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ABSTRACT

The PI3K-mTOR-AKT pathway regulates tumour proliferation,
gene expression and metabolism, but pathway inhibition
induces heterogeneous feedback reactivation, limiting anti-tumour
responses. Measuring heterogeneity of pathway inhibition in tissues
using protein biomarker phosphorylation or location is challenging.
An integrated multi-modal imaging workflow was developed to
assess the heterogeneity of AZD2014 (mTORC1/2 inhibitor)
response in a PTEN-null renal cancer model. Spatial responses
of metabolite biomarkers were analysed by mass spectrometry
imaging (MSI). Control and treated tumours were classified
according to metabolite-defined regions enriched in control versus
AZD2014-treated tumours, respectively. Noticeably, AZD2014-
treated tumours retained regions similar to regions dominant in
untreated tumours. Imaging mass cytometry analysis of protein
biomarkers in ‘control-like’ regions following AZD2014 treatment
showed reduced phospho-S6, indicating suppression, but retained
high expression of the glucose transporter GLUT1. Increasing
PIBK—AKT inhibition by combining with AZD8186 (PI3Kp inhibitor)
further decreased the control-like metabolic signature, showing
PI3K-dependent resistance. This demonstrates that MSI-based
workflows yield novel insights into the pharmacodynamic effects
of mTORC1/2 inhibition in tumours, which classical biomarkers
do not resolve. Coupling these workflows with spatial-omics
approaches can deliver greater insights into heterogeneity of
treatment response.
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INTRODUCTION

In all complex diseases, understanding phenotypic and functional
heterogeneity at a molecular and cellular level is essential to guide
treatment design, interpret response and resistance, and align
preclinical model data to human disease segments.

The phosphoinositide 3-kinase (PI3K) pathway is among one
of the most mutated pathways in cancer, with many molecules
targeting different components of the pathway, including PI3Ka,
PI3Kp, PI3K3, AKT, mTORC1 and mTORC2 (Martini et al., 2014;
Janku et al., 2018; Glaviano et al., 2023). Therapeutics targeting
different nodes on the pathway have been developed and tested in
clinical trials for solid tumour and haematological diseases (Janku
et al, 2018). Regulation of PI3K-mTOR-AKT signalling is
complex. The lipid kinases PI3Ko, PI3KP and PI3K3 drive
tumour cell growth in different contexts (Fruman et al., 2017).
The PIK3CA gene encoding PI3K o is commonly mutated (Samuels
et al., 2004), rendering tumours more dependent on PI3Ka
signalling (Liu et al., 2011; André et al., 2019), whereas loss of
the tumour suppressor PTEN confers PI3Kf dependency (Jia et al.,
2008; Wee et al., 2008). In addition to inhibiting PI3Ko and PI3Kj,
the pathway can be blocked by inhibiting mTORCI using
rapamycin and its derivatives, which inhibit mTORCI1 function in
a kinase-independent manner (Boulay et al., 2004; Hurvitz et al.,
2015); mTORC2 function using the mTORC1/2 kinase inhibitor
AZD2014 (vistusertib) (Guichard et al., 2015); and AKT using
kinase inhibitors ipatasertib and capivasertib (Davies et al., 2012;
Lin et al,, 2013). Each kinase controls different mechanisms:
mTORCI1 controls protein translation and amino acid signalling
(Liu and Sabatini, 2020); mTORC2 controls activation of AKT
(Manning and Toker, 2017); and AKT influences gene expression,
cell survival, metabolism and proliferation (Fruman et al., 2017).

Investigating modulation of the PI3K-mTOR-AKT pathway in
tumour tissue and consequences following treatment has been a
major challenge. Insights into heterogeneity of response to
therapeutics is critical as the pathway is subject to feedback
reactivation and crosstalk through multiple mechanisms. PI3Ko
inhibition leads to reactivation of signalling, or resistance through
PI3Kp activation (Costa et al., 2015; Juric et al., 2015), while PI3Kf3
inhibition can result in activation of PI3Ka (Schwartz et al., 2015).
Crosstalk or reactivation can be mediated by Erb family receptors,
IGFR (also known as IGFIR), IR (also known as INSR), and
activation of PI3K or ERK signalling (Chandarlapaty et al., 2011),
as well as modulation of PTEN expression (Juric et al., 2015).
Moreover, inhibiting AKT or mTORC2 can upregulate mTORCI1
signalling, limiting potential efficacy (Dunn et al., 2022).

Mechanisms relating the PI3K-mTOR-AKT to pathway inhibitor
response and resistance have been described in vitro. Therefore,
validating these by mapping the heterogeneity of drug treatment effects
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in tumour tissue over time, from both preclinical in vivo or clinical
samples, would improve understanding of potential therapeutic
response. Currently, specific phospho (p)-biomarkers such as pAKT,
pS6, pPRAS40, pNDRG1 and p4EBPI, nuclear translocation of the
transcription factor FOXO, or fluorodeoxyglucose uptake by positron
emission tomography imaging (Shi et al., 2022) inform on pathway
activity. Although these biomarkers are useful, they cannot resolve
more subtle spatial or heterogeneous treatment responses.

