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1 Introduction

Empirical models are important to metrology in cases where the knowledge
of the underlying physics for a measurement system is insufficient to char-
acterise it completely. For empirical models depending on one variable,
polynomial and particularly polynomial spline curves, when used with care,
are generally very satisfactory for representing data. A polynomial spline
curve is composed of a sequence of polynomial curves joined together at
points called knots and in such a way as to ensure smoothness of the complete
curve.

Spline curves provide a flexible class of functions that are effective for rep-
resenting a wide variety of shapes. However, the knots generally have
no physical meaning for the metrologist, and yet the effectiveness of a
spline representation can depend critically on their number and positions.
Consequently, metrology users require assistance with knot placement via
appropriate algorithms and software.

Automating the choice of the number and positions of the knots is generally
a very difficult problem. However, a number of knot placement strategies
are available to help the user select a sensible, if not necessarily optimal, set
of knots. The strategies are broadly classified as those that

• position knots according to the distribution of the data abscissae (and
possibly data ordinates),

• sequentially insert knots in order to improve (maximally) the quality
of the spline fit to the data (measured using some metric), and

• sequentially delete knots in order to (minimally) change the quality of
the fit.

The aim of this report is to describe a number of these knot placement
strategies and to illustrate their application to metrology data. Examples
of strategies of each of the above types are considered. A software package1,
containing implementations of some of these strategies is available through
MetroS2 [2]. The software package acts as a pre-processor to NPLFit3,
software developed by NPL for modelling experimental data using polyno-
mial and spline curves, and also available through MetroS.

The report is organised as follows. The representation of univariate polyno-
mial splines in terms of B-splines is reviewed (Section 2), and the problem

1See http://www.npl.co.uk/ssfm/metros/packages/KnotPlacement/
2See http://www.npl.co.uk/ssfm/metros/
3See http://www.npl.co.uk/ssfm/metros/packages/nplfit/

http://www.npl.co.uk/ssfm/download/documents/cmsc13 02.pdf Page 1 of 27



NPL Report CMSC 13/02

of obtaining fixed- and free-knot least-squares spline approximations to data
described (Section 3). The accepted approach to the fixed-knot case is
recalled (Section 4) and the manner in which spline uncertainties can be eval-
uated is given (Section 5). The importance of families of spline approximants
is emphasised (Section 6). The free-knot problem is formulated (Section 7)
and several of the established and some lesser-known knot-placement strate-
gies reviewed (Section 8). Conclusions are drawn and future possibilities
indicated (Section 9).

2 Univariate polynomial splines

Let I := [xmin, xmax] be an interval of the x-axis, and

xmin = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1 ≤ λN < λN+1 = xmax

a partition of I.

A spline s(x) of order n (degree n − 1) on I is a piecewise polynomial
of order n on (λj , λj+1), j = 0, . . . , N . The spline s is Cn−k−1 at λj if
card(λ` = λj , ` ∈ {1, . . . , n}) = k. So, for example, a spline s(x) of order
4 for which the points λj are distinct is a piecewise cubic polynomial of
continuity class C2, i.e. continuous in value, first and second derivatives, at
the points λj .

The partition points λ = {λj}N
1 are the (interior) knots of s. To specify the

complete set of knots needed to define s on I in terms of B-splines, the knots
{λj}N

1 are augmented by knots {λj}−1
1−n and {λj}q

N+2, q = N +n, satisfying

λ1−n ≤ · · · ≤ λ0, λN+1 ≤ · · · ≤ λq.

For many purposes, a good choice [11] of additional knots is

λ1−n = · · · = λ0, λN+1 = · · · = λq.

It readily permits derivative boundary conditions to be incorporated in
spline approximants [8].

On I, s(x) has the B-spline representation [6]

s(x) := s(c,λ;x) =
q∑

j=1

cjNn,j(λ;x), (1)

where Nn,j(λ;x) is the B-spline [6, 13] of order n with knots {λk}j
j−n and

c = (c1, . . . , cq)T are the B-spline coefficients of s. Each Nn,j(λ;x) is a spline
with knots λ, is non-negative and has compact support. Specifically,

Nn,j(λ;x) > 0, x ∈ (λj−n, λj), supp(Nn,j(λ;x)) = [λj−n, λj ]. (2)
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The B-spline basis {Nn,j(λ;x)}q
j=1 for splines of order n with knots λ is

generally very well-conditioned [11]. Moreover, the basis functions for any
x ∈ [xmin, xmax] can be formed in an unconditionally stable manner using a
three-term recurrence relation [6, 13]. Specifically, the relative errors in the
values fl(Nn,j(λ;x)) of the basis function computed using IEEE floating-
point arithmetic [19] satisfy

|fl(Nn,j(λ;x))−Nn,j(λ;x)| ≤ CnNn,j(λ;x)η,

where C is a constant that is a small multiple of unity and η is the unit
roundoff of the floating point processor [6]. The B-spline basis for splines
of order 3 with interior knots at x = (1, 2, 5)T and coincident end knots at
x = 0 and 10, is shown in Figure 1.

0 1 2 5 10

Figure 1: The B-spline basis for splines of order 3 for some nonuniformly
spaced knots. The first three B-spline basis functions are shown as solid
lines and the remaining three as dotted lines.

