferable for the time
to be directly recorded rather than being inferred from the data collection rate.

rigid frame

(a) Stress Relaxation
45 + 5 % strain
*
" 40 + + measured data
. fit E(t) = Eo + Dt\(-n)

—_ \ 3B

©

o *

E 30 7'0
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Figure 20. Schematic of relaxation test and typical results for a flexible adhesive.

The point of maximum load should be designated as the start of the relaxation with the
proviso that the strain after this point is constant. If the strain changes after maximum load,
e.g., due to backlash in the test control system, then the point where strain becomes constant
should be taken as the start of the relaxation. Subsequent test times should be adjusted for
this point of zero relaxation. It is usual to calculate the relaxation modulus from the measured
load, applied constant strain value and specimen dimensions. The results should be
normalised by the relaxation modulus at the defined start of the relaxation. Thus, the
normalised relaxation modulus decreases from one with increasing time. The initial point (at
zero time) should be omitted from the data used to fit the FE relaxation function to avoid
fitting errors. It is also normal practice to omit points occurring within a period of time equal
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to three times the period of load application, as these may be unreliable. Thus, short-time
relaxation phenomena need to be characterised with tests where the load is applied rapidly.

Creep

Creep [45] is the time-dependent deformation resulting from the application of a constant
stress on a component (although constant stress is often taken as constant load). This can be
measured on bulk or joint test specimens although with flexible adhesives both types of
specimen present measurement problems [46-48]. The key to creep measurement is accurate
and stable measurement of strain. It is also important to maintain a stable temperature. Tests
are normally terminated when one of three conditions are met; either (i) the test exceeds a
pre-determined duration, (ii) the strain exceeds a pre-determined value or (iii) the specimen
ruptures.

rigid frame lever arm

_ pivol

specimen extension

displacement applied force
transducer
displacement extension
transducer \—‘
applied load

I e

(a) Deadweight arrangement ~ (b) Lever arm arrangement

Figure 21. Schematic of creep tests.

Page 42 of 86



Creep Test Apparatus

Uniaxial tensile test specimens have very low stiffness and, hence, present problems for
loading. The applied force needs to be low so as not to exceed the static failure strength of
the material. Deadweight loading of the specimen (Figure 21 (a)) is the most straightforward
method of performing a creep test. However, unless some sort of frictionless guide is used,
hanging a load from the specimen will tend to cause the specimen and grips to swing when the
load is applied leading to very poor measurement accuracy [45]. A preferred arrangement is
to apply the load via a lever arm at the top of the specimen (Figure 21 (b)). This tends to
reduce movement of the specimen. Force should be applied slowly to avoid the system
oscillating.

Strain Determination

Extensometry presents a problem — video extensometers could be used, but this is
uneconomic. Normal practice is to use a long-travel displacement transducer to measure the
movement of the moving grip. This gives extension, but not local strain. Correction functions
to obtain strains from grip movement can be applied using methods outlined in Chapter 3.
However, as the relaxation function requires strain values that are normalised by the elastic
(or initial) strain and provided the strain-extension function is approximately linear then
extensions can be used instead of strains.

In joint specimens small displacements make accurate strain determination difficult. It is
advisable to attach accurate extensometers that straddle the bond line of the specimen rather
than measure grip movement in order to exclude any extraneous movements that have a
major influence on the results.

The measured creep data need to be converted into a creep-time, normalised strain format
[45] to determine the relaxation function that models the time-dependence of the matrix
stiffness. The initial ‘elastic’ strain (or extension) defined by the elastic properties needs to be
identified on the strain (or extension) vs. time plot. This is defined as zero creep time and all
subsequent test times are adjusted accordingly. All strains (or extensions) are normalised by
dividing by this value. The initial strain is identified as a point of inflection on the curve where
high rate elastic response gives way to lower rate creep responses. As Figure 22 illustrates, it
is not easy to precisely define the point that is the initial ‘elastic’ strain. Uncertainties in this
value can cause large uncertainties in normalised creep strain values. The zero time point
should be excluded from the input data, as this will cause a fit error. Thus, the data set
consists of a set of normalised strains whose initial value is greater than one and increases
with time. An example creep data set is shown in Appendix A2.
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Figure 22. Typical flexible adhesive creep measurements.

Creep Rupture

Creep rupture tests, also known as static fatigue tests, are often performed to evaluate
durability of joints under static loading. By loading at different proportions of the static
strength of the joint and determining time to failure (which will decrease as the load increases)
durability can be assessed. Thus, creep tests can provide information on the failure of joints,
unlike relaxation tests. Results of creep tests performed on bulk uniaxial tension specimens of
a flexible adhesive at different temperatures and loads [46] are shown in Figure 23. These are
plotted as failure strain against applied stress. Quasi-static failure values are added for
comparison. It can be seen that the creep and the static results follow a similar envelope. Itis
possible that low-rate static tests at elevated temperatures can provide a means of evaluating
maximum static stresses for joints.
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Figure 23. Failure data determined from creep and quasi-static tests.

Rate and Time Dependent Predictions

Input data, for predicting the rate and time dependent response of a joint bonded using a
flexible adhesive, are obtained more accurately from stress relaxation tests than they are from
creep tests. A fundamental problem with tensile creep test is that, as the extension increases,
Poisson’s contraction of the specimen will reduce the loaded area and the true stress will
increase. Thus, the test is at constant load, but not constant stress and the creep strain rate
will accelerate as the test proceeds. Load measurements can be made more reliably in stress
relaxation than strain measurements in creep. The identification of the initial elastic response
tends to be easier as the maximum load in stress relaxation is normally more readily
identifiable than the inflection at the elastic strain in creep tests. The easier identification of
the initial point provides higher confidence in the responses determined at short times.
However, creep tests would be required to evaluate long-term durability.

