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While there have been many developments in computational probes of both
strongly-correlated molecular systems and machine-learning accelerated
molecular dynamics, there remains a significant gap in capabilities in simu-
lating accurate non-local electronic structure over timescales on which atoms
move. We develop an approach to bridge these fields with a practical inter-
polation scheme for the correlated many-electron state through the space of
atomic configurations, whilst avoiding the exponential complexity of these
underlying electronic states. With a small number of accurate correlated wave
functions as a training set, we demonstrate provable convergence to near-
exact potential energy surfaces for subsequent dynamics with propagation of
a valid many-body wave function and inference of its variational energy whilst
retaining a mean-field computational scaling. This represents a profoundly
different paradigm to the direct interpolation of potential energy surfaces in
established machine-learning approaches. We combine this with modern
electronic structure approaches to systematically resolve molecular dynamics
trajectories and converge thermodynamic quantities with a high-throughput
of several million interpolated wave functions with explicit validation of their
accuracy from only a few numerically exact quantum chemical calculations.
We also highlight the comparison to traditional machine-learned potentials or
dynamics on mean-field surfaces.

The quantum fluctuations of interacting electrons represent the cri-
tical interaction between atoms which underpin all atomic bonding,
dynamics, and reactivity. Computational approaches for systems with
strongly interacting electrons have undergone a number of major
developments in recent decades, as emerging methods enable a
description of correlated electronic structure for ever larger and more
realistic systems with unprecedented accuracy'”. These modern
approaches across both chemical and materials science include those
based on tensor networks*®, stochastic methods’™, selected config-
uration interaction™ and machine-learning-inspired wave function
ansatze'®®, This has allowed for the near-exact solution to the quan-
tum many-electron problem in these systems, providing high-accuracy

insights for a few fixed atomic configurations, but have in general had
little or no impact on our understanding of the physics and chemistry
on the timescales of atomic and molecular motion.

The reasons for this are obvious; while a small number of single-
point calculations with fixed nuclei are possible, the different time-
scales of atomic dynamics and electronic quantum fluctuations mean
that on the order of at least thousands of sequential electronic struc-
ture calculations are required. This is essential to propagate the atoms
in molecular systems to relevant timescales, entailing generally pro-
hibitive computation expense for these high-accuracy methods. This is
particularly challenging for these emerging methods which can lack a
“black-box” use, requiring care to ensure reliable convergence at each

"National Physical Laboratory, Teddington, UK. 2Department of Physics and Thomas Young Centre, King’s College London, London, UK.

e-mail: yannic.rath@npl.co.uk; george.booth@kcl.ac.uk

Nature Communications | (2025)16:2005


http://orcid.org/0000-0002-4790-7422
http://orcid.org/0000-0002-4790-7422
http://orcid.org/0000-0002-4790-7422
http://orcid.org/0000-0002-4790-7422
http://orcid.org/0000-0002-4790-7422
http://orcid.org/0000-0003-2503-4904
http://orcid.org/0000-0003-2503-4904
http://orcid.org/0000-0003-2503-4904
http://orcid.org/0000-0003-2503-4904
http://orcid.org/0000-0003-2503-4904
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57134-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57134-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57134-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57134-9&domain=pdf
mailto:yannic.rath@npl.co.uk
mailto:george.booth@kcl.ac.uk
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-57134-9

point, while often also lacking analytic atomic forces to propagate the
nuclear coordinates in time”. Important developments have been
made in recent years in extending the application of established
ground-state quantum chemical models to atomic dynamics”~*?, while
“active space” methods are also increasingly widely used for stronger
correlation or excited state molecular dynamics®. However, the
additional cost of these approaches has meant that “ab-initio Born-
Oppenheimer molecular dynamics” (AI-BOMD), where the atoms are
classically propagated according to the potential energy surface of the
electrons, is almost synonymous with a more empirical density func-
tional description of the electronic structure which lacks systematic
improvability and has many well documented deficiencies® . These
include an over-stabilization of delocalized electronic states, as well as
often inaccurate descriptions of dispersion forces, transition states, or
bond-breaking among others”. These are critical parts of the phase
space in real chemical dynamics, and the acute need for more reliable
potential energy surfaces which build on the developments in accurate
electronic structure is clear.

