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Executive Summary

An extension to the established methods for analysing an unknown sample
by isotope dilution mass spectrometry (IDMS) is proposed. The new method
simplifies the presentation of established methods by introducing the
“isotope dilution curve”. This shows how a method can be developed that
does not require the measurement of the isotope ratio of the highly enriched
spike and therefore limits the range of isotope ratios that have to be
measured accurately. |
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Implementation of isotope dilution mass spectrometry with
one, two and three reverse steps

by Martin J. T. Milton, Jian Wang and Peter M. Harris

1. Introduction

Isotope dilution followed by isotope ratio measurement is used widely as an analytical
method, usually known as IDMS. It has the major advantage that it is capable of
measuring elemental and molecular amounts that are largely independent of the matrix.
In its simplest form, it involves measuring the isotope ratios of the sample, a highly
enriched spike and a blend of the two. Since these span a very wide range of isotope
ratios, the method requires a mass spectrometer that has sufficient accuracy over the
complete range of isotope ratios being measured, which is very complex and beyond the
scope of routine laboratory analysis. Alternatively, standard reference materials with
certified values of the isotope ratio can be used to calibrate the instrument.

Recent advances in the method include the development of the two-step IDMS method
[1]. This extends the simple “direct” method bycTthe introduction of a reverse step, in
which the enriched spike is “assayed” against a pure material with the same isotope ratio
as the sample. This eliminates the need to meas:%: the concentration of the pure spike
directly. However, it is still necessary to measure the isotope ratio of the highly enriched
spike and memory effects, which arise when isthopes with vastly different ratios are
measured, can limits the final accuracy of the measurement.

2. Measurement equation for direct IDMS

The basic principle of IDMS is that, an amount W, of the sample is blended with an
amount N, of enriched spike. The isotope ratio of the blend (R;/) is then related to the
isotope ratios of the spike (R,,) and sample (R;) by:

N, R, vy SR, &

where the summation is over all possible isotopes.‘ This is the measurement equation for
“direct” IDMS. In the following sections, this eqltation will be applied to each step in
IDMS methods that use an unknown blend and up to three known blends.
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3. IDMS with one reverse step

In “two-step” IDMS, a reverse step is introduced that “calibrates” the response of the
spectrometer. The reverse step involves an additional blend with ratio Rp; made from an
amount N; of pure material and an amount of enriched spike N;,,. Applying (1) to the
reverse step leads to:

NZ Rxp - Rb2 z RP
N R.-R SR (2)

sp2 A

The summations over all isotopes in the spike can be eliminated by dividing (1) by (2)
and re-arranging to give:

N. R_—-R, R,-R
Mo e DeTon Zu T 3)
Rsp - Rb2
2R, | |
where G = ¢ Z R and the summations are over all isotopes (The measurement of

G is discussed in Annex I). Equation (3) is the measurement equation for two-step
IDMS. When the sample and pure reference have identical isotopic composition, (3)
can be simplified to:

N, : P _ D

N . Rbl _Rs Rsp _sz

spl

4. IDMS with two reverse steps

If a second reverse step is carried out, in which a second amount of pure material N; is
blended with an amount of enriched material N3 to give another isotope ratio Rp;:

SR,
N3 Rsp—RbS =

Nsp3 Rb3 - Rp ZRsp

Equations (2) and (4) can be combined to form the equality:

N, R,-R, N,
N

R,

R
s - om0 )
sp3 Rb2 _Rp Nspzl Rb3 - RP

which can be solved to give an explicit expression of Ry
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R' - sp2 sp3 (6)

Substituting (6) into (3), and re-arranging leads to|

1 Nz N: R.M*sz R“_RP + N3 RbZ_RbI Rb3—R
G N N,, R,-R. R, —R, R, -R

spl sp2

P 7)
sz - Rb3

In the case where R;=R,, it follows that G=1 and equation (7) can be re-written as

N ;\": R,, —R, R,‘,: *R, N, R, — RM R},;.‘ *Rﬂ
Rbl —R; Rb3 —sz Rbl —Rx sz _RbB

sp2

Equations (7) have the important property that they are independent of Ry,. Hence a
measurement that uses two reverse steps can be independent of the isotope ratio of the
spike (Ry). Alternatively, a similar equation could have been developed that involved
Ry, but was independent of R,,. |