Rate dependence in monotonic loading can be handled in the FE analyses through visco-elastic
or time-dependent properties. In the Abaqus FE package [12] the time-dependence of
modulus can be included in the material properties definition through the Abaqus
*VISCOELASTIC command and examples of visco-elastic material property definitions are
shown in Appendix A2.
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An example of this approach is shown in Figure 24. FE predictions made for a comparatively
slow strain rate using a standard static analysis (*STATIC) and material properties obtained at
the low strain rate are compared with a quasi-dynamic analysis (*VISCO) using higher strain
rate properties combined with visco-elastic relaxation. Time-dependent properties of the
adhesive had been obtained from a stress-relaxation test on a bulk tensile specimen extended
to 5 % strain [1]. The time-dependent loads were normalised by the initial load in order to
format the results for input into the FE model. The visco-elastic prediction was very similar to
the time-independent *STATIC prediction of the lap joint response at the comparable strain
rate (3 x 10-4 s'1). The quasi-dynamic analysis of the model run using low strain rate input
properties and no visco-elastic relaxation gives exactly the same predictions as the static

analysis.
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Figure 24. Comparing static and quasi-dynamic FEA predictions.
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Presenting Experimental Data

Uniaxial, Biaxial and Planar data

A convenient method for defining a hyperelastic material is to supply the FE program with
experimental data. The constants are then calculated using a least-squares method. Various
combinations of uniaxial tension, biaxial tension and planar tension data can be used to derive
the coefficients. This section explains the data manipulation necessary in order to obtain data
in the format required by the FE program Abaqus [12].

The uniaxial, biaxial and planar tension tests all produce raw data in the form of load and
extension, with known specimen width, thickness and gauge length for each sample tested.
Abaqus requires the data, in the tabular form, as a series of nominal stress and nominal strain
data sets. As outline in previous chapters, these data can be calculated as shown below.

For all three test methods the strain is calculated as

g=— (14)

where € = nominal strain, 6L is the measured extension (mm) and L is the original gauge length
(mm).

Nominal stresses are calculated from uniaxial and planar data as

S (15)

where o is nominal stress, F is force measured in load cell, w is sample width and t is sample
thickness.

With the biaxial data, the biaxial nominal stress is calculated as follows

_KkF

= (16)
ac

Op
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where F is the force measured by the load cell, k is the geometrical correction factor derived
from the lever ratios in the scissored frame (0.35476 for the frame used), oy, is the nominal
biaxial stress, a is the initial grip separation (28 mm) and c is the sample thickness.

The above equations should be used to convert all the load, extension data into nominal stress
and nominal strain data.

Some data values may have been recorded prior to the start of the test so the next step is to
pinpoint the start of the test and remove the preceding data. The FE program requires that
the data set values are positive. The raw stress and strain data can be adjusted by translation
so that the data at the start of the test are nominal stress = 0 and nominal strain = 0. Next,
identify the failure point of the test specimen and remove the subsequent stress and strain
data.

Volumetric data can be obtained using one of the methods described in Chapter 4 with the
relevant calculations carried out to produce the required pressure and volume ratio data.

The adjusted stress and strain data can then be input into the material definition within
Abaqus/CAE. Within the property module the hyperelastic models are found under
Mechanical>Elasticity>Hyperelastic. Experimental data is included by setting the input source
to Test data, clicking on the Test Data drop down menu and selecting the relevant test data
option. The tabular data can be copied and pasted directly from spreadsheet packages such as
Excel. An example set of uniaxial data and volumetric data is shown in Appendix A2.

Visco-Elastic Data

Visco-elastic data can be supplied as either stress relaxation or creep data. In each case the
results should be normalised with respect to the initial ‘elastic’ value. All data before and
including this initial elastic point should be removed from the data set. The time of the initial
‘elastic’ point should be subtracted from the subsequent experimental times and the data file
should be formatted as pairs of normalised visco-elastic value N, normalised time t. For stress
relaxation data N (=gr in Abaqus) <1 and decreases with time. For creep data N (js in

Abaqus) > 1 and increases with time.

In Abaqus/CAE the viscoelasticity option is found within the Properties module, under
Mechanical>Elasticity>Viscoelastic. Select Time domain and then select either Relaxation test
data or Creep test data. Click on the Test Data drop down menu, select Shear test data and
enter the values js (for creep data) or gg (for stress relaxation data). Examples of material
properties definitions are shown in Appendix A2.
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Calculating Hyperelastic Coefficients

An FE package such as Abaqus can be used to obtain the hyperelastic coefficients. The analysis
extracts the experimental data and performs a least-squares fit procedure to obtain the
coefficients. This procedure minimises the relative error in stress. In Abaqus /CAE this
coefficient evaluation is run within the Properties module. After the experimental data has
been added to the hyperelastic material definition, as described above, the coefficient
evaluation can take place. Materials>Evaluate>model_name opens an Evaluate Material box.
Under the Test Setup tab it is possible to choose what combination of data is used. Various
combinations of uniaxial, biaxial and planar data can be used: uniaxial only; uniaxial and
biaxial; uniaxial and planar; uniaxial, biaxial and planar; biaxial only; biaxial and planar (planar
data cannot be analysed alone except for the Reduced Polynomial, Arruda-Boyce and Marlow
models). Each of these combinations can be run either with or without volumetric data
although including volumetric data makes no difference to the calculated deviatoric
coefficients, only the volumetric coefficient. Strain limits can be set for the material evaluation
for cases where the test data available covers a broader strain range than the range of
interest.

The Strain Energy Potentials tab allows selection of the strain energy potential models that will
be fitted to the test data. A large range of hyperelastic models are available:

e  Polynomial N=1 (Mooney-Rivlin)
e  Polynomial N=2

e OgdenN=1
e  Ogden N=2
e  Ogden N=3
e  Ogden N=4
e  Ogden N=5
e Ogden N=6

e  Reduced Polynomial N=1 (Neo Hooke)
e  Reduced Polynomial N=2

e Reduced Polynomial N=3 (Yeoh)

e  Reduced Polynomial N=4

e  Reduced Polynomial N=5

e  Reduced Polynomial N=6

e  Arruda-Boyce

e  Van Der Waals

e  Marlow
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Once the required models have been selected, Abaqus performs the material evaluation. An
example of an Abaqus input file is shown in Appendix A3. This input file contains Abaqus
commands for calculating coefficients for a selection of the available Abaqus hyperelastic
models [12]. The full data sets for the experimental data have not been shown in this
example.