To address this challenge, a multi-omics workflow using mass
spectrometry imaging (MSI) coupled with multiplex imaging mass
cytometry (IMC) imaging was employed. This approach exploits MSI-
generated insights using metabolite biomarkers and regional changes in
metabolic function to visualise tissue heterogeneity and changes
following drug treatment. The metabolite-based biomarkers are used in
a ‘biology-independent mode’ to provide dense comparative spatial
information with which to segment regions of tissues at different levels
of resolution. The MSI signatures are overlaid with traditional antibody-
based regional multi-biomarker analysis using IMC. This approach has
been enabled as a result of a developments in MSI methodologies that
can use spatial metabolite signatures to gain insights into metabolic
function in tissues, and as a secondary output functional segmentation
of tissues using metabolic signatures (Najumudeen et al., 2021;
Kreuzaler et al., 2023; Vande Voorde et al., 2023). These advances are
underpinned by methods that allow high-quality sample preparation
and rapid analysis alongside data integration tools to merge different
spatial omics datasets (Dannhorn et al., 2020; Murta et al., 2021; Race
et al., 2021; Strittmatter et al., 2022a,b). This workflow was used to
study the heterogeneity of response to the mTORC1/mTORC2
kinase inhibitor AZD2014 (Guichard et al., 2015) in a metabolic
biomarker-agnostic way, revealing novel insights into the tumour
response following treatment. This multi-omics workflow has the
potential to provide new insights when applied to any therapeutic
intervention in complex tumour tissues.

RESULTS

AZD2014 reduces PI3K-AKT-mTOR pathway biomarkers in
PTEN-null 786-0 renal tumour xenografts

PI3K—mTOR-AKT pathway inhibition is commonly assessed by
measuring changes in phosphorylation of pathway biomarkers such as
S6, PRAS40, NDRGI1 and AKT; however, insights derived from
these biomarkers are limited because it is not clear what impact the
biomarker modulation observed is having on other processes such as
protein expression, gene transcription or metabolism (Guichard et al.,
2015; Saxton and Sabatini, 2017). Moreover, spatial context is lost
with analysis of biomarker modulation in tumour lysates. To assess
heterogeneity of response to AZD2014 in preclinical tumour tissue,
independent of traditional protein biomarkers, MSI was used. This
technology platform detects endogenous metabolites and small-
molecule therapeutics directly from the surface of tissue sections to
produce spatially resolved signatures that can subsequently be used to
segment tissues (Sugiura and Setou, 2010; Dexter et al., 2019;
Sushentsev et al., 2023).

Treating tumour-bearing animals with the mTORCI1/2 inhibitor
AZD2014 (vistusertib) reduces growth of the PTEN-null renal tumour
xenograft 786-0 (Zheng et al., 2015; Lynch et al., 2018). Lysates of
tumours from each independent experiment showed consistent
reduction of the PI3K-mTOR-AKT pathway biomarkers pAKT,
pS6 and pNDRGI at 2 and 6h after treatment with AZD2014
(Fig. 1A). For acquisition of metabolic biomarker responses
using MSI, representative tumours from three independent in vivo
experiments were analysed (Figs S1 and S2). Omics platforms such as
MSI can be subject to some run-to-run variability. Therefore, to

account for this, samples from Experiment-1, -2 and -3 were analysed
at different times in batches. MSI analysis and mapping was performed
on 2 and 6 h AZD2014-treated and control tumours. AZD2014 was
detected in all treated tumours (Fig. 1B), and the distribution of drug
was relatively uniform across the tumours (Fig. 1C).

MSI analysis reveals AZD2014 treatment-associated
changes in metabolite biomarkers

Metabolite changes following AZD2014 treatment were determined
using both matrix-assisted laser desorption—ionisation (MALDI)
and desorption electrospray ionisation (DESI) MSI as these two
ionisation methods detect some of the same and some
complementary metabolites. Differential detection of metabolites
can be achieved depending on the mass spectrometry technique and
polarity used. Using both MALDI and DESI in parallel enables
greatest coverage of different types of metabolites. For example,
nucleotides can be detected by MALDI, and lipids such as carnitine
can be detected by DESI. The platform used and the polarity are
indicated in each figure. The log, fold change in metabolites in the
AZD2014-treated groups relative to those in vehicle was compared
(Fig. 2). The normalised combined data from each independent MSI
analysis are shown in Fig. S3. To identify molecules modulated by
AZD2014, two-sided r-tests were performed between the average
fold changes per treated and control tissue (Fig. 2A,B). Across the
tissue section, a large number of metabolites changed, which all
contributed to the segmentation analysis. In particular, AZD2014
treatment significantly increased carnitine derivatives and glyceride
derivatives, and reduced some nucleotides, including adenosine
triphosphate (ATP) and adenosine diphosphate (ADP), but did not
significantly change adenosine monophosphate (AMP). The
distribution of these metabolites was heterogeneous, which is
an insight that bulk liquid chromatography—mass spectrometry
(LC/MS) would not deliver. Indeed, in treated tumours, some
regions retained high levels of metabolites, such as ATP, suggesting
less response to AZD2014 in those areas. These metabolites
may therefore be pharmacodynamically responsive metabolites and
could act as biomarkers of the effect of treatment.

