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ABSTRACT

In many applications, decision making has recently become dependent on artificial intel-
ligence (Al) systems. In order to ensure a safe integration of such systems within these
applications, not only should their accuracy and performance be tested, but also their trust-
worthiness. We discuss here the basic phases involved when testing the trustworthiness
of an Al system, as well as some of the steps that can be taken to ensure an Al system is
trustworthy. We begin by discussing characteristics which should be considered for most
Al systems, prior to moving on to other characteristics of trustworthiness which can be es-
sential for some Al systems, particularly those which are sensitive and have a direct impact
on people’s lives. We also shed light on the fact that trustworthiness, along with its evalu-
ation, should be fit for purpose and should be aligned with the original context in which the
respective Al system will be deployed. We also examine the role of third-party testing in the
development and deployment of Al and ML systems, outlining some of the related benefits,
risks, and best practices for mitigating these risks.
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1 INTRODUCTION

Artificial Intelligence (Al) refers to technologies which enable machines to address problems
and tasks typically requiring human intelligence. Such tasks include learning, automating
repetitive work, problem solving, and making predictions. Machine learning (ML) is a subset
of Al consisting of methods that are able to learn statistical models by analysing data. Such
models may be used for classification and prediction tasks to aid decision-making. The
focus of this report is on ML components of Al systems, but we will still use the term Al at
times when referring to the more general technology.

Al systems, and the ML models which typically power them, are now ubiquitous in nearly
every area of our daily lives. As such, it is of paramount importance to assess their trustwor-
thiness in order to make sure we can benefit as much as possible from ML, while mitigating
any potentially negative side effects [33] such as bias and opacity. Trustworthy Al systems
should be reliable, ethical, and transparent in their operation and decision-making.

Testing the trustworthiness of ML-based Al systems is different from testing a traditional
software system for at least two reasons. Firstly, ML is data-driven as opposed to rule-
based, which means that traditional software testing approaches often do not apply. lis
data-driven nature also means that the data on which the model depends must also be
tested, in addition to the ML model (software) itself. Secondly, ML models can in principle
adapt to take into account new data, causing the model to change its response to inputs
over time [33].

This report addresses how to ensure and evaluate the trustworthiness of ML models during
development. Its aim is to provide guidance to designers and developers of Al systems on
characteristics they should take into consideration when designing trustworthy ML models.
As previously noted, it is important that the data used to train ML models is also subject to
testing and evaluation. We note however that, since the focus is upon the development of
the ML model, data collection and its design [51, 56] are outside the scope of this report.
We choose to focus on evaluating classification models, which are the most commonly en-
countered learning tasks in ML. Extensions to either regression or unsupervised learning
are straightforward [36].

Software testing procedures (including in an ML context [33]) are often divided into two cat-
egories: validation and verification. Validation is about ensuring that the user requirements
are met, whereas verification is about ensuring that the functional requirements are met. In
other words, validation is centred around ensuring that the system solves the right problem
for the user, and verification is about ensuring that the system is built correctly according to
the specifications. The user requirements will certainly need to reflect the nature of the ap-
plication and the context, and then the functional requirements are traceable to those user
requirements (and specify how the user requirements will be achieved). For example, the
use of ML in a clinical setting might require that the model attains a high level of accuracy
as specified by the clinician (user as per this scenario), which might not be needed in a less
sensitive setting. In this case, validation would be testing whether that level of accuracy is
achieved. The requirement to provide explanations of results is also a user requirement,
but the choice of how those explanations are established is a functional requirement (i.e.
defining the specific behaviours and actions that a system performs), and testing that they
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are provided correctly is verification. Testing of data can also be divided into validation (“is
it the right data?”) and verification (“is the data right?”). The guidance in this report covers
the testing of both the data and the ML model, and comprises a mixture of validation and
verification approaches.

In order for an Al or an ML system to be trustworthy, several characteristics should be con-
sidered. In Section 2, we begin by discussing some basic characteristics which are essential
for nearly all Al systems. These characteristics are all related to ensuring the accuracy and
performance of the model. Given that these are well-established characteristics, there are
universally-agreed metrics which can be used to evaluate many of these characteristics.

We proceed in Section 3 to discuss some additional trustworthiness characteristics which
are important in many Al systems. To integrate Al technology into critical applications that
affect people’s lives, e.g. healthcare and self-driving cars, performance on its own does not
suffice anymore. The need for specification of further characteristics that Al systems should
possess has therefore arisen. For instance, an automated decision-making system that is
to be used as part of a clinical decision-support system should not only be accurate, but
should also possess the capability of explaining its reasoning to the clinician who will be
using it.

It is often more challenging to quantitatively evaluate the characteristics presented in Sec-
tion 3, for two main reasons. The first is that these characteristics have been introduced
by the Al and ML community more recently, and ways to assess them are not yet widely
accepted. The second, and probably more compelling, reason is that these characteristics
are strongly dependent on the background knowledge of their (human) users. For instance,
the automated decision-making system referred to above should provide an explanation of
the reasoning behind its predictions. While evaluating the performance of the prediction
itself is rather straightforward (for instance it either depicts a correct or incorrect diagnosis),
the same explanation can be provided to two clinicians, where one thinks it is a sound and
viable explanation, whereas the other believes that it is an unacceptable explanation. We
also address the role that generation of synthetic data can play in a trustworthy Al system.
This is a powerful tool for creating scenarios that can help in evaluating the trustworthiness
characteristics of Al systems.