The analysis will generate a Materials Parameters and Stability Limit Information box, with
individual tabs for each model evaluated. The stability information provides relevant warnings
with respect to material stabilities outside of specified strain ranges per failure mode i.e., the
strains at which the hyperelastic model becomes unstable. This information is also given in the
model_name.dat file created when the analysis is run. Abaqus/CAE also produces individual
plots of the experimental data supplied (e.g., uniaxial, biaxial etc.) with the predicted data
from each of the evaluated models to enable the curve fits to be studied and the most suitable
hyperelastic model to be selected. A reasonable correlation between experimental and
predicted data increases confidence in the coefficients. An example of the comparison that is
attainable between predicted and experimental data is shown in Figure 25. The data shown
(replotted in excel) are for an elastomeric adhesive tested at 20 °C and a test strain rate of
3x103s? (equivalent to 10 mm/min uniaxial tension test speed). Good correlation is obtained
for both the uniaxial and planar tests, with only moderate correlation for the biaxial test.

An example of the Stability Limit information is given below, along with the calculated set of
parameters, in this case for the Mooney-Rivlin model:

***WARNING: UNSTABLE HYPERELASTIC MATERIAL
FOR UNIAXIAL TENSION WITH A NOMINAL STRAIN LARGER THAN 0.4500
FOR UNIAXIAL COMPRESSION WITH A NOMINAL STRAIN LESS THAN  -0.3056
FOR BIAXIAL TENSION WITH A NOMINAL STRAIN LARGER THAN 0.2000
FOR BIAXIAL COMPRESSION WITH A NOMINAL STRAIN LESS THAN  -0.1695
FOR PLANE TENSION WITH A NOMINAL STRAIN LARGER THAN 0.3700
FOR PLANE COMPRESSION WITH A NOMINAL STRAIN LESS THAN -0.2701

HYPERELASTICITY - MOONEY-RIVLIN STRAIN ENERGY

D1 C10 C01
7.442617E-03 4.713647E-02 2.13972
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The next step is to choose the strain energy model that best fits the experimental data. A good
practice for material evaluation [49] overall would be to:

Understand the failure mode expected in the real-life product. Perform testing of
specimen corresponding to that failure mode.

Assess the expected strain levels up to which the product is expected to deform.
Perform testing of specimen at least up to that strain level so that more relevant
experimental data are available for input in Abaqus.

Evaluate the effectiveness of data fitting of different strain energy models, for the
failure mode and in the strain range of interest. For example, one strain energy
model might fit test data more accurately than another but at a different strain
range than the one expected for the real product.

Inspect warnings produced by Abaqus regarding material instabilities outside certain
strain ranges. If there is interest in those particular ranges where material instability
is occurring, perform more material testing covering those ranges so that the
relevant experimental data is available for a more effective curve fitting. If a
material deforms up to strain ranges where it is characterized as unstable, the
analysis will not run to completion.

When the best strain energy model has been defined by the user’s judgement and analysis
needs, this can be selected in the material property tab. This will then be the material’s stress-
strain relationship that will be used for the finite element analysis.

= T wm=e =

Mooney-Rivlin 0.0383 0.0471 | 2.140 - - -
Ogden, N=1 0.0383 - - 4.413 | -2.008 -
Neo Hooke 0.0383 2.01968 - - - -
Arruda-Boyce 0.0343 - - 3.987 - 7.005

Table 4. Hyperelastic coefficients from a selection of models. *-* indicates a coefficient that is not relevant
to a particular model.

Table 4 shows example coefficients for a selection of models. These were obtained for an

elastomeric adhesive at a testing temperature of 20 °C and test rate of 10 mm/min, using

uniaxial, biaxial, planar and volumetric data.
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Figure 25. Nominal stress-nominal strain plots showing the comparisons between hyperelastic test
data and Mooney-Rivlin predictions for uniaxial, biaxial and planar tests.
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Comparison of Element Types

In any Finite Element model there tends to be a compromise between accurate representation
of the component and available computational resources. If symmetry allows, many adhesive
joint configurations are commonly represented by 2-D models (with width ignored) rather
than 3-D models in order to reduce run times and limit analysis file sizes. 2-D FE elements can
be broken down into three generic types — plane stress (PS), plane strain (PE) and generalised
plane strain (GPE). Plane stress elements are recommended for thin or unconstrained
components and are not considered suitable for adhesive layers. Plane strain elements are
recommended for thick or constrained components (e.g., an adhesive layer). Generalised
plane strain elements are similar to plane strain elements but allow for some Poisson’s

contraction.
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Figure 26. Comparison of different element types.

Predictions of the load-displacement response of a single-lap joint made using the three types
of 2-D elements are shown in Figure 26. The PE element predictions are closest to the 3-D
predictions. However, the PS and GPE predictions are very similar and are closer to the
experimental data. The 3-D model contour plots showed no through-width distribution of
either stress or strain and indicated that a 2-D representation should be adequate. There were
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few differences between maximum stress values, at joint failure loads, predicted by either PE
or GPE elements [50]. Further information on element types is in Appendix A4.

Material Models

Various types of hyperelastic material models are described in Appendix Al. It is believed that,
since flexible adhesives are relatively low strain materials in comparison to natural or synthetic
rubbers, first order material models may be most suitable. It is not possible to recommend
any universal material model since the behaviour of flexible adhesives is likely to be variable.

It is recommended that careful evaluation of model predictions is performed to screen
candidate models. The choice of material model should be validated using coupon tests to
increase confidence in the design.
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Figure 27. Effect of material model on predicted stress concentration.

It has been observed that the choice of material model influences the shapes of the predicted
force-extension curves [20]. However, at constant forces, the stress distribution does not
seem to be significantly dependent on the material model as shown in Figure 27.
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Mesh Size and Element Type

It is normal practice in Finite Element models to refine the mesh at points of interest (e.g.,
critical regions such as the ends of the bond line) in order to ‘more accurately’ predict stress
and strain distributions in critical regions. Where the geometry of the model leads to
numerical stress singularities (for example, at a sharp corner or the end of the interface) the
maximum stress or strain predicted is significantly influenced by the size of the element.