Segmentation using composite metabolite profiles
differentiates tumour response

To explore whether metabolite signatures are informative regarding
the heterogeneity of AZD2014, response data were analysed by
dimensionality reduction using neural network t-distributed
stochastic neighbour embedding (t-SNE) (Dexter et al., 2020
preprint) followed by k-means clustering analysis (k=2) applied to
the data from each experiment individually (Fig. 3A). AZD2014-
treated and untreated tumours showed two dominant classes of
metabolite-defined clusters (Fig. 3) that were associated with
specific metabolite signatures exemplified by molecules (all
specific molecules described have been tentatively assigned by
mass only) ATP, ADP and AMP (Figs S3 and S4). It is important to
note that these were not the only metabolites to change within the
total tissue analysis. Although there were some changes in absolute
intensity of the metabolites detected between analytical runs, e.g.
ATP, ADP, AMP and uridine triphosphate (UTP) (Fig. 3B)
metabolites were detected with a similar relative abundance
profile across the analytical runs, i.e. intra-run trends were similar
across all runs, allowing valid run-to-run tissue segmentation. Fig. 3
shows representative plots of selected metabolites that changed on
treatment and between regions, as well as examples of metabolites
that did not change, to exemplify the method output and analytical
workflow.
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The cyan cluster (Region A) was dominant in control tumours,
and the lilac cluster (Region B) was enriched in AZD2014-treated
tumours (Fig. 3A). Therefore, Region B appears to define
metabolically differentiated tumour regions modulated by
AZD2014 treatment. ATP, and to a lesser extent ADP and AMP,
were associated with these residual regions in AZD2014-treated
tumours that resembled control tumours and might therefore
represent metabolic resistance or lack of target modulation.

Increasing PI3K pathway inhibition further reduces residual
Region A in treated tumours

In PTEN-null tumours, signalling through the PI3K isoform can
drive PI3K-AKT activation (Wee et al., 2008; Hancox et al., 2015;

Fig. 1. Effect of AZD2014 on mTOR signalling and its

biodistribution in tumours. (A) Quantification of western blot
analysis for biomarkers of PI3K and mTOR pathway activity in
786-0 tumours treated with AZD2014. Percentage reduction in

vehiele 2n phospho-signal for pAKT, pS6 and pNDRGH1 relative to that
vehicle &h in time-matched controls is shown for three independent
AZD20142h  experiments at the time points indicated, 2 and 6 h following
Azp2014 6 AZD2014 treatment. **P<0.01, ***P<0.001 (two-way ANOVA).

(B) Boxplot of the log2 fold change (FC) compared to vehicle
in intensity of AZD2014 [M+H]* (463.2452 m/z) from the
desorption electrospray ionisation (DESI) mass spectrometry
imaging (MSI) data. Boxplots show the log, FC for the
selected metabolite relative to the average of all vehicle
intensities within the same experiment, with the red line
representing the median, the box representing the 25% and
75% ranges, and the whiskers indicating the 1% and 99%
range. Each individual tissue is then additionally represented
by the coloured circles (Experiment-1), squares (Experiment-2)
and triangles (Experiment-3). ***P<0.001 (two-sided t-test).
(C) Single-ion images of AZD2014 [M+H]" (463.2452 m/z) of
selected treated and untreated tissues from the three different
experiments, at the different timepoints (2 and 6 h post
dosing) (left), alongside the corresponding Haematoxylin and
Eosin (H&E) images for these tissues (right). Scale bars:
2000 pm. The tumour images shown in C are also used to
exemplify representative analysis in Figs 2-5 and Figs S1-S5
to allow consistent visualisation of the analysis.

Schwartz et al., 2015; Maynard et al., 2016; Lynch et al., 2018).
Combining PI3Ko (BYL719) and PI3KB (AZD8186) inhibitors
(Schwartz et al., 2015), or AZD2014 and the PI3Kf inhibitor
AZD8186 (Hancox et al., 2015; Lynch et al., 2018), can increase anti-
tumour effects through greater pathway inhibition. To test whether the
residual ‘resistant’ regions were PI3K-mTOR-AKT pathway
dependent, the segmentation was re-run using a larger dataset that
included additional tumours treated with AZD8186 and the
combination of both AZD2014 and AZD8186. Again, data were
segmented into two regions. In this larger combined segmentation
analysis, the regions were annotated as Region C (green; higher in
control tumours) and Region D (blue; higher in treated tumours)
(Fig. 4). The segmentation identified similar regions to those identified
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Fig. 2. Effect of AZD2014 treatment on tumour metabolism. (A,B) Single-
ion images (A) and boxplots (B) showing the log, FC relative to vehicle of
selected metabolites detected using matrix-assisted laser desorption—
ionisation (MALDI) and DESI that are significantly different (P<0.05)
between the treated and untreated tissues across the three different
experiments. Boxplots show the log, FC for the selected metabolite relative
to the average of all vehicle intensities within the same experiment, with the
red line representing the median, the box representing the 25% and 75%
ranges, and the whiskers indicating the 1% and 99% range. Each individual
tissue is then additionally represented by the coloured circles (Experiment-
1), squares (Experiment-2) and triangles (Experiment-3). *P<0.05, **P<0.01
and ***P<0.001 (two-sided t-test). The tumour images shown in A are also
used to exemplify representative analysis in Figs 1, 3, 4 and 5 and Figs S1-
S5 to allow consistent visualisation of the analysis. ADP, adenosine
diphosphate; AMP, adenosine monophosphate; ATP, adenosine
triphosphate; MG, monoacylglycerol; UDP, uridine diphosphate.

same metabolites were found to differentiate these regions, such as
high levels of ATP in both the cyan cluster (Region A) and green
cluster (Region C) (Fig. 3B and Fig. 4A), indicating that Region C is
analogous to Region A, and Region B is analogous to Region
D. Importantly, the greatest reduction in cluster size was seen in the
combination-treated group, suggesting that the signatures relate to the
degree of pathway inhibition, discriminating between responding and
non-responding regions of the tumour.