5. Simplified notation for the IDMS equations

Further manipulation of the IDMS equation is limjted by the cumbersome notation used
in previous sections. Therefore it is useful to re-formulate equation (1) by recognising
that for any particular spike and sample, R,, and Rs can be considered to be parameters

while the variables are R, and Ni/Ngp; or its eduivalent, the mass ratiox, = ’% .
| spl
Hence (1) can be re-written as:

M, 2R _
g D=R, Q=—H4> " R and M is the RMM.
Msp X sp

where y, =R,,, a=R

This formulation of the equation highlights the }fact that any IDMS method requires
three unknown parameters to be determined and‘that x and y can be considered to be
dependent and independent variables respectively. For example, in a “direct” IDMS
measurement, g, b and Q are measured independently, which enables the unknown x to
be calculated from a measurement of y. :

When one reverse step is incorporated and the isotope ratio of the pure reference R, is
denoted as c, it yields a pair of measurements (x,, y;) through gravimetry and mass
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spectrometry. These enable Q to be eliminated and the IDMS equation to be re-written
as:

where we have assumed that Q is the same for the unknown and the pure reference. The
use of a second reverse step yields an additional pair of measurements (x, y,) that
enable both O and a to be eliminated. This leads to:

which corresponds to equation (7”) in the new notétion.

6. Graphical representation of IDMS

Further insight into the IDMS method can be gained by recognising that (8) is the basic
measurement equation for IDMS, which can be applied to each step in an IDMS
procedure. Hence every step must correspond to a point on a curve defined by (8). The
form of this curve can be established by expanding and re-arranging (8):

(x+0OXy-b)=0Q(a-b) 1

Equation (11) is a rectangular hyperbola which is shown graphically for specific values
of the parameters in Figures 1 and 2. :

Figures 1 and 2 show the two cases of Rgp,>R; and Ry, <R, respectively. When the three
parameters a, b and Q are known, the curve is defined completely. Measurement of a
value for y of an unknown blend then leads to a unique result for x (the mass ratio of
sample to spike in the blend). Alternatively, since there are three unknowns in equation
(11), the curve can be defined completely by kno'#vledge of the coordinates (x,y) of any
three points that lie on it. These might be the resulis, for example, of three reverse steps.



NPL Report COAM 7

Figure 1: IDMS equation for the case of Rs,,>R (The values used are
a=0.2435, b=0.01188, 0=0.8102).

x=m/m,

Figure 2: IDMS equation for the case of R,,<R; (The values used are
=0.001302, b=0.01188, 0=1.011).



NPL Report COAM 7

7. IDMS with one and two reverse steps expressed in &-
notation

Many mass spectrometers are configured to presenJ;t results in terms of the quantity:

(S:—i—l (12)
R

where R is the measured isotope ratio and Ry, is the isotope ratio of a “standard™. In the
examples developed here, R, can be considered to play the role of a standard, and (11)
can be re-written as:

(x+Q)6 =04,

where d=y/b-1 and dg,=a/b-1. If &, Op;, Ops, and Jw, are used to denote the values of §
for the sample, the first, second and third blend respectlvely It is now possible to re-
express (10) as:

x, = Dx, + (1= D)x,
where

0:(845 = I41)

D=
(0, — ‘5; )((5M — Oﬂh: )

or in the case where R,=R,

D= (S)K (0,, —0, )

Equation (14) is the measurement equation for IDMS with two reverse steps and is
equivalent to (7°). L

A graphical presentation of equation (13) is simil r to Figures 1 and 2 except that the y-
axis is displaced by b and re-labelled as . In equation (13), it is clear that, the unknowns
a and Q can be determined through a measurement of the two pairs (8,, x2) and (93, x3).
The unknown x; can then be determined frorh a measurement of 5, as shown
schematically in Figure 3:



NPL Report COAM 7

Figure 3: Graphical representation of equation (13) being used to
calculate x from measured values of (&, xlj, (%, x2) and & (In this case
b=0.01188 as for Figure 2).