Where the contours in a single element indicate a steep stress gradient or all of the highest
stress contour fits inside a single element then caution should be taken in interpreting results
since element size will have significant effects on predictions. Figure 28 shows the influence of
element size on predicted maximum principal stress values in a square-ended single-lap joint
specimen [50]. Plotted curves indicate that stress concentrations appear higher in second-
order elements (incorporating additional mid-side nodes) than single-order elements.
However, if the increased resolution of the additional nodes is considered (by reducing the
effective area of the second-order elements by a factor of four) then results become more
comparable. Any predicted stress or strain values, particularly if compared with a failure
criterion, should be treated with caution.
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Figure 28. Effect of element size on FEA predicted stress concentration.
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In models where no numerical singularities occur (often related to rounded edges and
interfaces) then the maximum stress contour will cover several elements. Such stress
predictions will have much less dependence on element size.

Page 58 of 86






Failure Criteria

Appropriate materials models, accurate material properties data and valid failure criteria are
required to accurately predict the strength of a bonded joint. Since the properties of the
adhesive are sensitive to strain rate and temperature, it follows that the strength of joints will
also depend on strain rate and temperature. Joint strength appears to decrease with
increasing temperature and decreasing strain rate. This, qualitatively, agrees with uniaxial
tension strength measurements. If the bond fails through cohesive rupture of the adhesive
layer, then there could be a direct correlation between joint strength and tensile strength.
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Figure 29. Correlation between failure loads and tensile strength for elastomer adhesive.

Figure 29 shows such a correlation between maximum loads determined in tests on three
different types of joint bonded with an elastomeric adhesive, performed at different strain
rates and temperatures, and the corresponding tensile strengths [50]. There is a linear
relationship between joint strength and tensile strength. The failure strength of adhesive
joints depends on various bond geometrical parameters, in particular bonded area [50].
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Figure 30. Correlation of predicted maximum principal stress and tensile strength values at different strain
rates and temperatures for elastomeric adhesive joints.

The existence of such a direct correlation between bulk material strength and joint strength
perhaps suggests that there could be a general failure criterion for the adhesive. FEA was
performed on the joints using materials data measured at the appropriate strain rates and
temperatures. The predicted stress and strain distributions in the adhesive layer were
analysed to determine the maximum values of components, such as maximum principal stress,
maximum principal strain, von Mises stress and strain energies, at the average failure load of
the joint specimen. These values were compared for different joint configurations and related
to the bulk material properties [51]. There did not seem to be a single component of either
stress, strain or strain energy that had a consistent value in different specimen geometries.
For example, maximum principal values predicted at various strain rates and temperatures are
plotted against tensile strength in Figure 30. There is a reasonable linear correlation between
predicted stress values and measured tensile strengths for each joint type. However, there is
no real correlation between the different types of joint geometry investigated, single lap joint
[52-54], scarf joint [55] and T-peel joint [56, 57]. This lack of correlation may be due, to some
extent, to the dependency of stress concentration predictions on the size of FE element used.
Stress values tended to be highly concentrated in a single element in the bond layer by sharp
corners in the adherends in the lap joints and scarf joints. Only in the T-peel joints did the
predicted region of maximum stress cover several elements. It is noticeable that the addition
of a fillet to the FEA model produces a significant reduction in the predicted stress at the same
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failure load even though a reduced element size was needed to model the fillet.
Experimentally, the strength of lap joints increases if there is a fillet at the end of the bond
line, but the increase is not as great as the differences between the stress values suggest.
Similar findings have been observed for other adhesives.

It was found that, when different adhesives were compared in the same joint configurations,
that the maximum principal stress at failure as a proportion of tensile strength varied between
adhesives. In adhesive systems where the failure was not always cohesive the maximum
predicted stress tended to be lower as a proportion of the tensile strength than in systems
where failure was always cohesive.

The initiation and growth of cracks in the adhesive layer prior to failure has been observed in
flexible adhesive joints. Design practice should consider the conditions where these cracks
form, rather than conditions when the ultimate load is reached, as the operating limit of the
bonded structure.

Given the uncertainty in the interpretation of the FEA stress concentrations and the potential
inaccuracy of the material models used to characterise the flexible adhesives, it is unrealistic to
define a definitive failure criterion. Indeed, in the light of material variability and potential
degradation on ageing, this could be positively misleading. The maximum principal stress is
probably as suitable as any of the criteria investigated. This seems to scale with material
strength in different joint types. The maximum allowable ‘maximum principal stress’ in the
joint should not exceed a defined fraction of the tensile strength of the material. Some
adhesives appear to tolerate stress levels at a higher proportion of their tensile strength than
others. Therefore, the scaling factor for strength would have to be decided on an adhesive-by-
adhesive basis (adherend type, surface pre-treatment, etc. would also need to be considered).
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Concluding Remarks

Test methods that can be used to determine material properties for design with flexible
adhesives have been outlined. Three tension test methods (uniaxial, planar and equibiaxial)
and two volumetric methods (compression and tension) have been described. Comparisons
between predicted and experimental joint behaviours suggest that data need only be obtained
from uniaxial tension test. Both uniaxial tension and volumetric tension data can be obtained
from this test, which is relatively straightforward to perform. There is no appreciable gain in
accuracy obtained by including the extra test data. Flexible adhesives are compressible and
volumetric terms need to be included in the material models. Data for these can be
determined from contraction measurements in uniaxial tension tests.

The properties of flexible adhesives depend on temperature and strain rate. Therefore, design
models should be supplied with input data corresponding to the rates and temperatures under
which they are to be modelled. Test methods for time-dependent properties have been
described. The failure strength is strain rate and temperature dependent. There are
correlations between the loads under which joints fail and the tensile strength of the
adhesives under corresponding conditions. A conservative estimation of strength can be made
through testing the adhesive or joint at an elevated temperature and slow test speed. It
should be possible to use a time-temperature superposition approach to predict strengths.
The elevated temperature/slow strain rate testing approach could also be used for the
estimation of creep strengths.