IMC biomarker analysis of differentially expressed proteins
between blue and green clusters

To understand whether there are differences between Regions A/C
and Regions B/D at the signalling or cellular level, IMC was used

(Giesen et al., 2014). A panel of antibody-based biomarkers was
measured to assess differences between the regions and
pharmacodynamic changes within regions following AZD2014
treatment (Fig. 5A-E). For analysis, Region C versus Region D
segmentation was used. Representative regions incorporating both
green Region C and blue Region D from each vehicle- and
AZD2014-treated tumour were analysed using a panel of antibodies
against a range of biomarkers, including the pharmacodynamic
biomarkers pS6 and pAKT (Table S1), as well as additional tumour
cell and tumour microenvironment biomarkers. The integration of
the MSI and IMC datasets into one overlaid image enabled
alignment of metabolite-defined regions to changes in protein
biomarkers. This shows the power of using integrated MSI and
histochemistry-based analyses to guide greater insights into local
regional changes in tissues.

Consistent with the western blot analysis of tumour lysates, in the
regions of interest (ROIs), the levels of pS6 and Ki67 were
reduced in the AZD2014-treated tumours (Fig. 5B). The biomarker
responses were then segmented based on clustering of Regions C
and D (Fig. 5C). In AZD2014-treated samples, pS6 was
reduced equally in both regions, implying equivalent compound-
mediated pathway suppression (Fig. 5C). However, despite
Ki67 within the total ROI being reduced by AZD2014 treatment,
it remained higher within Region A present in treated tumours.
This further suggests that the Region A areas in treated tumours are a
region of resistance in which AZD2014 did not achieve tumour
cell growth arrest despite apparent modulation of pathway
biomarkers.

Fig. 3. Regional differences in the metabolic
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Within the broader biomarker panel, a number of other markers —
such as CD31 (also known as PECAMI1) and collagen 1 — were
different between Regions C and D independent of treatment (Figs S5

and S6). However, notably, in the AZD2014-treated tumours, the
expression of the glucose transporter GLUTI1 (also known as
SLC2A1) remained high in Region A even though there was
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Fig. 4. Regional differences in metabolic response to AZD2014 and
AZD8186 treatment. (A-C) Selected single-ion images (A) outlined with the
unsupervised segmentation (C) and corresponding boxplots (B), showing
the log2 FC relative to vehicle of different metabolites detected using MALDI
that are significantly different (P<0.05) between the singly treated,
combination treated or untreated tissues across the three different
experiments. These boxplots show the log2 FC for the selected metabolite
relative to the average of all vehicle intensities within the same experiment,
with the red line representing the median, the box representing the 25% and
75% ranges, and the whiskers indicating the 1% and 99% range. Each
individual tissue is then additionally represented by the coloured circles
(Experiment-1), squares (Experiment-2) and triangles (Experiment-3).
*P<0.05, **P<0.01 and ***P<0.001 (two-sided t-test). (C) Unsupervised
segmentation of metabolic differences in the treated and untreated tissues
using neural network t-SNE and k-means clustering (left), and the
corresponding boxplot (right) of the percentage of the total tissue that is
Region C (green). *P<0.05 and ***P<0.001 (two-sided t-test). The tumour
images shown in this figure are also used to exemplify representative
analysis in Figs 1, 2, 3 and 5 and Figs S1-S5 to allow consistent
visualisation of the analysis.

generally a reduction following AZD2014 treatment in Region B
(Fig. 5A,D.E). GLUT function, in particular the GLUT isoform
GLUT4 (also known as SLC2A4), can be dynamically controlled by
PI3K-mTOR—AKT signalling. Interestingly, here, GLUT1 expression
was downregulated in regions responding to AZD2014, although
GLUTI is not commonly thought to be regulated by PI3K-AKT
signalling. However, sustained GLUT1 expression was associated
with lack of response to AZD2014, and could be a potential biomarker
informing on levels of functional pathway inhibition and, in addition,
indicate that regions of metabolic resistance involve GLUT1 function.
Collectively, these data demonstrate that segmentation of tumour tissue
using MSI-generated signatures gives different insights into tissue
function following drug treatment, thus allowing discrimination of
tissue phenotypes that classical biomarkers such as pS6 do not have
sufficient power to resolve. As such, this represents a new workflow
that can be applied to preclinical or clinical tissue to generate new
insights into therapeutic response (Fig. 6).