8. Uncertainty analysis

In order to analyse the uncertainty of the dlfferenq methods that use the isotope dilution
curve, it is useful to write (13) in the form :

s
x=0-(—-D

If a series of values x; and &; are used to define \the isotope dilution curve, then their
means are related by ‘

Applying the internationally-accepted method [2] for calculating measurement
uncertainty to (16) leads to:

PN 1o 50 . R B
uz(x)=u2(x)+ -5— »\):A) ~u“(Q.(‘)m)+(Q.(\)Xp )~ '“('T'—_f)

5 9 0, b

The term u(Q-d,,) would be determined from the| ‘uncertainty of the “best-fit” curve to
the points (x;J;). ‘
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9. Summary

The measurement equations for IDMS with one, two and three reverse steps have been
presented. It has been shown that the introducti(j:lv of a second reverse step enables a
measurement to be made that is independent of t#xe isotope ratio of the enriched spike
(Rsp)- The introduction of a third reverse step also makes the measurement independent
of the isotope ratio of the sample (R;). Both }of these developments help design
experiments that reduce the range of isotope ratios|that have to be measured accurately.

A simplified notation has been developed that leads to a graphical presentation which
provides useful insight into the operation of IDMS. The use of J notation enables the
measurand to be expressed in terms of a set of quantities that are displayed directly by
many instruments. Finally, the operation of IDMS methods is explained by reference to
the “isotope dilution curve”.
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Annex I: The measurement of the G factor for carbon dioxide
(CO,)

When the sample and pure reference do not have identical isotope composition, the
factor G in equation (3) must be evaluated, which is usually not possible by direct
measurement. In the case of CO;, G can be expressed as:

R ‘

G—Z * _1+R” +R" + AR,
- - 45

ZRP 1+R¥ +R¥ + AR,

(Al.l

17

where AR =R +R"+R™ and AR, =R +R “ +R *. Equation (Al.1) can be

written in terms of two parameters that can be measured by comparing the isotope ratios
of the sample and pure reference at the mass 45 and 46 plus other terms that can be
determined either from other sources or through estimation when their values have no
significant influence to the final results. For samples close to natural abundance, AR,
and AR, will be very small compared with the other terms in the numerator and
denominator and we can assume AR, = AR, . Hence:

R® R
+(R45]-R:5 +[ﬁ- ‘R +AR,
G= e L P L

FRY R L AR

(A1.2)

The isotope ratios of the pure CO, can be obtained through other sources such as those
given in IUPAC [3]. The error caused by the assumption AR, = AR, is very small since
values of R*/, R* and R* are significantly small compared with R® and R*. The

uncertainties resulting from the uncertainty in the values of R, are very small due to
their very small sensitivity coefficients and can be ignored.
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Annex Il: Analytical description of IDMS with three reverse
steps [

If a third reverse step is carried out, equation (6) can be extended to form the equality:

R,-R; R,-R, R, -R, R, -R, R,-R, R, -R,.
RH - Rr,v f[{' - Rx — RB' - R,s RB" - R,s — RB” - R,\ RB"' B RS (A2.1)
NN, N, N, N, N,
N N,
The numerator of each term in (A2.1) can now be re-arranged:
o RB _‘RB' RE’ _RH" o RB;: RB“‘ .
(RH B R ) (RJJ' - R‘) — (RB' B Rv ) (RB” - Rx ) — (RH B Rs ) (RB"' B Rv ) (A2 2)
(N N, ' N, N, | [ N, N,.

Unfortunately, this expression does not have sufﬁcient symmetry to proceed towards a
simple elegant analytical solution. The matrix fqrmulatlon described in the following
Annex may then be used.