The most widespread and successful resolution to this need has
come from a machine-learning approach to force fields***. These
interpolate across chemical space between accurate single-point esti-
mates of the electronic energy, based on local descriptors of the
environment of each atom*%. While this approach to straddling the
electronic and atomic timescales has been arguably one of the most
successful contributions of machine learning to quantum-level simu-
lations to date, it is not without its own drawbacks®. In particular, the
local nature of the descriptors can lead to difficulty describing long-
range interactions*, as well as “holes” where non-variational inferred
energy estimates can lead to a collapse in the statistical sampling of
phase space to these unphysical minima*. On a more fundamental
level, since these approaches integrate out the electronic structure,
there is in general no fundamental electronic variable at each sampled
point (such as the wave function), meaning that the electronic prop-
erties which can be extracted are limited to the ones which correspond
to the model definition. If the evolution of e.g., the dipole moment or
charge distribution across a trajectory was desired this would not be
accessible from a force field, and extensions to non-adiabatic effects
are also far from straightforward in this framework, noting however
significant recent research in these directions**™’.

We take a different perspective and show that rather than inter-
polating observables such as the potential energy, we can instead
interpolate the many-body electronic wave function itself through the
phase space of molecular conformations. Importantly, despite the
many-body wave function of each training point being in general
exponentially complex, inference of properties from the model can be
achieved in a scaling which is the same as (hybrid) density functional
theory, rendering this a practical scheme. This decouples the unfa-
vorable scaling of high-accuracy single-point electronic structure cal-
culations from the evaluation of the interpolated potential energy
surface, and thus allows for the use of these electronic structure
methods for molecular dynamics on realistic timescales. We show that
the resulting potential energy surfaces and molecular dynamics are
systematically improvable to near-exactness via interpolation between
highly accurate training configurations. Since a valid correlated many-
electron state is propagated through the sampled phase space, this
paradigm enables all electronic properties of interest to be simulta-
neously accessible within the same model, without relying on local or
low-rank descriptors. Furthermore, since the energy is computed as a
rigorous quantum expectation value over this inferred state, it pro-
vides a fully variational potential energy estimate (precluding “holes”)
for all atomic configurations, allows for clear evidence of systematic
improvability to exactness as the training set is enlarged, an inductive
bias of the model away from poorly described regions of phase space,
and simple access to analytic atomic forces of the model for efficient
propagation of dynamics.

We combine this approach for interpolating wave functions with
modern density matrix renormalization group (DMRG) methods,
allowing convergence of the strongly correlated potential energy
surfaces to near exactness within the employed basis**. We demon-
strate that this can provide a fully correlated electronic description of
reactive molecular dynamics beyond traditional parameterized or
machine-learned force fields, and ensembles of thermalized trajec-
tories for equilibrated quantities over time scales which would be
inaccessible without this acceleration. We show this can result in
qualitative differences in behavior for a number of proto-typical
molecular dynamics simulations compared to both density functional
and traditional machine-learned force field approaches®. Finally, we
compute both thermalized expectation values from canonical
emsembles and reactive high-energy dynamical trajectories on a near-
exact potential surface for the Zundel cation, a key intermediate for
the Grotthuss mechanism for hydrogen diffusion through aqueous
solutions®*2, With explicit validation of the accuracy of the surface,
we compare the dynamics to both density functional theory results
and other quantum chemical methods for both structural and elec-
tronic quantities, highlighting marked differences which can result
from the quality of the surface.

Results and discussion

Interpolating wave functions

We first consider how to interpolate a single many-electron wave
function between two different atomic configurations. We assume that
we have an exact (FCI) correlated many-electron state defined within
an atom-centered basis set of L functions, for a specific set of atomic
coordinates R*’. This wave function is a linear superposition over
exponentially many electron configurations (Slater determinants)
spanning the Hilbert space, as

Z Cnl,nz, oy |Il1, nZ' s
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whereC,, ., istherank-L tensor of probability amplitudes over the
electronic configurations, and n; indexes the four local Fock states of
the ith orbital; either unoccupied, spin-up, spin-down, or doubly
occupied with electrons for each orbital. In general, both the prob-
ability amplitudes, and the single-particle orbitals defining each
electronic configuration |ny,n,, ..., n;) will change with atomic
configuration R. However, we aim to represent an approximation to
the correlated electronic state at a different atomic configuration (and
therefore electronic Hilbert space) with the same tensor of probability
amplitudes over these electronic states. We exploit the fact that the
properties of the exact state are invariant to orthogonal rotations of
the single-particle orbitals, but that the probability amplitudes
themselves will vary with this choice. Therefore, to enable transferr-
ability between chemical environments, we seek a choice of orbital
representation in which the probability amplitudes of the exact many-
electron state change least between atomic configurations of interest.