DISCUSSION

We have employed an MSI-guided segmentation workflow as a tool to
investigate the heterogeneity of tumour response (Fig. 6). This
workflow was used to assess the pharmacodynamic impact of the
mTORCI1/2 kinase inhibitor AZD2014 in the PTEN-null 786-0 renal
carcinoma model. We found that specific metabolites — such as the
nucleotides ATP, ADP and AMP — were reduced, and lipid metabolites
— such as carnitine — were increased, following AZD2014 treatment.
Analysis of changes in metabolite biomarkers to segment tumours and
subsequent response to AZD2014 treatment identified residual regions
of potential ‘resistance’ to AZD2014 treatment that mimicked regions
dominant in untreated tumours. The residual metabolic signatures
associated with the resistance regions appeared to be dependent on
PI3K signalling, as they were further reduced with addition of the
PI3KB inhibitor AZDS8186. MSI signature-guided IMC analysis
revealed that classical pharmacodynamic biomarkers of PI3K-mTOR
signalling such as pS6 were reduced in the AZD2014-treated tumours,
including in the residual ‘resistant’ regions. However, broader IMC
analysis revealed that expression of the ubiquitous glucose transporter
GLUT]1 remained high in the residual regions that were metabolically
similar to control tumours, and was not downregulated as seen in other
regions of treated tumours. Hence, coupling MSI segmentation analysis
with classical immunohistochemistry (IHC)-based biomarkers gave
new insights into the response to AZD2014 that could not be identified
using classical biomarker approaches.

To minimise intra- and inter-experiment artefact variability,
samples were taken from three independent experiments that
included AZD2014, AZD8186 and combination treatment.
Analysis of these experiments showed that the methods applied
are robust and can take into account run-to-run variability as well as
study-to-study variability. This is important as independent runs are
subject to variations in detection (intensity and coverage) of
different metabolites. Despite this, segmentation analysis performed
well across the whole sample set. Moreover, re-segmentation of the
data that included additional samples with AZD2014-, AZD8186-
and combination-treated tumours gave a similar result, suggesting
that the approach can produce reproducible outcomes even when
data are acquired in separate analytical runs over time or more
variables are introduced. The data analyses also suggest that the
metabolite profiles are consistent enough to build composite
datasets, which would be important if deploying such approaches
to assess clinical samples or looking across multiple experiments.

It should be noted that all metabolite identifications made using
the approach described in this study are putative, based on the mass
tolerances provided. These correlate with commonly reported
metabolites identified using similar platforms to those used in this
experiment. Fuller validation of metabolite identification would
require incorporation of from-tissue fragmentation and comparison
to analysis of labelled metabolite standards. Imaging of the
identified metabolite would then require incorporation of
homogeneously applied deuterated standard to the sample to
confirm a consistent fragmentation. Data can also be correlated
with bulk tissue homogenates or laser-captured tissue regions and
LC/MS and nuclear magnetic resonance analysis. This is out of the
scope of this study but can be performed for studies if absolute
identification or validation of a metabolite is required.

Although the MSI-defined clusters gave rapid insights into the
potential heterogeneity of response, they do not necessarily give
insight into what drives the differences in response. As the MSI
approach can be non-destructive (DESI-MSI), the segmentation
guided by the MSI identified clear regions of interest that could then
be analysed with specific protein imaging biomarkers. Here, we used
IMC analysis, but other multiplex spatial imaging biomarkers would
be suitable. Indeed, maximal insight is delivered by coupling the MSI
segmentation with more detailed specific regional biomarker
assessment. The coupled analysis indicated that biomarkers such as
pS6 and pAKT, commonly used to assess pathway suppression by
AZD2014, are not as discriminating as previously thought. These
differences were unlikely to be related to drug distribution as
AZD2014 was relatively homogenously distributed through the
tumour, although amounts detected could vary between tumours.
However, further pipeline development could allow full integration of
MALDI and DESI datasets to investigate the detailed correlation
between drug and all metabolites detected. Despite this, visual
alignment of the drug distribution and tissue images did not indicate
consistent specific differential distribution of drug between regions.
The segmentation overlaid with the broad panel of IHC biomarkers
enabled identification of other biomarkers, such as local Ki67 or
sustained GLUT1 expression, which could have value in determining
whether maximal pathway suppression has been achieved. These
findings may challenge some assumptions that feedback reactivation
of the pathway limits efficacy, showing that considering
heterogeneous residual signalling is important. Within the IMC
panel, pS6 was the most robust marker for measuring changes in
pathway activation; changes in pAKT were less profound and did not
reach significance, although there was a modest trend for reduction in
treated tumours. This difference in dynamic range somewhat reflects
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Fig. 5. Imaging mass cytometry
(IMC) reveals regional response to
AZD2014. (A) Images from selected
tissues of the unsupervised
segmentation applied to the MSI data
shown in Fig. 4C overlaid onto the IMC
images. Example images of
biomarkers of AZD2014 response,
including pS6 (green), Ki67 (red) and
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Scatter plots of the intensities of these
markers in the whole region analysed
(B,D), and scatter plots with the data
contained within the two different
metabolic regions separated out as
denoted by the corresponding colours
(C,E). *P<0.05, **P<0.01, ***P<0.001,
***P<0.001 (two-way ANOVA). The
tumours shown in this figure are also
used to exemplify representative
analysis in Figs 1-4 and Figs S1-S5 to
allow consistent visualisation of the
analysis.
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the analysis performed on tumour lysates in which pS6 was also the
most dynamic pathway biomarker. The reason for this is unclear.
Phosphorylation of 4EBP1 (also known as eukaryotic translation
initiation factor 4E-binding protein) was also modulated by treatment,
although this lacked significance owing to variable phosphorylation of
4EBP1 in control tumours.