There are many instances where the capabilities needed to evaluate the Al systems being
developed are not found in-house or where sensitivity/regulation requires that a third party
provide an independent assessment. Section 4 examines the role of third-party testing in
the development and deployment of Al and ML systems across diverse industries. It outlines
the key benefits such as external validation provides, such as ensuring independence, sup-
porting regulatory compliance, and driving continuous improvement, while also addressing
the potential risks related to data privacy, compliance and reputational damage. Finally, it
offers guidance on best practices for mitigating these risks to help organisations confidently
and responsibly incorporate third-party evaluation into their Al governance frameworks. We
then close by providing a few concluding remarks in Section 5.

2 ESSENTIAL CHARACTERISTICS OF TESTING ENVIRONMENTS FOR
Al SYSTEMS

Evaluating an Al system consists of assessing several basic characteristics, along with some
other characteristics which depend on the respective system. This can typically be per-
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formed within a testing environment whose primary purpose is to identify defects, ensure
that the model is performing as expected, and ensure that negative side effects such as
bias and/or opacity are being mitigated as much as possible. In this section, we elaborate
on the former group which includes the characteristics that should be tested for nearly every
Al system.

A schematic diagram of the principal phases of a typical Al system evaluation can be found
in Figure 1. First of all, the input data (which covers both the training and test data) should
be validated, after which the training and test phases should be assessed. In addition, de-
pending on the context of the application, other characteristics related to the trustworthiness
of the system should be evaluated, such as the ability to adapt, mitigate bias, quantify the
uncertainty in the system, and provide explanations of the involved predictions. Some of
these tests can be automated throughout, such as the manner in which missing data values
can be detected, and using regression tests to assess adaptability. Furthermore, integration
tests can be utilised to ensure a correct and smooth integration of the different components
of the system, particularly between the training and test procedures. Synthetic data genera-
tion can also be used to assess issues related to bias and imbalance that might exist within
the data.

Validate input data

Data integrity
(format, type, range)

Automated testing

. Example: handling
Data normalisation missing data

Data cleansing

Data balance

Regression tests

Assess the test procedure

| Assess the training procedure

Data splitting

\

Model selection
Evaluation metrics

e

Adaptability [ Bias mitigation ] [ Explainability ] [Uncertaintyquantification
A

Hyperparameter tuning

[ Synthetic data generation ]

Figure 1: A schematic diagram denoting the main phases an Al system should go through for
testing purposes.

This section begins by shedding light on assessing the validity of the input data which is
the cornerstone of every ML model. We then move on to the assessment of the two main
phases of ML model development which are the training and the test phases. We also point
out that several characteristics related to assessing such models can be automated.

2.1 ASSESSING THE INPUT DATA

Given that Al systems learn from data, it is important to evaluate the current level of quality
of the input data and assess how this impacts the decision making of the system as a whole.
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This includes verifying the integrity of the data, verifying the fact that the data is bias-free,
assessing how noisy the data is, and understanding the sources of the data. In addition,
a data pre-processing phase [31, 58] is often required which, most notably, includes data
cleansing and data normalisation.

As stated in Section 1, data collection and its design is outside the scope of this report. The
aim, then, here is not to reject data that is not up to acceptable standards. Instead, the
main objectives are to assess and mitigate any deficiencies that exist within the data. For
instance, assessment might involve detection of missing data values, while mitigation might
be a procedure where the system developers decide to either discard data examples with
missing data or perform data imputation.

For example, consider a clinical decision-support system where MRI scans represent the in-
put data, and the goal is to automate the predictions representing diagnosis of the respective
scan into either healthy, Alzheimer infected, or a mild state of Alzheimer referred to as mild
cognitive impairment [5]. With a scenario of this kind, assessing the input data, along with
performing any required pre-processing technique will be key to the overall performance of
the system. This can involve checking whether the MRI voxel values are within the correct
range and applying any normalisation needed to adjust the voxel values accordingly. Impor-
tantly, the aforementioned classes can be massively imbalanced. One potential reason for
this can be that people do not usually have a scan unless there is a reason to do so, and
consequently it can well be the case that the input data contain many more scans belong-
ing to the infected classes than the healthy class. This assessment would also recommend
some strategies that can be used to address this imbalance.

2.1.1 Integrity of the Input Data

Checking the integrity of the input data is important to verify that the input data meets the
learning criteria [10]. This means that the data should be verified for its format, type and
range. Data type checks signify checking that every data column is of the type that the Al/ML
algorithm expects. Data range checks are meant to inspect the numerical, categorical or
text ranges of each data field to ensure they all fall within the expected range and flag any
potential violation of these ranges.

The data integrity phase is essential not only for preventing eventual errors, but also to miti-
gate inconsistencies that can appear with ML algorithms (i.e. not necessarily in the form of
an error or a bug). The latter issue can well be more damaging since the respective algo-
rithm would still give a result with the underlying inconsistencies possibly going unnoticed.

2.1.2 Bias in the Input Data

In some applications, mitigating bias can be a necessity [49]. Actions taken to mitigate bias
can consist solely of data balancing mechanisms. However, the need for more advanced
actions can arise in some applications where bias resulting from sensitive attributes (e.g.
gender or race) should be mitigated as much as possible. It is also worth noting that bias
cannot be eliminated completely from the data in Al and ML. As such, the general aim is
more about mitigating bias, rather than completely eliminating it. In a testing environment,
the main task herein is to identify and quantify bias, and then the model's developer can
take action based on this quantification to mitigate bias.
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MITIGATING UNDER-REPRESENTATION VIA BALANCING TECHNIQUES In Al and ML, the
training dataset should represent a balanced representation of the real-world population
that the model aims to learn from [11, 42]. In cases where certain data groups are under-
represented, data balancing techniques should be used. A notable example is classifying
legitimate emails versus spam emails. Given the fact that most datasets typically contain
many more legitimate emails than spam emails, this is an example of imbalanced data
where the legitimate emails depict the majority class whereas the spam emails represent
the minority class. Techniques like oversampling the minority class [26], or undersampling
the majority class [18], can help improve the balance levels of the data in this case.