Valuable properties of s can be deduced [13] from those of the B-splines. A
useful property is that, for any x ∈ I, s(x) is a convex combination of the
coefficients of the B-splines whose support contains x. Thus, local bounds
for s can readily be found:

min
j<k≤j+n

ck ≤ s(x) ≤ max
j<k≤j+n

ck, x ∈ [λj , λj+1].

These bounds imply a mimicking property for s, viz., that the elements of c
tend to vary in much the same way that s varies. Figure 2 depicts a spline
curve s of order 4 with “non-polynomial” shape having interior knots at
x = (1, 2, 5)T, coincident end knots at x = 0 and 10, and B-spline coefficients
(0.00, 0.20, 0.60, 0.22, 0.18, 0.14, 0.12)T. To reproduce this shape to visual
accuracy with a polynomial would require a high degree and hence many
more defining coefficients. The mimicking property is evident: successive
elements of c rise, fall sharply and then gently, behaving in a similar way
to s.

http://www.npl.co.uk/ssfm/download/documents/cmsc13 02.pdf Page 3 of 27
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0 1 2 5 10

Figure 2: A spline curve with “non-polynomial” shape illustrating the
mimicking property.

3 Fixed- and free-knot approximation

Two types of least-squares data approximation (or data modelling) by splines
are regularly considered. One is the determination of the B-spline coefficients
c for given data, a prescribed order n and prescribed knots λ. The other is
the determination of c and λ for given data and spline order n. The former
problem is linear with respect to the parameters of the spline, just c being
regarded as unknown. The latter is nonlinear, both c and λ being unknown.

The linear case is well understood, with highly satisfactory algorithms [11]
and software implementations [1, 17] available. The nonlinear case remains
a research problem, although useful algorithms (Section 8) have been pro-
posed, implemented and used. Many of these algorithms “iterate” with
respect to λ, where for each choice of knots the resulting linear problem is
solved for c. Thus, the linear problem (Section 4) is important in its own
right and as part of the solution strategy for knot-placement algorithms.

4 Least-squares data approximation by splines with
fixed knots

The least-squares data approximation problem for splines with fixed knots
can be posed as follows. Given are data points {(xi, yi)}m

1 , with x1 ≤ · · · ≤
xm, and corresponding weights {wi}m

1 or standard uncertainties {ui}m
1 . The

wi reflect the relative quality of the yi,4 ui is the standard uncertainty of yi

and corresponds to the standard deviation of possible “measurements” at
x = xi of the function underlying the data, yi being one realisation. Given
also are the N knots λ = {λj}N

1 and the order n of the spline s.

4The xi are taken as exact for the treatment here. A generalised treatment is possible,
in which the xi are also regarded as inexact. The problem becomes nonlinear (in c).
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When weights are specified, the problem is to determine the spline s(x) of
order n, with knots λ, such that the sum of squares of the elements {wiei}m

1

is minimised with respect to c. When standard uncertainties are specified,
the sum of squares of the elements {u−1

i ei}m
1 is minimised with respect to

c. If wi = u−1
i , i = 1, . . . ,m, the two formulations are identical in terms

of the spline produced. When weights are specified, s is referred to as a
spline approximant. When uncertainties are prescribed, s is known as a
spline model. There are differences (Section 5) in interpretation in terms
of the statistical uncertainties associated with the solution and in terms of
validating the spline model so obtained.

The use of a formulation in terms of standard uncertainties, together with
the B-spline representation (1) of s, gives the linear algebraic formulation5

min
c

eTV −1
y e, e = y −Ac, (3)

where y = (y1, . . . , ym)T, A is an m× q matrix with ai,j = Nn,j(xi), and

Vy = diag(u2
1, . . . , u

2
m).

Matrix computational methods can be applied to this formulation. As a
consequence of property (2) of the B-splines, A is a rectangular banded
matrix of bandwidth n [9].

The linear algebraic solution can be effected using Givens rotations to tri-
angularise the system, back-solution then yielding the coefficients c [7]. The
number of floating-point operations (flops) required is to first order O(mn2),
i.e., independent of the number of knots. Hence computing a spline model
for many knots is hardly more expensive than one for a few knots. Moreover,
since for many problems cubic splines (n = 4) yield a good balance between
approximation properties and smoothness (continuity class C2), regarding
the order as fixed gives a flop count O(m).

c is unique [12] if there is a strictly ordered subset t = {tj}q
1 of x such that

the Schoenberg–Whitney conditions [25]

tj ∈ supp(Nn,j(λ;x)), j = 1, . . . , q, (4)

hold. In a case where the conditions (4) do not hold6, an appropriate member
can be selected from the space of possible solutions. Such a selection is also
advisable if the conditions are in a practical sense “close” to being violated.
A particular solution can be determined by augmenting the least-squares

5A further generalisation is possible in which mutual dependencies are permitted among
the measurement errors. In this case, Vy is non-diagonal.

6A set of knots giving rise to this circumstance may be a consequence of an automatic
knot-placement procedure.
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formulation by a minimal number of equality constraints for c such that A
has full column rank [11].

An instance of the type of data set to which the algorithms of this paper
are addressed is shown in Figure 3. Such a data set (cf. Section 2) has the
variety of behaviour that cannot readily be reproduced by some other classes
of approximating functions.
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Figure 3: A data set representing heat flow as a function of temperature.
Such data forms the basis of the determination of thermophysical properties
of materials under test. The data set comprises 980 data points.