Using different omics approaches enables assumptions to be
validated or challenged using multiple biomarkers. The PI3K-—
mTOR—-AKT signalling network regulates many aspects of cellular
functions (Martini et al., 2014; Manning and Toker, 2017; Glaviano
et al., 2023), and it is impossible to explore all of these endpoints with

Vehicle

AZD2014

specific antibody-based biomarkers in tissues. In addition to
segmentation, the MSI data have potential to deliver novel insights
that cannot be measured using standard approaches. Modification of
specific metabolites — e.g. ATP, ADP and lipids — were associated with
response to AZD2014 and AZD8186, which demonstrate the PI3K—
AKT dependency of the effects. The association of GLUT1 expression
with the regions showing less response to AZD2014 implies that part of
the metabolic resistance profile results from sustained glucose uptake.
The changes in GLUT1 expression seen here following AZD2014
treatment are intriguing. Although GLUT family members play an
important role in mediating glucose uptake and metabolite exchange, it
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Fig. 6. Schematic of MSI-based analysis workflow for pharmacodynamic biomarker analysis. Blue boxes: drug concentration is commonly measured in
peripheral blood/plasma samples or from homogenised tissue. Biomarkers are commonly assessed by western blotting, enzyme-linked immunosorbent
assay of homogenised tissue or immunohistochemistry (IHC) for protein biomarkers in independent samples. Pink boxes: image-based analysis underpinned
by MSI is enabled by specific sample preparation and processing methodology (Swales et al., 2018; Dannhorn et al., 2020, 2021). Samples are scanned
using MSI platforms in different analytical modes to collect a broad spectrum of metabolite biomarkers and detect drug distribution. This simultaneously
generates a pharmacokinetic drug distribution and pharmacodynamic assessment of multiple metabolites, of which a subset of specific metabolites can
inform on drug action. In addition, the full spectrum of metabolite biomarkers can be used to segment tissue and assess spatial responses to drug treatment
using defined analytical workflows (Dexter et al., 2016, 2017; Murta et al., 2021). This segmentation is used as a cross reference to interpret spatial protein
biomarker data generated by multiplex IHC. Collectively, these data give greater insight into the relevant biomarkers and heterogeneity of response, and
contribute to improved interpretation of drug response. Green box: this multi-omics approach complements classical approaches and can be used to further
filter the most informative biomarkers for specific preclinical or clinical biomarker assays. MAO, mode of action; PK/PD, pharmacokinetic/pharmacodynamic.

is GLUTA4, rather than GLUT], that is more commonly regulated by
PI3K signalling (Ancey et al., 2018). Moreover, GLUT1 expression
is seen where pS6 is reduced, suggesting that PI3BK—AKT signalling
is, to some extent, inhibited in that region. Therefore, although
it is possible that GLUT1 downregulation is directly regulated by
AZD2014 inhibition of PI3K—AKT signalling (Beg et al., 2017), other
mechanisms might be involved, for example an association with
reduction in proliferation or cell cycle progression or, conversely, a
reduction in glucose requirement driving cell stress responses (Ancey
etal., 2018; Shi et al., 2023). Likewise, the sustained expression could
also be associated with PI3K-independent mechanisms such as cell
stress, which result in sustained expression of GLUT1 in a subset of
cells. Further work would be required to investigate this further.

Overall, this coupled approach can be invaluable for agents such
as AZD2014, which inhibits multiple cellular mechanisms and is
influenced by complex signalling networks that regulate the pathway
(Costaetal., 2015; Schwartz et al., 2015; Hopkins et al., 2018, 2020;
Mao et al., 2021). Access to high-throughput approaches that enable
the diversity in therapeutic response to be assessed and then guide
more focused and detailed biomarker assessment have been shown to
be essential. A similar strategy has been successful in delineating
metabolic lipid signatures that correlate with breast tumours
dependent on PI3Ka signalling (Koundouros et al., 2020).

It is important to note that the experiments presented represent a
large number of tissue samples analysed over a 4-year period. One of
the primary reasons for performing these combined analyses was to
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ensure statistical and robust biological significance. Omics approaches
can be subject to significant batch-to-batch variability, but comparison
as a log, fold change analysis relative to the vehicle treatment
gave reproducibility in the outputs of the data analysis. This is vital
if using MSI in larger and longitudinal preclinical or clinical
studies. Any MSI-based spatial metabolomics tissue assessment
has risk of inherent methodological and technical biases, but the
methodology developments used in this workflow minimise
these issues. First, sample preparation variation induced by tissue
handling was minimised using optimised processing protocols (Swales
et al., 2018; Dannhorn et al., 2020) by co-embedding all tissues in
a randomised manner, followed by sectioning and vacuum sealing
of slides and storing at ultra-low temperature (—80°C), enabling
an unbiased MSI analysis and helping to preserve the stability of
most endogenous metabolites (Fala et al., 2021). Combining DESI
and MALDI, coupled with a high-resolution mass analyser,
enables detection of a larger range of metabolite classes and allows
orthogonal validation of mass annotations. Although IMC-based
analysis of tissue can generate broad biomarker analyses, there is the
major caveat of limited tissue area analysed (generally ~2x%2 mm)
owing to throughput and time of analysis. Thus, combining MSI
with IMC is an efficient method to select the most relevant ROI
in the tumour and tissue microenvironment based on specific
features. The approach described here could be expanded to create a
‘spatial metabolomics atlas’ of tumour molecular heterogeneity across
cancer models with different genetic background. The data generated
could be beneficial to better design pharmacodynamics studies
involving different metabolic modulators, such as inhibitors of the
AKT pathway.