Flexible adhesives can be modelled using hyperelastic material models, although the
predictions of the behaviour of the bonded joints can be inaccurate and it is therefore
recommended that careful selection of hyperelastic model and validation tests on coupon
specimens be performed to assess suitability. In general, first-order material models such as
Arruda-Boyce, Mooney-Rivlin or Neo Hooke seem most appropriate for flexible adhesives. The
predicted stress distributions and concentrations in the adhesive bond layer do not appear to
have any significant dependence on material model, general element type or input data types,
which are factors that affect the predicted force-extension behaviour. The predicted stress
distributions and concentrations in the adhesive bond layer depend on joint end geometries
and element sizes, which are factors that have only a limited influence on the predicted force-
extension behaviour. 2-D plane strain element predictions tend to be in good agreement with
3-D model predictions. However, generalised plane strain element predictions tend to show
higher curvatures and thus, better match the experimental measurements.

The strength of flexible adhesive joints depends on joint geometry. The addition of a fillet
reduces the stress concentration at the end of the lap joint specimen and improves load-
bearing capacity. The shape and size of the fillet influences joint strength although once fillets
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are over a certain size (length and height approximately twice the bond line thickness) the
fillet geometry becomes less important [20].

Failure of the adhesive joints occurs under a complex, multi-axial state of stress. A simple
criterion that correlates failure between different joint types or geometries has yet to be
identified. Maximum principal stress correlates well with tensile strength when a single type
of joint and adhesive system is investigated. Having the predicted maximum principal stress
lower than the tensile strength scaled by an adhesive dependent factor of less than one may
be a reasonable design criterion. However, initial crack formation in the adhesive layer has
been observed to occur significantly below the ultimate strength of the joints. This should be
considered when selecting design criteria to avoid this happening in service.
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Al Hyperelastic Models

Commercial FE packages have a large library of hyperelastic models designed for rubber
materials. For instance, in the FE package Abaqus [12] the following models are available:
Polynomial; Mooney-Rivlin; reduced polynomial; neo-Hookean; Yeoh; Arruda-Boyce; Ogden,
Van der Waals and Marlow models. The Mooney-Rivlin and reduced polynomial are particular
cases of the polynomial model, while the neo-Hookean and Yeoh models are special forms of
the reduced polynomial model. The Mooney-Rivlin is the most commonly used hyperelastic
model.

The hyperelastic material models are described in terms of a strain energy potential,
formulated as a function of the strain invariants [12], relating stresses to strains. The majority
of these models are phenomenological, meaning the derived constants bear no relationship to
the physical or chemical characteristics of rubbers. They consider the bulk properties of the
material and attempt to describe the material as an amorphous, isotropic solid; as a result, the
models can become inaccurate if the material changes state during deformation. Hence, these
models are best suited to application such as gum rubber where the effects of such changes
are negligible [13].

Polynomial Models

The form of the polynomial strain energy potential is:

N N
2 - .o . Z 1 .
U= Cij (Il - 3)1 (IZ - 3)] + £, E (]el - 1)21 (Al)

itj=1

where U is the strain energy potential per reference volume, N is the polynomial order, C;; and

D, are temperature-dependent material parameters, I; and I, are the first and second
deviatoric strain invariants, defined as:

L =M +A3+73 L =A% +257 +A3° (A-2)
where the deviatoric stretches }\_1 = ]_%)\i and A; are the principal stretches, | is the total volume

ratio, J¢! is the elastic volume ratio. The D; parameters allow for the inclusion of compressibility.

The Mooney-Rivlin case is obtained from the polynomial form of the hyperelastic model by
setting the parameter N to one, i.e., the first order polynomial. The Mooney-Rivlin model uses
only linear functions of the invariants.
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The Mooney-Rivlin model is known to be a simple representation of rubbers, though this
simplicity also makes it convenient to use. However, it has limited accuracy — it is not a self-
consistent basis for the interpretation of all types of strain [13-15]. Treloar [9] notes that for a
single strain type, experiments usually conform to the two term Mooney-Rivlin equation but
that using this equation for general strain i.e., a loading type that does not conform to the test,
is an unwarranted extrapolation.

The derivation of phenomenological models such as the Mooney-Rivlin is difficult because of
the amount of experimental data required to obtain the model coefficients. To improve the
accuracy of predictions, it is best to use data from a range of deformation states, especially
when trying to predict the behaviour of a material under general loading conditions. Abaqus
suggests data are obtained from uniaxial tension, equibiaxial tension and planar tension.
Volumetric data can also be incorporated if compressibility is important [12]. If data from only
one state of strain are available, Charlton et al [14] make the general recommendation to use
the N=1 two term form of the Mooney-Rivlin model. The Cj; coefficients required for both the
Mooney-Rivlin model and other forms of the polynomial model should really be considered as
merely regression coefficients rather that attempt to give them any physical meaning [14],
such as relating them to modulii.e., E = 6(C;y + Cy1) = 3G for a Mooney-Rivlin analysis.

In the Reduced Polynomial form, the dependence on the second deviatoric strain invariant is
suppressed. The model includes only the first strain invariant, this is equivalent to the
polynomial form with C;; = 0 for j = 0.

N N
- i 1 .
U= ; Cio(1, —3) + ; o) ge' — 1 (A.4)

The Neo-Hookean form is obtained from the reduced polynomial strain energy potential,
setting N=1:

U= C10 (il - 3) +i(]e1 - 1)2 (AS)
D,

Page 73 of 86



The Neo-Hookean model has some theoretical relevance since the mathematical
representation is analogous to that of an ideal gas: the neo-Hookean potential represents the
Helmholtz free energy of a molecular network with Gaussian chain-length distribution.

The Yeoh model is obtained from the reduced polynomial form by setting N =3.

U = Cyo(I; — 3) + Cao(I; — 3)% + C3o(I; — 3)°

i el _ 2 i el _ 4 i el _ 6 (A~6)
50 = 12 + -0 = D + -0 = D)

In all the above equations, the parameters are the same as those defined above for the
polynomial model.