5 Spline uncertainties

Once a valid spline model has been obtained, the uncertainties associated
with the spline can be evaluated [10]. Uncertainty evaluations are essential
in metrology, where all measurement results are to be accompanied by a
quantification of their reliability [3], and important in other fields. The
key entity is the covariance matrix Vc of the spline coefficients c. Using
recognised procedures of linear algebra,

Vc = (ATV −1
y A)−1. (5)

From this result, the standard uncertainty of any quantity that depends on
c can be evaluated. Specifically, for a given constant vector p, the standard
uncertainty u(pTc) of pTc is given by

u2(pTc) = pTVcp.

By setting p to contain the values of the B-spline basis at a point x ∈ I, the
standard uncertainty of s(x) can be formed. The standard uncertainty of a
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nonlinear function of c can be estimated by first linearising the expression
about the solution value of c.

If weights rather than uncertainties are specified for the data, (5) takes the
form

Vc = σ̂2(ATW 2A)−1,

where σ̂ estimates the standard deviation of the weighted residuals {wiei}m
1 ,

W = diag(w1, . . . , wm)

and
σ̂2 = eTW 2e /(m− q)

evaluated at the solution.

6 Families of approximants

When dealing with certain classes of approximating function it is natural and
useful to consider families of approximants. A simple example is polynomial
approximation, for polynomials pj(x) of order j = 1, 2, . . . , N , for some
maximum order N . Each member of the family “contains” the previous
member. It is then meaningful to consider the approximation measure, here

S =
√

eTV −1
y e,

with respect to indices denoting members. Thus, the value of S for the
polynomial approximant of order j can be inspected with respect to index j
for j = 1, 2, . . . , N . For data approximation, it is more meaningful to use as
the measure the root-mean-square residual given by dividing S by (m−j)1/2.
For representative data, the expectation is that as j increases this quantity
should stabilise to an essentially constant value. This property provides a
useful validation procedure. If weights u−1

i are used as in Section 4 this
measure should settle to the value unity. Thus the approximant with index
j (normally the smallest such) that achieves the value one is sought.

Within most of the strategies outlined in Section 8 it is possible to produce
results for N = 1, 2, . . . knots, and thus to study the effect of the number
of knots on the quality of the approximant. From such information it
may be possible to select an acceptable solution. If for each number of
knots, the knots contain those for the previous number, and a least-squares
approximant is determined, the sequence of approximants for N = 1, 2, . . .
knots forms a family. A family has the property that the sequence of values
of the least-squares measure S is monotonically decreasing.

http://www.npl.co.uk/ssfm/download/documents/cmsc13 02.pdf Page 7 of 27
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7 Least-squares data approximation by splines with
free knots

The problem of least-squares data approximation by splines with free knots
can be formulated in the same way as that for fixed knots (Section 4), except
that the knots are not specified a priori, either in location or number. The
formulation (3) no longer yields a linear problem, since the matrix A of
B-spline values is now a function of λ. Instead,

e(λ) = y −A(λ)c,

and it is required to solve

min
λ;c

eT(λ)V −1
y e(λ). (6)

In order to reflect the fact that for any given knot set the B-spline coefficients
are given by solving a relatively simple, linear problem, formulation (6) can
be expressed as

min
λ

(
min

c
eT(λ)V −1

y e(λ)
)

. (7)

Extensive use is made of this elementary result.

There are theoretical difficulties associated with existence, uniqueness and
characterisation of best free-knot least-squares spline approximants, which
influence practical considerations. A best spline in the class of splines
required may not exist. Take as {xi}m

1 , m = 21 uniformly spaced values
in [−1, 1] and yi = |xi|3. To see that a best least-squares spline s of order
4 with three interior knots for this data may not exist, consider the choice
λ1 = −ε, λ2 = 0 and λ3 = ε. The least-squares error can be made smaller
than any given δ > 0 for some ε > 0. However, if the least-squares error
is made zero by the choice ε = 0, the resulting three coincident knots at
x = 0 mean that s has lower continuity than the class of splines considered.
In practice, allowing knots to come “too close” together can introduce
undesirable “sharpness” into the approximant. Buffering of knots [16], to
ensure a minimal separation helps in this regard. The use of a candidate
knot set introduces a form of buffering. In some circumstances the coalescing
of knots would be ideal in terms of the resulting closeness of s to the data. In
some applications the loss of smoothness would be unacceptable. Therefore,
whether buffering is appropriate depends on the use to be made of s.

The solution may not be unique. Figure 4 shows a set of 201 uniformly
spaced points in [−1, 1] taken from f(x) = sign(x) min(x, 1/2). Figure 5
shows the root-mean-square residual as a function of knot location for least-
squares splines of order 4 with one interior knot. There are two best
approximants, one with its knot at x = −0.63 and the other at x = +0.63.

Page 8 of 27 http://www.npl.co.uk/ssfm/download/documents/cmsc13 02.pdf
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One of the two approximants is shown in Figure 4. The other spline is its
skew-symmetric counterpart.
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Figure 4: 201 uniformly spaced points in [−1, 1] taken from f(x) =
sign(x) min(x, 1/2) and a best least-squares spline approximant with one
knot.
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Figure 5: The root-mean-square residual as a function of knot location for
least-squares spline approximants with one knot to the data of Figure 4.