In summary, we show a novel approach using MSI-based
segmentation coupled with secondary biomarker analysis that can
give novel insights into the functional heterogeneity of tumours and,
moreover, how this can change in response to therapeutic
intervention. Maximal insight is achieved when the approach is
coupled with other complementary spatial biomarker approaches.

MATERIALS AND METHODS

786-0 tumour growth

786-0 tumours were grown as previously described (Lynch et al., 2018). All
animal experiments were performed according to the regulations of the
Home Office UK. The 786-0 cells (5x10° cells in RPMI serum-free medium
mixed 50:50 with Matrigel™) were implanted into the flank of female SCID
mice (AstraZeneca, Alderley Park, UK) between the ages of 8 and 12 weeks.
Once tumours reached ~200-500 mm?, animals were randomised into
control and treatment groups. Tumour volume was calculated twice weekly
from bilateral caliper measurements using the following formula:

(length x width x width) x ©t/6). (Eqnl)

AZD8186 was generally formulated once weekly as a suspension in 0.5%
hydroxypropyl methylcellulose (HPMC)/0.1% Tween™ 80 and dosed once
or twice daily (0 and 6-8 h). AZD2014 was formulated as a suspension in
0.1% Tween™ 80. For combination dosing, AZD8186 and AZD2014 were
co-formulated in 0.5% HPMC/0.1% Tween™ 80. Growth inhibition from
the start of treatment was assessed by comparison of the geometric mean
change in tumour volume for the control and treated groups. For
pharmacodynamic protein biomarker analysis or MSI, tumours were snap
frozen in liquid nitrogen.

Pharmacodynamic studies

All pharmacodynamic biomarker analysis was performed as outlined in
Lynch et al. (2018). Lysates were generated as follows: lysis buffer
(Invitrogen, FNNOO11), supplemented with phosphatase inhibitors 2 and 3
(Sigma-Aldrich, P5726 and P0044; 1:100), protease inhibitors (Roche,
11836145001; one tablet/50 ml) and DTT (1 mM) were added to each

tumour in a Fastprep tube (MP Biomedicals, Santa Ana, CA, USA). The
tumours were homogenised using a MP Biomedicals Fast Prep-24 machine.
Samples were sonicated and centrifuged, and protein concentration was
determined. All western blots were standardly loaded with equal amounts of
protein. Protein was separated using SDS-PAGE, transferred to membranes
and probed with the following primary antibodies: anti-pAKT S473 (Cell
Signaling Technology, Danvers, MA, USA, 4060; 1:1000), anti-pNDRG1
T346 (Cell Signaling Technology, 5482; 1:1000) and anti-pS6RP S235/236
(Cell Signaling Technology, 4858; 1:1000). Equal transfer and loading was
checked using Ponceau staining of membranes and by detecting vinculin levels
(ab18058, Abcam, Cambridge, UK; 1:5000). Immune complexes were
detected as described (Lynch et al., 2018). Binding was visualised using
SuperSignal West Dura Chemiluminescent Substrate reagent (Pierce Thermo
Scientific). Biomarker signals were quantified using Genetools software. Two-
way ANOVA was used for statistical analyses. Vehicle controls were used for
normalising biomarker signal for the treated samples, and change in phospho-
signal relative to that of controls was represented. As part of the standard assay
procedure, signal in individual samples was not normalised to total target
protein. Raw western blot images are shown in Fig. S7.

MSI analysis

As published previously (Dannhorn et al., 2020; Swales et al., 2018),
tumour pieces were snap frozen and embedded randomised into blocks in a
hydrogel of 7.5% HPMC/2.5% polyvinylpyrrolidone (two samples from
each group in Experiment-1 were embedded in gelatine) before cryo-
sectioning at 10 um thickness with a CM1950 cryostat (Leica, Nussloch,
Germany). Sections were thaw mounted onto Superfrost or conductive
indium tin oxide-coated glass slides and dried using a flow of compressed
air, then vacuum packed in a slide mailer and stored at —80°C (2). For MSI
analysis, slides were thawed to room temperature before being unpacked to
avoid analyte delocalisation through moisture condensation on the chilled
slide surface.

MALDI-MSI analysis was carried out using a RapifleX MALDI-ToF
Tissuetyper instrument (Bruker Daltonik, Bremen, Germany). Slides were
first matrix coated with 10 mg/ml 9-aminoacridine in 80% MeOH applied in
six passes using a TM-sprayer (HTX-Technologies, Chapel Hill, NC, USA)
with the following parameters: temperature, 75°C; flow rate, 0.08 ml/min,
with nitrogen pressure set to 6 psi; velocity, 1200 mm/min; 3 mm track
spacing; nozzle height, 40 mm using criss-cross pattern. Image acquisition
was done in negative mode at a spatial resolution of 50 um, with 400 shots
per pixel and a mass range of 60-1000 m/z.

DESI-MSI was performed on an automated 2D DESI stage (Prosolia,
Indianapolis, IN, USA) equipped with a custom-built sprayer assembly
(Swales et al., 2018) mounted to a Q-Exactive Plus instrument (Thermo
Fisher Scientific, Bremen, Germany). Analysis was performed in positive-
ion mode on one section and negative-ion mode on the sequential section in
full-scan mode between 70 and 1000 m/z with 60 um spatial resolution,
SLens setting of 75, capillary temperature of 320°C, and a mass resolution of
70,000 at 200 my/z in profile ion mode. Automatic gain control was turned
off. Electrospray solvent was methanol/water (95:5 v/v) at a flow rate of
1.5 ul/min, a spray voltage of +4.5 kV and nebulising gas pressure of 6.5 bar
(Nitrogen N4.8, BOC Gases, Woking, UK). Solvent was supplied using
an Ultimate 3000 standalone nanoLC pump (Thermo Scientific Dionex,
Sunnyvale, CA, USA).