10
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Annex lll: IDMS with three reverse steps and their matrix
representation

Measurement model

It is useful to consider the benefits of an IDMS measurement using three reverse steps. It
is not feasible to extend the methods used above to provide a simple analytical solution
for this case (as explained in Annex I). Hence, we express the fact that the three pairs
(x1, 1), (x2, y2) and (x3, y3) are solutions of equati n (11) in the form of a matrix:

1 -y x|C X))
1 -y, x |0 X, Y, (A3.1)
1 -y, x| b X33

where C=Qa. Equation (A3.1) can be solved for tﬁe unknown C, Q and b:

-1

C 1 -y x 4N
Q=1 -y, X, Xy, (A3.2)
b 1 -y, X, L%

When the parameters C, O and b have been detexlnined from the measured values of x;
and y; (i=1,2,3), equation (8) can be used to calculate the unknown x from a
measurement of y:

x=£/_g___y.Q (A3.3)

y~b

measured can be chosen to have values close to each other. This reduces the difficulties
caused by memory effects, which arise when iT is necessary to measure the vastly

A significant advantage of using three steps in thii way is that the sets of isotope ratios

different isotope ratios of the sample and spike.

Uncertainty analysis

The uncertainty associated with these results can be calculated. Let e, f, 8C, 6Q and &b
denote perturbations in x, y, C, O and b, respectively, that satisfy equation (11)

fx+e)(y+f‘>—(b+5b)(x+e)+(Q+5Q)(y+f)=(C+5Cj (A3.4)

After ignoring second order terms, it follows that,

11
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ey+ fx—be—x8b+Qf +y80 = 5C, (A3.5)
or, in matrix notation,
oC
§ Jel
h -y x]oo =[y-8 x+0] | (A3.6)

| ob L/

Substituting for the measurement data, we obtain

(e,
—y x5 y-b 0 0 1+0 0 o 1%
€s
¥, L0 = 0 y,-b 0 0 x,+Q 0 P , (A3.7)
-y, x| 6b 0 0 y,-b |0 0 x,+0|"!
0
/3]
With appropriate definitions this can be written as:
J.ba=Je, (A3.8)
or
sa=J"Je. (A3.9)
where a=(C, Q, b)”, Then,
sa(da)" =J;'J ee"JTJ;T, (A3.10)
and, taking expectations,
V,=J; IV JIIT (A3.11)

Here, V, is the covariance matrix for the model inh)uts (the measurement data) and V, is
the covariance matrix for the model outputs (the model parameters). The (6 x 6) matrix
V. contains the variances and covariances for the measurement data and requires a

priori information about the data errors. The (3 x 3) matrix ¥, contains the variances
and covariances for the model parameters. From the conventional notations

u(x)? = E[(x— 4,)*] (A3.12)
and

u(x,y) =u(y,x) = E[(x-p,)- (v — #,)] (A3.13)

12
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the full form of the covariance matrices V. and Va{ can be expressed as

“w(C)?  u(C,0) u(C,b)
Vo= u(C,0) wQ) u(C,b) ‘A3.14)
u(C,b)  u(Q,b) u(b):

and

_ u(x1)2 u(x,x,)  u(x,x,) u(x,y,) u(x,y,) u(x]’yB)-
w(x,%,)  u(x)  u(x,x,) u(x,,y) w(x,y,) u(x,,y,)
Vo= u(x;, %) u(xy,x;)  u(x,)? u(xs, 3,)  u(x;,9,) u(xy,y;)
u(x,y) ux,3) ux,y)  w(n)? u(v,y,) w(n.y,)
u(x,y,) u(x;,y,) u(xy,y,) u(y, y,)  u(y,)’ u(y;,y3)
u(x,ys) ulxy, ;) u(x,yy) u(vyy) w(y,y,)  u(y,)?

(A3.15)

-

Calculation

Given a new measured value y and its standard un%:ertainty u(y), the corresponding value
of x is calculated from equation (A3.3). 1

To a first order approximation, we have

NP 2 OO g KO0 (Co00 5 4316
TTEEITITE (y-b) ] (y—b)’ '

and, consequently, the standard uncertainty u(x) oﬁx is calculated from

1
| v 2
*()= C-0r .| =y |, [Qu-t)+(C-0n] ,
u(x)_[y_b ooty | 37 +| G =by Ju(y),(A3.17)
C-o
L(y-b)" ]

where we assume y and the parameters a are independent.

13
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