8 Knot-placement strategies

Many knot-placement strategies have been proposed and used. Some of
these strategies are outlined and their properties indicated. Several of
the strategies generate a family of candidate spline approximants, with
advantages for model validation.

http://www.npl.co.uk/ssfm/download/documents/cmsc13 02.pdf Page 9 of 27



NPL Report CMSC 13/02

8.1 Manual methods

Manual methods can be classed as those methods for which the user exam-
ines the general “shape” of the function underpinning the data, selecting the
number and location of the knots on this basis. With practice and visual
aids, acceptable solutions can often be obtained [7]. Naturally, knots are
chosen to be more concentrated where “things are happening” in contrast
to regions where the underpinning behaviour is innocuous.

8.2 Strategies that depend on the distribution of the data

The strategies described in this section are “simple” in the sense that the
only information used is that given by the distribution of the data points
and represented by the abscissa (xi) and ordinate (yi) values. Strategies
described in later sections make use of more comprehensive information
derived from spline approximants for the data based on (existing) candidate
knot sets. The strategies are divided into those that make use only of the
abscissa values (Section 8.2.1), and those depending on both abscissa and
ordinate values (Section 8.2.2). None of the strategies described generate a
family of spline approximants. This is because, for any N , the knot set of
size N does not contain that of size N − 1.

8.2.1 Strategies that depend only on abscissa values

Strategies based on the manner in which the values of the independent
variable are distributed may be used to place the knots (at points that are
not necessarily the data abscissae themselves). A facility in DASL (the
NPL Data Approximation Subroutine Library) [1] and NPLFit provides
one such strategy, based on the Schoenberg–Whitney conditions (4) in the
following way. Intuitively, these conditions imply that there is no region
where there are “too many” knots compared with the number of data points.
Mathematically, these conditions guarantee uniqueness. Numerically, their
satisfaction does not ensure that the solution is well-defined. If the condi-
tions are “close” to being violated, c will be sensitive to perturbations in the
data. In particular, since the behaviour of c “controls” that of s (Section 2),
the spline is likely to exhibit spurious behaviour such as large undesirable
oscillations if ‖c‖2 � ‖y‖2.

It follows that a sensible choice of knots would be such that the Schoenberg–
Whitney conditions are satisfied “as well as possible” for a data subset. Such
a choice is made in DASL [1] for spline approximation of arbitrary order.
It is also made in a cubic spline interpolation routine in the NAG Library

Page 10 of 27 http://www.npl.co.uk/ssfm/download/documents/cmsc13 02.pdf
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[17], regarding spline interpolation as a special case of spline approximation
in which q = m and N = m − n. The choice made is seen most simply by
first applying it to spline interpolation. Consider the choice

λj =
1
2
(xj+bn/2c + xj+b(n+1)/2c), j = 1, . . . ,m− n,

where bvc is the largest integer no larger than v. For n even, λj = xj+n/2.
Thus, the choice tj = λj−n/2 would be made. However (Section 2), supp(Nn,j) =
[λj−n, λj ]. Thus, index-wise, the Schoenberg–Whitney conditions are satis-
fied as well as possible in the sense that the index of λj−n/2 falls halfway
between the indices of the support endpoints λj−n and λj . Comparable
considerations apply for n odd. Precisely this choice is recommended [15, 17]
in the context of cubic spline interpolation. It is the “not a knot” criterion,
as a practical alternative to the classical use of boundary derivatives. A
knot is placed at each “interior” data value xi apart from x2 and xm−1.

The above choice can be interpreted as follows. Consider the graph x = F (`)
given by the join of the points {(i, xi)}m

1 . The jth interior knot, λj , for
j = 1, . . . ,m − n, is given by F (j + n/2). The successive spacings between
the index arguments of F for j = 0, . . . , N + 1, using F (0) = xmin and
F (N + 1) = xmax, are therefore

1 + n/2, 1, . . . , 1︸ ︷︷ ︸
N−1

, 1 + n/2.

For approximation, these successive spacings are proportionally increased to
account for the fact that there are fewer knots. The resulting expression for
the jth interior knot is

λj = F (1 + (m− 1)(j + n/2− 1)/(q − 1)), j = 1, . . . , N.

The choice can be interpreted as placing the interior knots such that there is
an approximately equal number of data points in each knot interval (interval
between adjacent knots), except that in the first and the last interval there
are approximately n/2 times as many points. The strategy [1] has the
property that when N is such that the data is interpolated, the choice of
knots agrees with one of the recommended choices for spline interpolation.7

Figure 6 illustrates the above strategy for a spline interpolant and approxi-
mant of order 4 to data with abscissae

x = (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 7.5, 10)T.

7The approach tends to give better knot locations if the data is gathered in a manner
which ensures that the local density of the data is greater in regions where the behaviour
of y is more marked.
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Each figure shows the graph x = F (`). For the interpolant (left-hand graph),
ten knots are chosen to coincide with the abscissa values x3, . . . , x12. For
the approximant (right-hand graph), four knots are chosen such that there
are two points in each interval, excepting the first and last interval where
there are four points, i.e., n/2 = 2 times as many. The distribution of the
knots reflects that of the abscissa values.
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Figure 6: A knot placement strategy depending only on the abscissa values.