ELIMINATING BIAS RESULTING FROM SENSITIVE ATTRIBUTES This is a more complex
procedure which is generally required in specific applications. An example of where this
is needed is when Al systems are used to automate the prediction of recidivism for those
released from prison [6]. The original problem here was that numerous false positives be-
longed to non-white people, which has been considered a sign of discrimination within the
automated decisions made by the respective Al system. To that end, choosing the sensitive
attribute as race and then aiming to eliminate bias has been a hot topic for research in ML
over the last decade [6, 7]. The issue is not as simple as removing the sensitive attribute
from the data since the prowess of deep models enables them to infer the values of such
attributes with high precision in cases when a superficial removal is applied. For instance,
deep models working on this prediction problem are capable of inferring information about
race with high precision (even when the race attribute is removed), mainly from the neigh-
bourhood and address. There are different ways in which systems can evaluate this type of
bias. The most commonly used metric for such a purpose is referred to as disparate impact
[24]. Roughly speaking, disparate impact refers to the concept that a model can dispropor-
tionately have a negative impact on one particular group of people (for instance based on
race or gender), which can be seen as a form of (rather unconscious) discrimination. We
will elaborate further on how to deal with this type of bias in Section 3.

2.1.3 Data Normalisation

This is an important pre-processing step, particularly with deep models [14]. Data normali-
sation typically involves scaling numeric data attributes within a common range, for instance
between -1 and 1, between 0 and 1, or else within a pre-identified range that better fits the
context of the data. The main potential advantage of adjusting the data ranges in such a
manner is to mitigate the negative impact on the eventual ML training procedure, which can
happen when large-valued attributes disproportionately dominate the learning process. The
domination by large values can have a massively negative impact on learning performance.

2.1.4 Data Cleansing

Similarly to the data normalisation phase, data cleansing is a key step in order to prevent
the training procedure of ML algorithms from having inconsistencies and to improve their ac-
curacy and reliability. Data cleansing refers to identifying the data examples which contain
errors, as well as identifying the appropriate (as per the learning problem at hand) manner of
dealing with such erroneous entries. For example, dealing with data examples with missing
values [21] can either involve removing data examples with missing attributes, or can in-
volve data imputation [4]. Other cleansing issues include removing duplicates and handling
outliers [22].
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2.2 ASSESSING THE MACHINE LEARNING MODEL

This assessment mainly consists of two phases: assessing the training phase of the respec-
tive ML model, and then assessing its test phase.

2.2.1 Assessing the Training Phase

The first phase in assessing the ML model is to ensure that the training phase of the ML
model is proceeding as it should. This phase is centred around validating the obtained
results, and ensuring that the resulting prediction reflects the aims of the model in the context
it was designed for.

To assess the validity of the training phase, several characteristics should be evaluated. This
begins with evaluating the quality and suitability of the training data as illustrated in detail in
Section 2.1. Other important characteristics related to assessing the training procedure are
described next.

DATA QUANTITY In Section 2.1, we have discussed issues relating to the quality of the
training data. Here we also argue that data quantity is another important consideration.
The minimal acceptable size of the training data depends on the complexity of the learning
model as well as the context of the learning task at hand. Deep models need vast amounts
of training data in order to have a viable opportunity of learning the hidden correlations
between the input data features through the different layers of the network. Insufficient
data can lead to underfitting, which refers to a model that is too simplistic to capture the
underlying patterns that exist within the training data [44]. Furthermore, small sizes of data
can as well exacerbate overfitting if the (deep) model tends to memorise the few training
data examples it has encountered in its quest to learn a generalised concept about the
data. Overfitting refers to the undesirable phenomenon in which a model learns to perform
well on the training data in a way which fails to generalise to unseen data [3]. As such,
consideration should be given to ensuring that there is sufficient data for the task in hand
such that both overfitting and underfitting can be mitigated.

MoODEL SELECTION The aim of this process is to choose the most appropriate machine
learning model for the given task. This process involves identifying the best algorithm as well
as the best modelling architecture. The most suitable model can be selected by considering
the nature of the problem to be solved and the characteristics of the available data. An
example of such a process is the reasoning that should be adopted to choose between
decision trees and deep models. This is a choice that depends on the priorities set by the
given task. Decision trees are more interpretable; they are therefore a good fit for rather
simple tasks where understanding the dynamics of the prediction is fundamental. On the
other hand, deep learning models have the potential to be more accurate. In addition, deep
models are better at handling complex data. However, such advantages of deep models
come at the cost of losing interpretability [34]. As such, the optimal choice involves weighing
each of these factors according to the user requirements [34].

Returning to the MRI diagnosis example, the data quantity and model selection phases are
key since MRI scans contain around one million voxels per scan. Deep models are very
powerful and would be a good modelling fit for this learning problem in the case where vast
amounts of data are available. If only moderate amounts of data are available, deep models
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would be likely to overfit. Crucial modelling decisions need to be taken in such scenarios;
see [5] for further illustration.

HYPERPARAMETER TUNING In most ML and Al models, the hyperparameter tuning proce-
dure is so influential that it can make or break the whole system. Hyperparameter tuning
refers to finding the best values for the hyperparameters of the model. Hyperparameters
here refer to configuration settings of the model that have a direct impact on the learning
process, but which are not learnt during training. Hyperparameters are typically set before
the training procedure begins. Validation data is used to evaluate the model’'s performance
on different hyperparameter settings in order to ultimately choose the best hyperparameter
setting. Examples of hyperparameters include the learning rate of a deep model or number
of hidden layers of a neural network. This is in contrast to the parameters (i.e. not hyperpa-
rameters) whose values are learnt by the model during the training procedure, like network
weights and biases of a neural network. Hyperparameters have a significant impact on the
performance of the model [48].