The DESI-MSI .raw files were converted into .mzML files using
ProteoWizard msConvert (Adusumilli et al., 2017) (v.3.0.4043),
subsequently compiled to .imzML files [imzML converter (Race et al.,
2012) v.1.3] and uploaded to SCIiLS™ Lab MVS Premium 3D version
2021a (Bruker Daltonics, Bremen, Germany) for analysis. Root mean
square-normalised mean peak intensity was calculated for each tissue.
Further data analysis was performed using SpectralAnalysis (Race et al.,
2016) and custom MATLAB scripts (Version 2019b; MathWorks, Natick,
MA, USA). Data were first pre-processed using interpolation rebinning (bin
width, 0.001 Da), a mean spectrum was created for each experiment, and
peaks were detected using a gradient approach. These peaks were then
tentatively assigned by accurate mass against the Human Metabolome
Database (Wishart et al., 2007) using custom MATLAB scripts (Murta et al.,
2021) using a 300 ppm inclusion window, a mass accuracy below 70 ppm,
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and adducts of [M—H]~ and [M+Cl]~ for MALDI negative, and 10 ppm
inclusion window, a mass accuracy below 10 ppm, and adducts of [M+H]",
[M+Na]* and [M+K]" for DESI positive. Identification and annotation is
tentative by mass only, with large tolerance, and additional experiments have
been conducted in other studies and by other groups to increase confidence in
this annotation (Tucker et al., 2019; Miyamoto et al., 2016; Strittmatter et al.,
2022b). Following this initial processing, a novel workflow was developed to
analyse the combination of data from the three experiments performed over a
long period of time. First, for this integrated analysis, only peaks common to
all three in vivo experiments were selected for subsequent analysis. Each
image was generated by summing the intensities under the peaks detected,
then thresholding to the 95th percentile (calculated across all tissues in a
given experiment). The mean intensity for each ion per tissue was then
calculated and normalised to the average intensity across all of the vehicle
treatments in the corresponding experiment. The log2 fold change of this
normalised intensity was then calculated, molecules were matched between
the different experiments, and boxplots of these matched molecules were
generated for all tissues in all experiments. Statistical significance of the
differences between the different treatments was tested using a two-sided #-
test, and pairs of significant differences were then plotted onto the
corresponding boxplots. Clustering was performed on all data within a
single experiment using k-means clustering (4=2) applied to the results of
dimensionality reduction using neural network t-SNE (Dexter et al., 2020
preprint) on the peak picked data. The clusters were then manually matched
together based on their corresponding upregulation and downregulation of the
same metabolites. Raw data for metabolites detected are provided in Table S2.

IMC preparation and analysis

The slides used for DESI negative mode imaging from Experiment-3 were
then fixed and stained with the panel of antibodies shown in Table S1 for IMC
with the Hyperion system [Standard Biotools (formerly known as Fluidigm),
San Francisco, CA, USA] according to the manufacturer’s guidelines.
To stain slides with labelled antibodies, slides were fixed in 4%
paraformaldehyde, washed and permeabilised for 5 min using 1% casein
solution containing 0.1% Triton X-100, washed. Then, blocking solution was
applied for 30 min, the slides were washed, and an antibody panel (Table S1)
was applied and incubated at 4°C overnight. Slides were washed again, then
DNA Ir-intercalator (Standard Biotools; diluted 1:400 in PBS) was applied for
30 min, before the slides were dipped in deionised water and dried. All
washing steps consisted of 3x5 min in fresh PBS. Unless stated otherwise, all
steps were performed at room temperature.

Images with ROIs of 2x2 mm covering representative regions of A and B
in each tissue were acquired with a laser power of 6 db, frequency of 200 Hz
and pixel size of 1 um. Antibodies from other suppliers were custom
conjugated with labelling kits from Standard Biotools according to the
manufacturer’s protocols. All antibodies were validated in house using
conventional IHC as well as corresponding IMC staining and assessed by a
veterinary pathologist. IMC data were analysed using the Halo HighPlex
v3.02 module (Indica Laboratories, Albuquerque, NM, USA). Cell
segmentation and thresholds were optimised manually. Nuclear
segmentation was performed using the 191Ir DNA intercalator channel
with the following parameters: nuclear contrast threshold, 0.49; minimum
nuclear intensity, 0.09; nuclear segmentation aggressiveness, 0.65; nuclear
size, 20-571 um?; nuclear holes were not filled. Cytoplasm detection was
performed assuming a concentric expansion from the cell nucleus with
maximum cytoplasm radius of 4 um. Maximum cell size was set to 600 um?>.

MSI and IMC data were registered via an affine transform using a
modified version of Biquinho. MSI cluster maps were then transformed to
the IMC space using the fitted affine transform (the inverse to the IMC to
MSI process described in Strittmatter et al., 2022a), enabling each IMC
pixel to be labelled with the MSI cluster (e.g. Region A, B, C or D). This
then enabled the quantification of the intensity, as well as the number of
(positive) cells, for each IMC marker within each MSI cluster.
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