Figure 7 shows the results of applying the above strategy to the thermophys-
ical data of Figure 3. The root-mean-square residual is plotted as a function
of the number of knots N for N = 0, . . . , 200. The root-mean-square residual
values (shown on a logarithmic scale) vary by a factor of (approximately)
1000 for this range of N , from 0.96 for N = 0 to 0.62 × 10−3 for N = 200.
The “non-smooth” behaviour of the root-mean-square residual values as a
function of the number of knots is a consequence of the set of spline approx-
imants not constituting a family. However, even though the approximants
do not form a family, the saturation of the the root-mean-square residual
values for N > 180 to a constant (of, approximately, 0.65 × 10−3) suggests
that an acceptable fit to the data is generated.

A simpler strategy to that described above is to select uniformly spaced
knots between xmin and xmax. Such a choice makes minimal use of the
available knowledge about the data, only that the data abscissa values
are contained within the interval [xmin, xmax]. The Schoenberg–Whitney
conditions will not necessarily automatically be satisfied by such a choice,
and the spline approximant would therefore not be unique, although the
approach indicated at the end of Section 4 could be applied.

Figure 8 shows the results of selecting N = 0, . . . , 200 uniformly spaced knots
for the thermophysical data. The behaviour of the root-mean-square residual
as a function of N is very similar to that shown in Figure 7, excepting that
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the root-mean-square residual values are still decreasing over the complete
range of N .

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−3

10
−2

10
−1

10
0

N: number of knots

R
M

S
 r

es
id

ua
l

Figure 7: The root-mean-square residual as a function of the number of knots
for the application of a knot-insertion strategy to the thermophysical data of
Figure 3. The knots are positioned so that there is (approximately) the same
number of abscissa values within each knot interval with the exception that
the first and last intervals contain n/2 times as many. The figure depicts
the root-mean-square residual on a logarithmic scale, so its value varies by
a factor of 1000 from 0 to 200 knots.

8.2.2 Strategies that depend on abscissa and ordinate values

The strategies described in Section 8.2.1 essentially locate a number of knots
uniformly with respect to point index or, for the simpler strategy, with
respect to abscissa value. One way of generalising these strategies is to
generate a number of knots that are uniformly spaced but along (an approxi-
mation to) the underlying curve represented by the data. An approximation
to the underlying curve is constructed as the piecewise linear curve obtained
by joining the data points by straight-line segments.

Let di denote cumulative Euclidean distance from the first to the ith data
point, i.e.,

d1 = 0, di = di−1 +
√

(xi − xi−1)2 + (yi − yi−1)2, i = 2, . . . ,m.

The parameter values

ti =
di

dm
, i = 1, . . . ,m,

provide a scaled measure of the distance of the ith data point from the first
point. The scaling is such that the total length from first to last data points
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Figure 8: The root-mean-square residual as a function of the number of
knots for the application of a knot-insertion strategy to the thermophysical
data of Figure 3. The knots are positioned uniformly within the interval
defined by the smallest and largest abscissa values.

is unity. Let p be the smallest value of i such that ti > j/(N + 1). The jth
knot λj is then located at

λj = xp−1 +
j/(N + 1)− tp−1

tp − tp−1
(xp − xp−1).

The knots λj , j = 1, . . . , N , have the property that the distance between
adjacent knots measured along the straight-line segments between the data
points is the constant value 1/(N + 1).

Figure 9 shows the results of applying the above strategy to the thermo-
physical data. The behaviour of the root-mean-square residual as a function
of N is very similar to that shown in Figures 7 and 8. One reason for this is
that the range of ordinate values is small compared to that of the abscissa
values. Unlike the strategies of Section 8.2.1 that locate the knots relative
to the abscissa values, the strategy described here is very dependent on the
relative scaling of the abscissa and ordinate values. Thus, by considering
data (αxi, yi), i = 1, . . . ,m, for 0 < α < 1, the strategy can be expected to
give different results according to the value of α.

8.3 Sequential knot-insertion strategies

In a sequential knot-insertion strategy, a succession of approximants is ob-
tained, in which for each approximant a knot is inserted in the knot interval
that gives rise to the greatest contribution to the least-squares error. A
knot interval is an interval between adjacent knots, where the endpoints of
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Figure 9: The root-mean-square residual as a function of the number of
knots for the application of a knot-insertion strategy to the thermophysical
data of Figure 3. The knots are positioned uniformly with respect to chord
length along a piecewise linear curve obtained by joining the data points by
straight-line segments.

I count as knots for this purpose. Previously inserted knots are retained
undisturbed. Several variants are possible (also see Section 8.11), e.g.:

• Start the process with a number of knots already in place, perhaps
obtained from information specific to the application.

• Candidate positions for a new knot are

– The continuum of points within the interval. The approach gives
rise to the minimisation of a univariate function that may possess
local minima.

– The subset within the interval of a discrete set of points chosen
a priori, e.g., the data abscissa themselves or a uniformly spaced
set of x-values. The approach gives rise to a finite computation
for the globally-best choice of knot, relative to the discretisation,
with respect to previous knots.

• More than one knot can be inserted at a time. Doing so gives an
approach that is intermediate between full optimisation (Section 8.7)
and sequential (single) knot insertion. Computation times rise rapidly
with the number of “simultaneous” knots so inserted, so in practice
only a small number, say two or three, might be feasible.

• Use a merit function other than the least-squares error (Section 8.5).
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Figure 10 shows the root-mean-square residual as a function of the number
of knots for the application of this strategy to the thermophysical data of
Figure 3. Figure 11 show the positions of the eighty knots generated by the
knot insertion strategy corresponding to the right-most point in Figure 10.
Compared with the results presented in Section 8.2 the root-mean-square
residual values have saturated to the same essentially constant value but over
a much smaller range of N . The strategy has generated a spline approximant
defined by significantly fewer knots. The distribution of the knots is far from
uniform with knots concentrated where the slope of the underlying curve
represented by the data changes most rapidly. The strategy has generated
a distribution of knots that is intuitively good for this data set.