The Ogden strain energy potential is expressed in terms of principal stretches. In Abaqus the
form of the Ogden strain energy potential is

N N
2 ma o ~a 1 )
e AR S ) E S (R Ve (A7)
= % i=1 Di
Where A, are the deviatoric principal stretches. N is the order of the polynomial, p;, a;, and D;
are temperature-dependent material properties. The Mooney-Rivlin and neo-Hookean forms

of polynomial model can also be obtained from the general Ogden strain energy potential for
special choices of y; and «;.

The Ogden model is also a phenomenological model that makes no attempt to link the
adjustable parameters to any physical deformation model. The model generally requires more
than one set of experimental data to obtain the number of constants required to capture the
state of deformation dependence. The Ogden function has the advantage that the exponent
values (a;) can be any real number, which gives the model the ability to fit non-linear material
test data [14].

The form of the Van der Waals strain energy potential is

3

, 2 (1-3\2| 1
U=u —(7\m—3)[ln(1—n)+n]—§a< ) +—<

Ja—1

where 1= (1-B)I; +BI, and n= /)\2_—_33

Here U is the strain energy per unit of reference volume; W is the initial shear modulus; A, is
the locking stretch; a is the global interaction parameter; B is an invariant mixture parameter
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and D governs compressibility. These parameters can be temperature dependent. Tl and Tz
are the first and second deviatoric strain invariants, as above; J is the total volume ratio and ]
is the elastic volume ratio. The Van Der Waals model is sometimes known as the Killian model.

The Van der Waals strain energy potential is analogous to the equations of state of a real gas.
This introduces two additional material parameters, the locking stretch (A,,), which accounts
for the finite extendibility of the non-Gaussian chain network, and the global interaction
parameter, a, which models the interaction between chains.

The Arruda-Boyce model has a strain energy potential of the form

U= {1(1_ 3) 4 — ¢ M =27+ — (@~ 81)
B VAR 2072, 1050A% ! 700078, "

PR 243)}+ 1<]§1_1 In] >
e ———— - = —In
67375008, D\ 2 el
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L -9+

(A.9)

where U is the strain energy per unit of reference volume; W, A,, and D are temperature

dependent material parameters, Tl is the first deviatoric strain invariant, ¢ is the elastic
volume ratio; and A; are the principal stretches.

The Arruda-Boyce model is a constitutive relationship for nonlinear elasticity, which should
better describe the state of deformation dependent response of rubber materials. The aim of
the model is to represent the behaviour of the material while requiring only a small number of
“physically based” parameters [7]. This model is also known as the eight-chain model since it
was developed from a representative volume element where eight springs emanate from the
centre of a cube to its corners. The Arruda-Boyce strain energy potential depends on the first
strain invariant only. The physical interpretation of this is that the eight chains are stretched
equally under the action of a general deformation state.

When making predictions using any of these models, the stability of the model is of great
importance. To obtain stability the requirement is for the energy function to obey the laws of
thermodynamics i.e., energy functions that mathematically require the solid to increase its
internal energy when work is done on it [10]. The material constants are only regression
coefficients. They accurately fit experimental data, but this does not assure thermodynamic
stability. If stability is not considered while selecting material constants, the numerical
procedures may have difficulty converging or giving meaningful results. Abaqus performs
stability checks and warns of unstable ranges and types of deformation. Unstable models may
have difficulty converging to a solution during FEA. A constrained regression analysis can be
used for the selection of material constants, as demonstrated by Johnson et a/ [11]. In this
case, when the regression analysis is performed on the experimental data, the analysis is
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constrained using numerical algorithms, which select only positive material constants to fit the
experimental data. Although the resulting model does not fit the experimental data as
accurately as one based on an unconstrained regression analysis, it should be more
thermodynamically stable.

For some models, stability is assured by following some simple rules [12].

e  For positive values of initial shear modulus, y, and locking stretch, A, the Arruda-
Boyce form is always stable.

e  For positive values of the coefficients C;, the neo-Hookean form is always stable.

e  Given positive values of the initial shear modulus, ., and locking stretch, A, the
stability of the Van der Waals model depends on the global interaction parameter, a.

e  For the Yeoh model, stability is assured if all C;o > 0. Typically, however, C,, will be
negative. Thus, reducing the absolute value of C,, or magnifying the absolute value
of Cyo will help make the Yeoh model more stable.

The FE predictions made using hyperelastic models have frequently been compared with
experimental data obtained by Treloar [6]. Treloar tested vulcanised rubber in simple tension,
pure shear (planar tension) and uniform equibiaxial tension. All samples were cut from the
same sheet to avoid batch-to-batch variation, which is common in rubbers. For example,
Treloar’s data was compared to predictions made using the Ogden model, and the predictions
were found to be in good agreement [8]. Arruda and Boyce [7] also showed good agreement
between Treloar’s data and predictions obtained using the Arruda-Boyce model. The Abaqus
manuals also use the Treloar data to illustrate the fits provided by the various hyperelastic
models.

Arruda and Boyce [7] also repeated their work with three other materials (silicon, gum and
neoprene rubber) with reasonable results. Allport and Day [13] tested tensile compression
blocks of styrene-butadiene (SBR). Their work indicated that the Arruda-Boyce model could
give good agreement with measured behaviour in both tension and compression. The authors
suggested that this was a considerable advance over the Mooney-Rivlin and Ogden type
models, which require different coefficients in tension and compression. Comparisons with
Mooney-Rivlin and Ogden models demonstrated that good agreement was possible by tuning
coefficients. Kaliske and Rothert [17] compared experimental results from rubber samples in a
non-homogeneous shear test with predictions from selected hyperelastic models. The authors
found that the Yeoh and Arruda-Boyce models gave the best fits followed by the Van der
Waals model.