Performing hyperparameter tuning can potentially lead to improved accuracy and better per-
formance of the overall system. In addition, tuning the hyperparameters can lead to a more
efficient system via improving its convergence properties. Approaches that can be used for
hyperparameter tuning include grid search where all the possible combinations of hyper-
parameter values (usually within a specific range) are exhaustively tested. This approach
leads to an optimal solution, but it can be infeasible due to speed and computational con-
straints [8]. Another approach, which is less computationally intensive, yet is not guaranteed
to reach the optimal solution, is random search where hyperparameter values are randomly
sampled from a specified distribution, and then those that lead to the best performance on a
validation set are ultimately selected [12]. More sophisticated approaches include Bayesian
optimisation where a probabilistic model is established to guide the search process towards
finding optimal values of the hyperparameters [59].

2.2.2 Assessing the Test Phase

The second principal phase of assessment of ML models addresses the test phase. It
involves splitting the available data into training, validation and test sets, and then using
metrics such as accuracy, precision and recall to evaluate the model’'s performance. It also
involves evaluating how well a model generalises to unseen data [15].

DATA SPLITTING This process refers to dividing the dataset at hand into (a maximum of)
three subsets, which are the training, validation, and test sets (partitions). This process aims
to evaluate the ability of a model to generalise to unseen data, and to provide a reliable way
of evaluating its overall performance, by ensuring that the data on which the model is trained
is different from the data used for testing [38].

The training set is the partition of the dataset which is used to train the model. The validation
set is used to tune the hyperparameters, and is used to evaluate the model's performance
during training to ultimately prevent undesirable issues such as overfitting. Overfitting is
typically identified when accuracy of the model on the training set is quite high, whereas the
corresponding performance is low on the validation set. Validation is often, yet not always,
needed, depending on how hyperparameters are optimised and tuned. Finally, the test set
is used to evaluate the final performance of the model on data that have been completely
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unseen during training (and validation), so that an unbiased estimate of the generalisation
ability of the model can be obtained.

EVALUATION METRICS There are many quantitative metrics that can be used to evalu-
ate the performance of a supervised learning model on a given task [39]. Note that how
such metrics are interpreted depends on the context and on what is meant by being fit-for-
purpose. The following provides some of the most commonly used evaluation metrics in
binary classification [37]. Extensions of each of these metrics to multi-class classification
are also possible; see for example [27].

» Accuracy: The proportion of correctly predicted instances out of the total instances.

 Precision: The proportion of true positive predictions among all of the positive predic-
tions.

» Recall: The proportion of true positive predictions among all actual positive instances.

* F1-score: This is computed as the harmonic mean of precision and recall, which
provides a balanced measure between the two.

» Confusion matrix: This is reported in the form of a table that summarises the classi-
fication performance of a model by displaying the true positives, true negatives, false
positives and false negatives.

* ROC Curves: The Receiver Operating Characteristic (ROC) curve plots the true pos-
itive rate (also referred to as recall, as noted above) against the false positive rate.

2.3 AUTOMATED TESTING

Automated testing of Al models (and their software) aims to evaluate whether the models
are working as expected, and to monitor the reliability and performance levels of the models
as they evolve. Automated testing can as well involve using software tools to execute pre-
scripted tests [52]. Automated testing can be crucial for performance evaluation of an Al
model. Furthermore, automated testing ensures a consistent and reproducible outcome of
the testing process.

Many of the automated testing tools described in this section apply to generic software
systems, and so in that sense are not specific to Al systems. However, in what follows we
describe the specific form that these tools take in an Al context. Evaluation tasks that can
be automated in an ML context include measuring the accuracy of models, verifying that
they perform as expected, and ensuring their predictions are both accurate and consistent.
Automated testing can help confirm model accuracy, detect software bugs during the training
process, and evaluate robustness by testing different versions of a model under various
inputs and scenarios. Additionally, automation can support data validation, ensuring that
the training data is of high quality and suitable for developing reliable models.

There are different forms of automated testing of Al systems, among which we highlight the
following:

* Unit tests: They are one of the most commonly used forms of automated testing [55].
They usually focus on verifying the functionality of individual components within the
model pipeline, such as data pre-processing, hyperparameter tuning or the training
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procedure. An example of a unit test within an Al model is one that tests a data pre-
processing function in order to ensure that missing data values have been handled
correctly, i.e. in the way planned by the system’s designer”. (for example imputation,
removing examples with missing values, etc).

* Integration tests: They test the interaction between different components of the sys-
tem’s pipeline [35]. In other words, integration testing verifies that different parts of
a model, such as data pre-processing, the training phase, and the test phase, work
together in tandem. Thus, integration testing is important for ensuring that the entire
pipeline functions as intended, and to verify the end-to-end functionality. With (non-
deterministic) ML models, it is also essential to take into consideration their stochastic
nature, and to ensure that specific ML pipelines can be replicated (for example using
random seeds).

* Regression tests: Suppose that a system has been tested and verified, and that
a new functionality then needs to be added at a later date. How can we relate the
updated status of the system to the one that was previously tested and verified? Re-
gression testing ensures that the changes caused by the added (i.e. new) code do
not negatively impact the already existing functionality. This can involve comparing
performance metrics of the updated system with the previous version of the system.
In more general terms, as Al systems evolve, regression tests can be used to monitor
their performance and identify the loss of any functionality that was previously attained
by the system [47].

Automated tests can lead to faster testing cycles and reduced maintenance effort and cost.
Moreover, they improve the reliability and consistency levels of the overall testing process,
even with new data and/or coding updates.