0 10 20 30 40 50 60 70 80
10

−4

10
−3

10
−2

10
−1

10
0

N: number of knots

R
M

S
 r

es
id

ua
l

Figure 10: The root-mean-square residual as a function of the number of
knots for the application of a knot-insertion strategy to the thermophysical
data of Figure 3. At each iteration a single knot is inserted so as to maximise
the reduction of the root-mean-square residual. Candidate positions for each
new knot are the data abscissa values.

8.4 Sequential knot-removal strategies

In a sequential knot-removal strategy, the starting point is an initial spline
approximant having a “large” number of knots that typically would be re-
garded as an acceptable approximant to the data and that contains (perhaps
many) more knots than desired. Also see Section 8.11. Each successive
approximant is obtained from the previous approximant by deleting one
(or more) knots. The knot selected for removal is chosen as that having
least effect in terms of the change in the least-squares error. The process is
continued until an acceptable approximant is no longer obtained.

The initially large number of knots (Section 8.11) provides an appreciable
number of candidate knots for removal and thus greater flexibility. The
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Figure 11: The thermophysical data shown in Figure 3 and the positions of
the 80 knots returned by the application of a knot insertion strategy.

rationale is that in contrast to successive knot insertion a succession of
acceptable approximants is obtained as opposed to a succession of unac-
ceptable approximants, until the final “solution” is provided. There are
variants, as with sequential knot insertion. For example, several knots can
be removed at each stage.

A different class of knot removal algorithms [21] is based on a general class
of `p norms. It is not concerned specifically with data approximation, but
with replacing an initial spline approximant (that may correspond to an
approximant) by one that is acceptably close according to the measure.

The two sets of crosses in Figure 12 correspond to the values of the root-
mean-square residual as a function of the number of knots for the application
of the knot-insertion strategy followed by the knot-removal strategy for the
thermophysical data of Figure 3. The two sets, where the “progress” takes
place from left to right along the “top set”, followed by right to left along
“the bottom set”, constitutes a form of hysteresis. The behaviour in the
two directions is distinctly different. In particular, the figure indicates that
once an acceptable approximation has been obtained by knot insertion, the
use of knot removal can deliver an approximation of comparable quality
with many fewer knots or alternatively for the same number of knots an
appreciably better approximation can be obtained. In this case, with 30
knots, knot removal gives a least-squares error that is one quarter of that
for knot insertion. For a least-squares error of 0.005, 30 knots are required
using knot removal and 43 using knot insertion.
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Figure 12: The root-mean-square residual as a function of the number of
knots for the application of knot-insertion and knot-removal strategies to
the thermophysical data of Figure 3. The “upper set” of crosses indicates
the values obtained for knot insertion (Figure 10) and the lower for knot
removal. The knot-removal strategy starts with the knot set provided by
the knot-insertion strategy, which was terminated after 80 knots had been
placed, and removes at each iteration a single knot so as to minimise the
increase in the root-mean-square residual.

8.5 Approaches based on removing trends

A variant of the sequential knot-insertion strategies described in Section 8.3
is to replace the least-squares measure of fit by a test of the “randomness”
of the residuals associated with the spline fit based on a current set of knots.

One implementation of this approach is in terms of a “trend test” [24].
Suppose

{xpj , xpj+1, . . . , xpj+qj}

is the set of data abscissae values contained in the jth knot interval, and
s(x) is the spline fit based on the current knots. Compute the value of Tj ,
given by

Tj =

∑pj+qj−1
k=pj

rkrk+1∑pj+qj

k=pj
r2
k

,

where
rk = u−1

k ek = wkek

are the (weighted) residuals associated with s(x) at the data abscissa values
in the jth knot interval. A value of Tj exceeding 1/

√
qj indicates that there

is a trend in the residuals within the corresponding interval. A knot is
inserted at the midpoint of any knot interval in which a trend is detected.
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Another way of detecting a trend in the residual values rk is to identify
regions where consecutive values of rk have the same sign. A “long” run of
such residuals indicates a trend in the residuals and hence a region where
the fit based on the current knots is unacceptable. A knot is inserted within
the region given by the longest run of residuals of the same sign. The new
knot is chosen to coincide with the data abscissa value corresponding to
the central residual of this run (if the number of residuals is odd) or the
midpoint of the two central residuals (if the number is even).

Figures 13 and 14 show the results of applying these strategies to the
thermophysical data of Figure 3. The strategy based on the “trend test” is
different from other strategies considered because at each iteration a number
(typically greater than one) of knots is inserted (one into each knot interval
for which a trend in the residual values is detected). Consequently, the
graph of root-mean-square residual values comprises only a few points, and
it is difficult to judge whether these values have saturated to an essentially
constant value. To overvoce this disadvantage, a variant of the strategy
based on inserting one knot at a time, indicated by the greatest value of Tj ,
could be used.
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Figure 13: The root-mean-square residual as a function of the number of
knots for the application of a knot-insertion strategy to the thermophysical
data of Figure 3. A knot is inserted at the midpoint of any knot interval in
which a trend in the residual values is detected [24].