Raos [18] compared the prediction from four models (neo-Hookean, Mooney-Rivlin, Van der
Waals and Ogden) with experimental tests carried out on an SBR rubber compound under
conditions of uniaxial and biaxial loads. In particular, the author investigated the influence of
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the initial strain ranges used to obtain the coefficients, while predictions were made over the
full strain range. It was found that even if the strain range is chosen adequately, the neo-
Hookean and Mooney-Rivlin models could describe experimental data only in compression and
moderate extension (up to 80%). The Van der Waals and Ogden models covered the whole
range of applied strains with acceptable results, though these models exhibited some
instability and sensitivity to the change of strain range. Also, it was found that the biaxial tests
were very sensitive and required reliable maintenance of testing boundary conditions. Of the
four models, the Van der Waals and Ogden models were especially sensitive to biaxial
conditions.

Briefly summarised, the Mooney-Rivlin model is the most commonly used model, its simplicity
making it convenient to use. Although, if predicting the behaviour of a rubber under general
loading conditions, it is best to use experimental data from a range of experimental tests
(uniaxial, biaxial and planar tension). The Arruda-Boyce, neo-Hookean and Van der Waals
models offer a physical interpretation and provide a better description of general deformation
modes when the parameters are based only on one test. In all cases, it is best to obtain
experimental data over the range of strain of interest (this is especially true of the Ogden and
polynomial models), and to select the model coefficients carefully to ensure stability. In the
literature reviewed above, hyperelastic models have been used to predict the behaviour of
ideal rubbers. No reference is made to correlations between predictions and experiment for
non-idealised materials, e.g., filled rubbers or blends.

REFERENCES Please refer to main references, Chapter 10.
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A2 Example Sets of Experimental Data

a) Uniaxial tension data, laid out as nominal stress, nominal strain.

0,0

0.271555467, 0.025
0.549467814, 0.05
0.812604312, 0.075
1.053771927, 0.1
1.280233907, 0.125
1.485743741, 0.15
1.689128765, 0.175
1.864706226, 0.2
2.030635194, 0.225
2.188082036, 0.25
2.333341099, 0.275
2.452510949, 0.3
2.566165619, 0.325
2.674112967, 0.35
2.761621673, 0.375
2.828238548, 0.4
2.902696602, 0.425
2.948654277, 0.45
3.004963168, 0.475
3.028566578, 0.5

(b) Volumetric tension data, laid out as pressure (stress), 1/volume ratio (see Chapter 6)

0,1
0.45442474, 0.996160902
0.829431389, 0.990139817
1.19942655, 0.985288402
1.511617225, 0.979632977
1.804518656, 0.974337796
2.078505554, 0.968581429
2.332030849, 0.962321388
2.568763456, 0.955791812
2.776213328, 0.949984713
2.982650174, 0.942455596
3.155916398, 0.935514361
3.314711473, 0.928250844
3.457449226, 0.920949825
3.588719612, 0.914356841
3.693092286, 0.906551517
3.799212658, 0.898723965
3.856359792, 0.890674342
3.941831572, 0.883205674
4.01287856, 0.875054806
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(c) Stress Relaxation data

The material definition needs to contain both elastic or hyperelastic and visco-elastic
properties, for example:

*MATERIAL,NAME=RUBBER

*ELASTIC

2500.0, 0.35

*VISCOELASTIC, TIME=RELAXATION TEST DATA, ERRTOL=0.05
*INCLUDE,INPUT=visc_rel.dat(if including from a data file)

** for direct entry or format for *visc_rel.dat

data are laid out normalised relaxation, time

*SHEAR TEST DATA
0.4363, 0.2
0.3462, 0.58
0.3252, 0.68
0.2995, 0.84
0.2988, 0.86
0.2785, 1.02
0.2521, 1.32
0.2396, 1.5
0.2248,1.8
0.2163, 2
0.1929, 2.6
0.1813, 3.02
0.1758, 3.4
0.1603, 4.1
0.1548, 4.6
0.1502, 5.08
0.1463,5.3
0.1362, 6.3
0.1323,6.9
0.1206, 8.96
0.1167, 9.86
0.1136, 10
0.0886, 20
0.0584, 60
0.0509, 90
0.0394, 190
0.0375, 230
0.0356, 270
0.0333, 340
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0.0232, 1920
0.0210, 3801.76
0.0195, 5098.68
0.0192, 6120
00.0179, 7849.98
0.0171, 10970.78
0.0163, 14531.18
0.0156, 15764.06

(d) Creep Material Definition

The material definition needs to contain both elastic or hyperelastic and visco-elastic
properties, for example:

*MATERIAL, NAME=MAT3

*HYPERELASTIC

0.557363,-0.099368,0,20.

*VISCOELASTIC, TIME=CREEP TEST DATA, ERRTOL=0.02
****INCLUDE,INPUT=visc_cr.dat (if including from a data file)
** for direct entry or format for *visc_cr.dat

data are laid out normalised creep strain, time
*SHEAR TEST DATA
1.058578975, 1
1.087868463, 2
1.125504048, 3
1.150604858, 4
1.16735957, 5
1.175705667, 6
1.192460379, 7
1.209183833, 8
1.221749867, 9
1.305429652, 19
1.355631271, 29
1.393298115, 39
1.426776281, 49
1.472789222, 69
1.518802163, 89
1.531368197, 109
1.581569817, 149
1.615047982, 189
1.66943828, 259
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1.694539089, 316
1.81169704, 616
1.899565503, 1016
1.9539558, 1416
2.05017036,2516
2.125504048,3586
2.209183833,5586
2.271920228,7586
2.330499203,9586
2.4309337,15586
2.481135319,20586
2.569003782,30586
2.610828045,36286
2.677784377,46286
2.707073865,56286
2.815854459,76286
2.866056078,96286
2.882810791,106286
2.979025351,156286
3.041793004,206286
3.087805945,256286
3.158950955,326286
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A3 Coefficient Calculation Input File

*HEADING
*PREPRINT,ECHO=NO,MODEL=YES
%k

*Node

1,0.,0.,0.