Having said that, it is worth noting that there can be a privacy risk with automated testing
[41] which should be inspected meticulously prior to the adoption of any powerful automated
testing tool. Automating the testing process entails higher risks of adversarial attacks, since
the latter consider the absence of humans as an opportunity for systemising attacks that
can target any loophole in the automated testing process (if any) to gain further information
about the system.

2.4 UNCERTAINTY QUANTIFICATION

ML classifiers are always to some extent uncertain about the predictions that they make.
Uncertainty can arise from various sources, including uncertainty in the training data (both
input data and output labels) and uncertainty about the optimal classification model. It is vital
in some applications that a trustworthy ML classifier is transparent about the uncertainty in
its predictions. In the diagnosis of disease in healthcare, for example, information about the
degree of doubt in an ML classification is crucial for informing a clinician’s decision-making.

When evaluating the performance of ML classifiers, attention is often given to metrics which
treat the model output as being a single predicted class. Various metrics which assess
performance on this basis were outlined in Section 2.2.2. However, it is also important to
transparently report the degree of doubt in a prediction by assigning probabilities to each of
the classes. Many ML classifiers are inherently probabilistic. In neural networks, for exam-
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ple, class probabilities can be directly optimised using loss functions such as the categorical
cross-entropy.

Uncertainty quantification is also a valuable development tool: it can be used to detect
regions of the data space where the model is performing poorly, providing useful information
on how the model might be improved [19].

2.41 Evaluating Uncertainties

It is also important that the class probabilities returned by a classifier are reliable. Various
tools have been developed in the ML community for evaluating the output of probabilistic
ML classifiers. We highlight one popular approaches for uncertainty evaluation: calibration
analysis.

Calibration metrics compare the probabilities returned by an ML classifier with observed
proportions, which requires additional labelled data that has not been used to train the ML
classifier in the first place. This comparison is typically carried out by grouping together pre-
dictions with similar prediction probabilities; see [53] for a review of state-of-the-art methods.

We also refer the reader to [43] for an overview of uncertainty evaluation toolboxes that have
been developed.

3 ADDITIONAL TRUSTWORTHINESS CHARACTERISTICS

In this section, we turn to some additional trustworthiness characteristics for which the re-
quirements depend upon the application context. This includes evaluating how the model
would fare if the environment is (slightly) changed, which is a realistic scenario in a real-world
setting. Other related issues include assessing the model’s out-of-distribution capabilities,
which refers to whether the model can detect data examples that do not belong to the same
environment that it has been trained on. As mentioned earlier, the wide range of problems
to which Al systems are applied means that there is sometimes a need to ensure that the
automated predictions produced by such systems are not biased against certain groups of
people. Furthermore, any automated decision-making systems producing such predictions
should be capable of explaining their reasoning, since providing ‘black box’-like predictions
solely under the claim that they are accurate does not suffice, particularly in certain sensitive
applications of Al, for example medical diagnosis and self-driving cars.

We next elaborate further on some important trustworthiness characteristics of Al systems.

3.1 ADAPTABILITY

Adaptability of Al systems refers to a system’s ability to adjust its behaviour as a response to
new data, or to changes in the modelling approach [23]. A system that is more adaptable is
one that can maintain or improve its performance even when the underlying data distribution
is shifted or when the modelling approach is varied (within reasonable limits). Evaluating
the capability of Al systems to adapt is crucial, particularly for models deployed in real-world
applications where the data distributions keep evolving over time. Consider the previously-
mentioned MRI scenario and suppose that all the originally available MRI scans belonged
to people from a particular region of the world. It might be the case that the model needs
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some adaptation or tuning prior to applying it to people from a different part of the world who
possibly possess rather different neurophysiological characteristics.

In order to address the aforementioned variations, the corresponding Al system should
adopt a mechanism that allows it to continuously update itself. We next shed some light on
some common techniques and algorithms that enable different forms of continuous adapta-
tion:

» Active learning rates: The learning rate in deep models is a hyperparameter that
controls the extent to which the model weights are updated during each iteration of
the training procedure. A high learning rate value typically means the weights are
updated more aggressively, potentially leading to faster convergence but also at the
risk of continuously oscillating around the optimal solution without having the ability
to ultimately capture it. On the contrary, lower values of the learning rate lead to a
slower, yet possibly more stable, convergence. Finding the right balance is crucial in
order for the learning process to be effective. The learning rate can be learnt as a
hyperparameter, prior to the beginning of the training procedure. However, techniques
have also been developed for adjusting the learning rate in an adaptive way [29, 50],
depending on the data. This approach can provide some level of adaptation, especially
when changing an already running algorithm, or when developing more sophisticated
adaptation modules is not feasible.

» Transfer Learning: In Al and ML, transfer learning is a paradigm that reuses knowl-
edge gained from one task to improve performance on another task that is related,
yet not identical [57, 61]. Transfer learning typically involves first training a model on
a task, and then rather than training another model from scratch on another (related)
task, it then adapts the already existing model such that it becomes a fit for the latter
task. This approach can lead to significant reductions in computational run-time, re-
sources needed for training, as well as the amount of training data (since there is less
data now needed to train the related task(s)).

* Online Learning: Online learning can also be referred to as incremental learning [28].
It is a machine learning paradigm where a model is continuously updated as new data
arrives. Unlike traditional forms of learning where the training procedure is performed
at once (or in batches) on the available training data, online learning allows the model
to adapt to variations within the data distribution without having to retrain the model
from scratch by processing the upcoming data at its disposal as soon as further data
become available.