8.6 Theory-based approaches

The distance of a spline s(x) with knots λ from a sufficiently differentiable
function f(x) is proportional to

hn|f (n)(ξ)|,
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Figure 14: The root-mean-square residual as a function of the number of
knots for the application of a knot-insertion strategy to the thermophysical
data of Figure 3. A knot is inserted at the data abscissa value corresponding
to the central residual of the longest run of residuals of the same sign.

where h is the local knot spacing and ξ is a value of x [15]. Consider inverting
this expression in order approximately to equalise the error with respect to
x. The lengths of the knot intervals should consequently be chosen to be
proportional to |f (n)(ξ)|−1/n, where ξ is a value in the neighbourhood of the
respective knot interval. Consider the function

F (x) =
∫ x

xmin

|f (n)(t)|1/ndt

/∫ xmax

xmin

|f (n)(t)|1/ndt . (8)

Take knots given by

F (λj) =
j

N + 1
, j = 1, . . . , N. (9)

This result corresponds to dividing the range of the monotonically increasing
function F (x), for x ∈ I, into N + 1 contiguous subranges of equal length,
taking the values of x corresponding to the subrange endpoints as the knots.

In practice f , let alone F , is unknown. Various efforts have been made to
estimate f and hence F from the data points. For instance, if the data is
approximated by a spline of order n + 1, its nth derivative, a piecewise-
constant function, can be used to estimate F [4]. It is then straightforward
to form the required knots. The approach begs the question in the case of
data. In order to estimate knots for a spline of order n, it is first necessary to
construct a spline approximant of order n + 1 for the data, the construction
of which itself requires a choice of knots.

Alternatively [14], a spline approximant of order n for the data can be
constructed for some convenient choice of knots. Its nth derivative is of
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course zero (except at the knots). However, its (n − 1)th derivative is
piecewise constant, a function that can be approximated by the join of the
mean values at the knots of the constant pieces to the immediate right and
left, with special consideration at the endpoints of I. The derivative of this
piecewise-linear function then provides a piecewise-constant representation
of the nth derivative, that can be used as before. Knots can then be deduced
from this form as above. The advantage of this approach is that it can be
iterated [14]. If the process “converges”, the result can be used to provide
the required knot set. The process can work well, but is capable of producing
disappointing results. Several variants of the basic concept are possible. The
approach warrants careful revisiting.

8.7 “Overall” optimisation approaches

For any given value of N , the problem is regarded as an optimisation problem
with respect to the overall error measure. It is necessary to provide a sensible
initial estimate of the knot positions. Local solutions which may be grossly
inferior to the global solution are possible [5]. At an optimal solution, knots
may coalesce, thus reducing the continuity of the spline at such points [20];
the same comment applies to the sequential-knot-insertion and optimisation
approach (Section 8.8).

8.8 Sequential knot insertion and optimisation

Sequential knot insertion with optimisation is identical to the sequential
knot-insertion strategy (Section 8.3) except that, after each knot is inserted,
all previously-inserted knots are adjusted such that the complete set of knots
at that stage are (locally) optimal with respect to the overall error measure.
One such strategy [16] carries out the optimisation at each stage by adjusting
in turn each knot in the current knot set in order to achieve satisfactory
reduction in the least-squares error, and repeating the complete adjustment
as necessary. This strategy is not as poor as the traditional one-variable-
at-a-time strategy for nonlinear optimisation because knots far from the
newly-inserted knot tend to have little effect on the error measure.

Buffering to prevent knots coalescing and reducing the continuity of the
approximant can be used. Various features can be incorporated to improve
computational efficiency, including the use of contemporary nonlinear least-
squares optimisation. It is emphasised that for each choice of knots the
problem is linear (cf. Section 7).
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8.9 Optimal discontinuous piecewise-polynomial approxima-
tion

Consider the class SN of splines having N interior knots of multiplicity n
(i.e., nN interior knots in all, counting coincidences). An s ∈ SN will in
general be discontinuous at these knots. It is possible to determine the
globally optimal locations of such knots, using the principle of dynamic pro-
gramming [5]. The approach is based on the fact that the best approximant
sN ∈ SN to the leading p (≥ nN) data points is given by the best over
q = nN − n + 1, nN − n + 2, . . . , p − N of sN−1 ∈ SN−1 for the leading
q ≤ p − N points, together with a polynomial piece of order n over points
q +1 to p. By this simple recursive means the globally best knots for splines
of any order that are discontinuous at any number of knots can be computed.

Such a solution may not be suitable as the final result in an application.
However, it can be useful as part of a knot placement strategy. For example,
suppose good knots for a spline of order n are required. An approach would
be to determine an optimal discontinuous spline of order n + 1. Use this
spline to estimate f in expression (8). The integral in the numerator of (8)
will be continuous piecewise linear and estimates of the optimal knots for
a C(n−2) spline readily obtained from (9). Mixed results have informally
been obtained by the authors with an implementation of this approach. It
is suggested that it be revisited.

8.10 Knot dispersion

A set of knots of multiplicity n is positioned using an appropriate strat-
egy, such as that in Section (8.9) and a C(−1)(I) spline with these knots
determined. Each of these multiple knots is “dispersed”, viz., replaced by
n nearby simple knots, and a replacement C(n−2)(I) spline computed. A
careful strategy for knot dispersion is required. Again, informal experiments
have been made by the authors and mixed results obtained.