*Element, type=mass, elset=mass
1,1

*Mass, elset=mass

1,

%k

%k

**Material definition for the ARRUDA-BOYCE material model
%k

*MATERIAL, NAME=ARRUDA_BOYCE

*HYPERELASTIC, ARRUDA-BOYCE, TEST DATA INPUT
*BIAXIAL TEST DATA

0.0,0.0

0.010949913,0.000568

0.019761171,0.000573

*PLANAR TEST DATA
0.0,0.0
0.000312531,4.48e-06
0.001015725,0.00070852

*UNIAXIAL TEST DATA
0.0,0.0
0.00218,0.000231
0.01851,0.000764

* %k
**Material definition for the OGDEN, N=3 material model

* %

*MATERIAL, NAME=OGDEN_N3
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*HYPERELASTIC, OGDEN, N=3, TEST DATA INPUT
*BIAXIAL TEST DATA

0.0,0.0

0.010949913,0.000568

0.019761171,0.000573

*PLANAR TEST DATA
0.0,0.0
0.000312531,4.48e-06
0.001015725,0.00070852

*UNIAXIAL TEST DATA
0.0,0.0
0.00218,0.000231
0.01851,0.000764

* %

**Material definition for the POLYNOMIAL, N=1 material model
k%

*MATERIAL, NAME=POLY_N1

*HYPERELASTIC, POLYNOMIAL, N=1, TEST DATA INPUT
*BIAXIAL TEST DATA

0.0,0.0

0.010949913,0.000568

0.019761171,0.000573

*PLANAR TEST DATA
0.0,0.0
0.000312531,4.48e-06
0.001015725,0.00070852

*UNIAXIAL TEST DATA
0.0,0.0
0.00218,0.000231
0.01851,0.000764
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* %

**Material definition for the REDUCED POLYNOMIAL, N=1 material model
* %k

*MATERIAL, NAME=REDUCED_POLYNOMIAL_N1

*HYPERELASTIC, REDUCED POLYNOMIAL, N=1, TEST DATA INPUT
*BIAXIAL TEST DATA

0.0,0.0

0.010949913,0.000568

0.019761171,0.000573

*PLANAR TEST DATA
0.0,0.0
0.000312531,4.48e-06
0.001015725,0.00070852

*UNIAXIAL TEST DATA
0.0,0.0
0.00218,0.000231
0.01851,0.000764

* %

**Dummy Step
k%

*STEP, NLGEOM
*STATIC

1.,1.

*End Step

Page 84 of 86



A4 Abaqus Element Types

The elements used in the lap joint mesh were solid (continuum) elements. The solid elements
in Abaqus are suitable for linear analysis and also for complex nonlinear analyses involving
plasticity and large deformations. There are a number of continuum elements available within
the Abaqus element library [12]. A brief description of the attributes of the elements used for
the lap joint analysis is given below and summarised in Table A.1.

Quadrilateral elements were chosen over triangular elements as the quadrilateral elements
have a better convergence rate and sensitivity to mesh orientation in regular meshes is not an
issue. Quadrilateral elements perform best if their shape is approximately rectangular. The
elements become much less accurate when they are initially distorted.

The second order form of the quadrilateral elements was used because they provide higher
accuracy than first order elements for ‘smooth’ problems that do not involve complex contact
conditions or impact. Second order elements have more nodes per element than first order
elements i.e., have a midside node. They capture stress concentrations more effectively and
are better for modelling geometric features.

Reduced integration is available for quadratic elements and was utilised in the lap joint
analysis. It uses a lower-order integration to form the element stiffness. Reduced integration
reduced the running time of an analysis. Second order reduced integration elements generally
yield more accurate results than the corresponding fully integrated elements.

A further element option is the hybrid element. Hybrid elements are intended mainly for use
with incompressible and almost incompressible materials. For a near incompressible material,
a very small change in displacement produces extremely large changes in pressure. Therefore,
a purely displacement-based solution is too sensitive to be useful numerically. This singular
behaviour is removed by treating the pressure stress as an independently interpolated basic
solution variable, coupled to the displacement. This independent interpolation of pressure
stress is the basis of the hybrid elements. Hybrid elements have more internal variables than
non-hybrid elements, which increases running time. Hybrid elements are recommended for
hyperelastic materials.

For structural applications, the Abaqus element library includes plane stress, plane strain and
generalised plane strain elements. Plane stress elements can be used when the thickness of a
body is small relative to its lateral (in-plane) dimensions. This element is generally used for
thin, flat bodies. In contrast, plane strain elements are generally used for modelling bodies
that are very thick relative to their lateral dimensions. In these elements it is assumed that the
strains in the loaded body are functions of the planar coordinates only and out-of-plane
normal and shear strains are equal to zero. An alternative type of plane strain element is the
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generalised plane strain element. In this case, the formulation used places the model between

two rigid planes that can only move closer or further apart, thus a lap joint mesh would have

the ability to respond to Poisson’s contractions. It is assumed that the deformation of the
model is independent of the axial position so the relative motion of the two planes causes a

direct strain in the axial direction only. There are no transverse shear strains. Both plane

strain and generalised plane strain elements have been considered in the analysis of the lap

joint.

Element Type ‘

Uses/Advantages

‘ Disadvantages ‘

Assume out-of-
. For bodies that are thick relative to its lateral plane normal and
Plane strain . . . .
(in-plane) dimension shear strains are
zero
. For bodies that are thick relative to its lateral
Generalised . . .
| trai (in-plane) dimension
piane strain Have ability to allow to Poisson’s contraction
Better convergence than triangular elements
.g. . ) & ) Much less
Quadratic Perform best if initial shape is approximately accurate if initially
rectangular distorted
Higher accuracy than 15t order quads for
2nd order ‘smooth’ problems Avoid using for
Capture stress concentrations more effectively | contact/impact
quads X
than 1t order problems
Better for modelling geometric features
Reduced running time of analysis
Reduced 2nd order reduced integration elements
integration generally yield more accurate results than fully
integrated 2" order elements
Intended mainly for use with incompressible
Hybrid and almost incompressible materials Increased running
Recommended when using hyperelastic time
materials

Table A.1. Attributes of the solid elements chosen for modelling flexible adhesives using hyperelastic

material models.
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