An example of a scenario where an online learning approach is a particularly good fit is
when encountering streaming data (e.g. sensor data). Other examples of applications
of online learning include weather forecasting, where models are continuously updated
with real-time data to improve predictions, and reinforcement learning, where agents
are trained to interact with dynamic environments in such a way that optimal actions
can be learnt.
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3.1.1 Evaluating Adaptability

Evaluating the adaptability of Al systems refers to assessing their ability to adjust to chang-
ing conditions in the modelling approach or in the data distribution. This can be done by
means of one of the following techniques:

+ Comparing the model performance on more than one dataset: This can be done
by training the model on one dataset, and then testing its performance on one or more
datasets belonging to a different distribution or possessing different characteristics.
Care should be taken to ensure that there is some form of similarity between the
datasets, otherwise there is no feasible opportunity for adaptation. In the case where
the model is capable of achieving nearly the same levels of accuracy and performance
across these diverse datasets, then this is a model that can adapt. Otherwise, i.e. if
the performance degrades significantly, then the adaptability of the respective model
is far from optimal.

+ Observing model performance under different learning conditions: Learning con-
ditions could refer to either the training data or the modelling approach. It is not always
possible to examine how a model would react to changes in the learning conditions.
However, if this is possible, it is a useful way of checking its adaptability. For example,
evaluating the impact of changing the distribution of the training data on the perfor-
mance of the model can provide further insights into the regions of the input space in
which the model struggles to learn the most, as well as its overall adaptability.

Adapting Al systems is not always possible. It can ultimately be infeasible to adapt an Al
system that is already effective and performing optimally. In such cases, what matters most
is to be aware of the limitations of the respective model. This awareness can provide the
system owners and users with other measures that can mitigate the impact of such rigidity.
For instance, the model can be disabled or rendered ineffective in cases where rigidity is
expected to be harmful, and can then operate normally otherwise.

3.2 BIAS QUANTIFICATION

Bias is a critical challenge in Al testing. It arises from imbalanced datasets, inappropriate
training processes, or biased-inducing algorithms. Bias can lead to unfair or discriminatory
decisions, especially in high-stakes applications such as hiring, lending, or law enforcement.
Concerns about underlying bias and unfairness often occur in the context of automated
decision-making. In this setting [6, 62], fairness means discriminating against a particular
group of people due to sensitive group characteristics such as gender or race. Concerns
about unfairness are of paramount importance in applications like predictive policing [13],
recidivism prediction [17] and credit scoring [32].

Given the scope of this report, we focus especially on algorithmic bias, which occurs when
the algorithm and the respective model induces bias in data processing and decision mak-

ing.

Bias should first be detected and evaluated. Some statistical metrics have been introduced
in the literature:

 Disparate impact: This metric is centred around the idea that a model can negatively
impact a particular group of people (e.g. a particular gender or race) much more than
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other groups [54]. It therefore measures the negative impact of the model on each
group and compares them to one another. This is the most commonly used metric to
evaluate bias in ML and Al.

+ Demographic parity: Suppose that there is a model which automates the admission
decisions for a certain school. A positive outcome refers to the person being admitted,
whereas a negative outcome refers to rejection. Demographic parity measures wether
the same approval rate for a particular sensitive attribute (e.g. male and female appli-
cants). According to demographic parity, a positive outcome should be produced at
equal rates to for each gender [30].

3.3 EXPLAINABILITY

Explainable Al (XAl) has become a necessity in many Al technologies, ensuring that stake-
holders understand how decisions are made. Public trust in Al systems and the way they
are used also heavily relies upon the ability of Al models to explain their decisions. In order
for Al to be effectively deployed for sensitive applications in a secure and ethical manner, it
is imperative for the automated decision-making systems to provide a level of explanation
for each and every sensitive decision taken therein. Two key aspects of explainability are
transparency and interpretability. Transparency involves documenting the system’s inner
workings, while interpretability focuses on making the model understandable to its users.

Explaining the decisions made by Al systems includes understanding how, when, and why
the algorithm is applied, the underlying data driving its decision-making processes, and the
methods employed for data collection, processing, and interpreting results. Examples of
explaining the predictions obtained by ML models used for MRI diagnosis can be found in
[5, 63]. These techniques base their explanations on providing saliency maps where the
voxels which are the most salient for the respective prediction decision are highlighted.

3.3.1 Adapting Explainability to be Fit for Purpose

Explainability is crucial for bridging the gap between ML models and human consumers,
and in addressing cognitive biases. Explanation methods also need to adapt to the diverse
needs of consumers. This includes varying the explanation according to its receiver, whether
this is the affected user, decision maker, or regulator. For example, an explanation of a med-
ical diagnosis decision which is directed at a clinician could include some minimal level of
statistical reasoning since it can be assumed that the clinician possesses some (moderate)
level of knowledge about statistics. On the other hand, an explanation of the same decision
directed at the patient cannot be based on the same assumption [46], and must therefore
be limited to concepts which are easy to understand by the public.

It is important to remember that every explanation of an ML system aims to serve a beneficial
purpose, even though what constitutes "beneficial” can vary. Different benefiting organisa-
tions, whether governmental, private, or social, have their own objectives behind adopting
a given ML system. The purpose of the explanation should be indicated accordingly. As
such, explanations are context-sensitive since every explanation is aiming to answer a set
of questions, and such questions depend on the context. The context-sensitive nature of
explainability renders it difficult to generally recommend solely one explainability approach
that should be ideal to deploy under all circumstances.
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3.3.2 Evaluating Explainability

Evaluating explainability refers to assessing how well the predictions of an ML model can be
understood and interpreted by humans. On a high level, as noted earlier, explainability is an
extremely human-oriented concept. In addition, it has been introduced into the ML literature
rather recently. Given these two reasons, there are no universally agreed-upon quantitative
metrics of explainability in the ML literature. As such, the bottom line, as far as its evaluation
is concerned, is to somehow assess the level of the satisfaction of the targeted human (i.e.
the human receiving the explanation) with the provided explanation [20].