8.11 Knot initialisation and candidate knot locations

Several of the above procedures require or can benefit from an initial place-
ment of the knots. Some make use of “candidate knot locations”.

The solution to the free-knot spline approximation problem returned by
iterative algorithms typically depends on the starting set of knots. Although
an algorithm may return a result that satisfies the necessary and sufficient
conditions for a solution [18], this result may be locally rather than globally
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optimal. There is no known characterisation of a globally optimal solution.
The careful interpretation of solutions is therefore important.

The use of candidate knot positions can be helpful. For instance, it may be
decided that for splines of even order, only knots that coincide with data
abscissae are in the candidate set, or, for splines of odd order, knots only
at points mid-way between adjacent data abscissae may be so regarded.
Such criteria are consistent with the choice for interpolating splines and the
generalisation covered in Section 8.2.1. The Lyche-Mørken knot removal
algorithms [21, 22] use data abscissae as candidate knots. The use of a finite
number of candidate knot locations helps to reduce the dimensionality of
the problem: there can then only be a finite number of possible knot sets.
For large N this number can be extremely large, making it prohibitive to
examine all possibilities. However, for small N , e.g., 1, 2 and 3, it may
indeed be possible, and can pay dividends. Knot insertion and knot removal
algorithms can also implement the concept. For example, at each stage of a
knot insertion strategy, two or three knots can be inserted “simultaneously”.
By the method of their introduction these new knots will be optimal relative
to the knots previously used and the available candidate knot locations.

Another aspect of a candidate knot set is that if it is sufficiently dense it will
contain, to a degree of approximation dictated by its “spacing”, the optimal
knots for the given data set [20]. For instance, consider a set of m � 100 data
points specified over an interval I normalised to [−1, 1]. Take 100 uniformly
spaced points spanning this interval. This set will contain, to approximately
two figures, each globally optimal knot set having N ≤ 98 knots8 (assuming
all knots are simple). If a spline based on these 98 candidate interior knots
provided a valid model, a suitable knot removal algorithm might be expected
to be able to identify reasonably closely the optimal knot sets. Work is
required to determine the degree of success in this regard.

9 Conclusions and future possibilities

It is rarely required to determine a least-squares spline approximant that is
globally or even locally optimal with respect to its knots. An approximant
that met some closeness requirement with the smallest possible number of
knots is an academic rather than a pragmatic objective. Today, the more
important consideration is to obtain an approximant that represents the data
in that its smoothness is consistent with that of the function underlying the
data and the uncertainties in the data. (This statement must be qualified for
situations where the continuity class of splines is a consideration as discussed

8The two endpoints do not constitute interior knots.
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above.) These ends may be achieved by seeking an approximant with a
reasonable but not necessarily optimal number of knots.

The use of knot removal strategies is likely to attract research effort in the
future. One reason for this statement is that the need to work with large
initial knot sets is not as computationally prohibitive with today’s powerful
personal and other computers. Another reason is that the approach can be
expected to produce better approximants, i.e., smaller least-squares errors
for the same number of knots. A study [23] of knot removal algorithms
[21, 22] applied to typical metrology data has shown that promising results
may be obtained using such algorithms.

Large data sets, as are now frequently being produced in metrology from
computer-controlled measuring systems, are ideal for the purpose of obtain-
ing a sound initial approximant in the form of a valid model containing
possibly many more knots than the minimum possible. Their size permits
initial approximants to be obtained, even with large numbers of uniformly
spaced knots, that provide valid but highly redundant models for the data.
The fact that such sets do not contain “appreciable gaps”, because of the
manner in which they are gathered, means that this fact together with the
quantity of data far outweighing this initial number of knots goes a long
way towards ensuring that this initial approximant is valid. There is much
scope for an appreciable number of knots to be removed. The initial large
number of knots may also have been obtained by the use of a knot insertion
strategy. It is the experience of the authors that knot insertion can introduce
appreciably more knots than given by the optimal choice.

Because the early approximants may be far from optimal, an insertion
algorithm can produce knots that are totally different from those in an
optimal approximant. In contrast, a knot removal algorithm has a possibility
to obtain good knots. (See Section 8.11.) For instance, because of the
sequential manner in which knots are inserted, there may be two or more
close or even coincident knots, although a good knot set might not have
this property. It is also possible that such knots, although not part of an
optimal set, are influential in their effect on a knot removal algorithm, with
the result that they appear in the “final” approximant.

The problem of data containing wild points is not addressed satisfactorily by
existing knot placement algorithms. Because such points are responsible for
a large contribution to the least-squares error, more knots would be placed
in the neighbourhood of such a point than would otherwise had been done.
The knot placement strategy can then be influenced more by the errors in
the data than by the properties of the underlying function. Formulations
and hence algorithms are needed that have greater resilience to such effects.
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In solving the fixed-knot spline approximation problem as part of the free-
knot problem, a knot set differs from a previous knot set only by the addition
or removal of a small number of knots. In linear algebraic terms the “new”
matrix A(λ′), say, differs in only a few rows from the previous matrix A(λ).
Considerable gains in computational efficiency can be obtained by account-
ing for this fact. This paper has not addressed this issue, concentrating
more on the concepts in the area. There is much scope, however, for the
application of the recognised stable updating and downdating techniques
of linear algebra [18]. Their application will not reduce the computational
complexity of a procedure, but could reduce computation times for large
problems by an appreciable factor.
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