The process of evaluating explanations should aim at generically unifying such a level of
satisfaction in a consistent manner by basing it on the level of complexity of the provided
explanation, with simpler explanations being preferred. This is based on the reasoning that
a good explanation should be concise, more focussed, and easier to understand. For exam-
ple, an explanation of image classification prediction should be as compact as possible, i.e.
containing a small number of pixels.

3.4 |IMPORTANCE OF SYNTHETIC DATA IN TAILORING CERTAIN SCENARIOS FOR
TESTING PURPOSES

Generative models [25] first learn the underlying structure of a real training data set, then
use that knowledge to generate synthetic data with the same characteristics. Generative
models often adopt a probabilistic approach where the probability distribution of the data is
learnt such that data examples that are plausibly similar to the real data can be synthetically
generated. Note that the synthetic data will only ever generate examples using the data
structure and probability distribution identified during training.

Using generative modelling can enrich an existing data set with new synthetic examples
which can (together with the existing real data) better cover the spectrum of the data space.
The improved coverage of the spectrum of the data space can in turn lead to better perfor-
mance over downstream tasks such as testing the trustworthiness of the underlying model.
One of the principal advantages of the generative modelling approach is the ability to syn-
thetically create controlled scenarios that do not necessarily have to be satisfied within the
real data (particularly with medium-to-small amounts of real data). Such scenarios can then
play a pivotal role in gaining further insights about evaluating the trustworthiness of the
underlying model.

In addition, synthetically generated outputs can be useful for the automation of testing. That
is, instead of manually creating a number of test cases on which models are tested, large
amounts of synthetic data can be generated and then passed to the models. Furthermore,
being able to generate large volumes of data is useful for training models such as classi-
fiers. In particular, if there is a class-imbalance problem, or simply a small amount of data,
being able to generate additional data stands to ameliorate some of the associated troubles.
Appendix A describes an example of this process in more detail.

4 THIRD-PARTY TESTING
Different sectors and industries are developing Al capabilities at varying rates. For devel-

opers of Al and ML systems, seeking external validation of the key trustworthiness char-
acteristics of their technologies can be highly beneficial. This is often necessary to meet
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safety or regulatory requirements, or to access expert advice not available in-house. The
sectors most likely to engage in third-party testing tend to be those with stringent regulation
due to their safety-critical nature and higher expectations for data integrity and decision-
making transparency. Industries such as healthcare, security, pharmaceutical manufac-
turing, aerospace, and finance, as well as emerging areas such as autonomous vehicles,
biologics, and renewable energy, are examples where quality, traceability, and trust are es-
sential. In addition, small and medium-sized enterprises (SMEs) and manufacturers that
are newly adopting Al or digital technologies may also require external validation to build
confidence in autonomous decision-making systems.

Third-party testing can offer value throughout the development and deployment of Al/ML
systems. One of the most significant advantages is the independence and impartiality
that third parties bring. Internal evaluations, while useful, may be subject to organisational
bias or internal pressures. Independent evaluators, with no vested interest in the outcome,
can deliver credible and objective assessments, which foster trust among stakeholders and
strengthen the legitimacy of results. This level of impartiality is especially valuable in sec-
tors where transparency and accountability are critical. In many regulated industries, third-
party testing is not only advantageous but required for certification, accreditation, or legal
compliance. These assessments offer formal evidence that an organisation is meeting the
relevant standards, legal requirements, and sector-specific expectations. This can reduce
the risk of legal liability and enable smoother interactions with regulatory authorities. Third-
party experts often bring specialised knowledge that may not be available internally. Their
feedback can highlight overlooked risks, technical limitations, or areas of inefficiency, and
these insights can inform improvements in model robustness, data quality, interpretability,
and governance.

While third-party testing offers clear advantages, it also carries risks that must be man-
aged carefully. Data privacy is a primary concern, as sensitive information may be exposed
through poor handling or security breaches. Ensuring secure testing environments and lim-
iting data access is essential. There are also compliance risks if the third party fails to meet
legal or regulatory requirements, which can lead to liability for the organisation. These risks
can be mitigated through due diligence, strong data governance, and regular oversight of
third-party partners.

In conclusion, third-party testing plays a vital role in ensuring trustworthy, safe, and reliable
Al systems. When managed responsibly, it not only supports compliance and continuous
improvement but also builds competitive strength and reinforces confidence across a broad
spectrum of stakeholders.

5 CONCLUSION

We have discussed several trustworthiness characteristics important in the evaluation of Al
systems, particularly those that are to be adopted in sensitive, societal applications. As-
sessing such systems is a necessity for the following reasons: (i) the assumption that such
systems are usually powerful and can therefore invoke actions with wide-reaching impact,
and (ii) the sensitivity of the corresponding high-stakes application.

We have also touched on fundamental characteristics that should be satisfied in nearly ev-
ery Al system, such as evaluating the validity of the input data (on which the systems base
their learning process). We have also shed light on characteristics which should be particu-

Page 15 of 22



NPL Report MS 62

larly inspected in Al applications with a sensitive nature such as healthcare and self-driving
cars. Such characteristics include bias, explainability, uncertainty quantification and the abil-
ity of the respective system to adapt to variations and/or ongoing changes in the learning
environment. Some of the latter characteristics have rather recently been introduced to
the literature, and are therefore less established than the performance-based characteris-
tics. For example, unlike accuracy and performance, which can be evaluated via universal,
well-defined, and agreed-upon quantitative metrics, explainability is a notion which strongly
depends on the receiving end of the process. This includes the human using and/or owning
the system, the context of the problem, and the main reasons why an automated solution to
such a problem is adopted in the first place. Finally we have also discussed how synthetic
data generation can be utilised to evaluate some characteristics related to interactions be-
tween attributes of the data, and the potential impact of such interactions on trustworthiness.

Our report complements and extends standards and guidance documents on testing and
evaluation of Al systems. We provide detailed guidance which elaborates on standards
documents such as [1] and [2], while at the same time widening the scope of trustworthiness
characteristics in comparison with other more detailed guidance documents such as [9], [45]
and [16].

In addition to acknowledging the importance of the standard requirements for ML models
such as accuracy and being able to generalise to unseen data, we recommend dedicating
further attention to domain-specific requirements. For example, the designer of an ML model
that is expected to be eventually used in rather different environments to the one it has been
developed in should ensure that the model possesses adaptation capabilities such that it
can adaptively function within the new environments. As another example, an ML model
that is to be used in automating decisions of admitting students to a particular school should
be rigorously checked to ensure that the corresponding admission decisions are fair and
are not biased towards a particular race or gender. Focussing on mitigating domain-specific
risks is an important factor for establishing trustworthy ML models.

In order to document the results of these assessments in a standardised way, we recom-
mend the adoption of a structured format which begins with specifying the overall purpose of
the system and of the evaluation. This should be accompanied by defining the scope as well
as the functionalities that are being evaluated. Afterwards, the results of the quantitative and
qualitative metrics should also be provided. Finally, general conclusions and recommenda-
tions of the main flaws that the system should potentially address in the near future should
also be highlighted.
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A AN EXAMPLE OF SYNTHETICALLY GENERATED RESULTS

In the following, we provide an example of a scenario where the generated data can help
us understand the nature of a potential bias issue within the real data. The dataset we are
working on here is a customer churn dataset. This is a dataset which addresses the banking
industry issue of customer retention. More precisely, it aims to predict which customers
persist in using the services of a particular bank, and which customers depart from using
the service and move on to another bank [40]. This is a crucial issue for banks since it
affects revenue, reputation, etc. Hence, being able to predict churn efficiently can help the
respective bank develop strategies which are particularly tailored towards those who are
more likely to discontinue using the bank services in the near future such that the likelihood
they would remain can increase.

This is a binary classification problem where the label referred to as “Exited” can either
have a value of 1 (denoting a customer who is leaving) or 0 (denoting a customer who
remains). The data contains several input features depicting information about the current
customers of the bank [40]. Some of these features are uncorrelated with the churn label like
the customer ID and the customer’s surname. On the other hand, several features have a
clearly defined impact on the churn label. Examples include the credit score variable where
a customer with a higher credit score is less likely to leave the bank, the tenure variable
where customers who have been more loyal (i.e. have been using the bank services for
a larger number of years) are less likely to leave the bank. Other influential indicators of
the churn label include the balance variable (the higher the balance the less likely it is that
the respective customer would leave), the credit card variable (customers with a credit card
are less likely to leave), estimated salary (higher salaries clearly indicate less likelihood of
leaving), and whether or not the customer is an active member (active members are less
likely to eventually leave). There is however a need to further explore the impact of a few
other features, namely the customer’s gender, on the churn label.

In the churn dataset, some correlation was noticed between the gender attribute and the
churn label, where female customers are more often predicted to leave the bank service
[40]. More precisely, out of those who end up leaving the service, 44% are men, whereas
56% are women. On the other hand, out of those who remain with the bank service, 57%
are men, and 43% are women. In order to test whether this imbalance is something that
can be straightforwardly fixed, or else whether there is some correlation that, at least as far
as this dataset is concerned, exists between the attribute and the label, we have adopted a
generative modelling approach to generate synthetic data.

In Table 1, we display examples of the results of synthetic data generated based on a con-
ditional generative adversarial network [60]. This is a generative model that generates data
conditioned on specific attribute values. We have generated data conditioned on both val-
ues of the churn label, as well as conditioned on several other values of other attributes.
The results have confirmed a similar trend regarding the correlation between the gender
attribute and the churn label, where women are more likely to leave the bank service than
men. Similar to the ratios noted above for the real data, for the synthetic data: Out of
those who end up leaving the service, 43% are men, whereas 57% are women, and out of
those who remain with the bank service, 56% are men, and 44% are women. As such, this
demonstrates that this is not an issue where imbalance can be straightforwardly fixed. The
correlation between both attributes would either require collecting more real data (possibly
over other banks and/or different periods of time) to further check this imbalance, or else a
more dedicated analysis to understand the reasons behind this correlation.
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Table 1: A sample displaying records of the churn data that we have synthetically generated based
on conditional generative adversarial networks. Out of those who end up leaving the service, 43%
are men, whereas 57% are women, and out of those who remain with the bank service, 56% are
men, and 44% are women. This demonstrates a similar pattern to the real data where there is a a
correlation between the gender and label attributes.

CreditScore  Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited

654 Germany Female 44 9 146450.9 3 1 1 141247.04 1
799 France  Female 33 9 120390.8 1 1 0 153445.09 1
735 Spain Female 38 8 13386.72 2 1 0 88385.41 1
741 Spain Male 38 2 133491.9 1 1 0 41344.2 1
782 France Male 34 5 0 2 1 1 199992.48 0
774 France Male 38 4 1740.7 1 1 0 25910.98 0
657 Spain Male 42 10 0 2 1 0 124481.64 0
701 Spain  Female 41 6 159614.2 1 0 1 11.58 0
663 France  Female 39 8 2821.45 1 0 1 11.58 0
685 Germany Female 43 2 122090 1 1 0 82470.2 1
658 Germany Female 47 5  83687.52 2 0 1 13477.65 1
846 France Male 35 9 0 1 0 0 88351.31 0
785 France Male 40 9 765.35 2 1 0 11.58 0
768 France Male 33 4 0 2 1 0 85740.6 0
746 France Male 45 4 0 2 0 0 163270.21 0
827 France Male 54 9 57289.76 1 0 1 127520.8 0
691 France Male 26 4 0 2 1 1 75175.61 0
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