A plausible choice is a basis of local atomic-like functions, appealing
to the fact that a large portion of the electronic fluctuations among
atomic-local orbitals will remain qualitatively similar as atoms are moved
by small amounts. Similarly, regions of similar chemical bonding will
also have common features in their probability amplitudes defining e.g.,
covalent fluctuations between neighboring atoms*. However, for rea-
sons which will become clear, we also require that the orbitals represent
an orthonormal set for all atomic configurations. To ensure this, while
(in a least-squares sense) optimally preserving this atomic-like character
of the orbitals, we symmetrically (Léwdin) orthonormalize the atomic-
orbital basis (see Methods), defining orthonormal “SAO” orbital sets for
each atomic configuration®™*. We can then choose to interpolate the
state (and all resulting properties) between atomic configurations
without re-optimizing the many-electron state by simply transferring the
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probability amplitudes, while ensuring the consistent SAO basis
definition.

This simple approach is limited, since the many-body amplitudes
will in general change as the atoms move. However, we can generalize
the state while retaining a valid wave function by linearly combining
probability amplitude tensors in this transferable SAO representation
from a larger “training” set optimized at other atomic configurations.
We then variationally optimize the relative contributions of each of the
N training states for any test atomic configuration. This is achieved in
closed form as the diagonalization of a generalized eigenvalue pro-
blem in the basis of the training states. By projecting the Hamiltonian
at the desired test geometry R into this many-body basis, we get

HR)X(R) = E(R) SX(R), )

with the eigenvectors, X(R), giving the amplitudes of the training
states defining the interpolated wave functions at the test geometry,
with inferred energy spectrum E(R). The electronic Hamiltonian of the
test geometry, H(R), is found by projecting the Hamiltonian operator
into the many-body basis defined by the fixed probability amplitudes
of the training states. This can be found in compact form as

R PPC I SU
Hap= D Y CCy(NIC[¢ ¢y Im') K gy (R)
ki nn’

=> 10 K (R),
ijkl
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where n denotes the many-electron configurations in the SAO basis of
the test geometry, with |n) = |n;, n,, ..., n, ), and with C@ and ) the
fixed SAO probability amplitudes of the training wave functions at
atomic geometries a and b respectively. This definition therefore
implicitly transfers the probability amplitudes between the Hilbert
spaces of the training and test geometries. The Kj(R) tensor is the
two-electron reduced Hamiltonian defined in the SAO basis of the test
geometry (given explicitly in the “Methods” section) with second-
quantized Fermionic operators acting in this basis as & shown.

Since the Hamiltonian is a sum of only two-electron interactions,
the contraction over the exponential many-electron configurations, n,
is performed for all pairs of training states to give the transition two-
body density matrices I'* defined in Eq. (3). Crucially, since the
training probability amplitudes are defined not to change with test
geometry, this contraction is only performed once on the training
states, rather than for each test geometry. The construction of the
subspace Hamiltonian at a test geometry therefore only requires the
O[L*] contraction of Eq. (3), with only the Kji(R) term changing with
test configuration. The overlap between the training states, S of Eq. (2),
can similarly be precomputed during the training phase, as

Sap=D_Ca"Cy, (4)

n

due to the orthonormality of the SAO basis at all test geometries. This
ensures that the overlaps of the training states do not change with
geometry, despite the physical training wave functions changing with
atomic rearrangements as they transform between Hilbert spaces. In
this way, the exponential complexity of the many-electron states are
completely avoided in the inference of wave functions at new test
points, by representing the training states in the polynomially-
compact tensors I'® and their overlaps. The inference of the model
requires a computational scaling of non-iterative O[N?L*] after the
density matrices of the training states have been precomputed in the
training stage—the same formal scaling with system size as traditional
(hybrid) density functional theory. This scaling for evaluation of the
model at test geometries could also be further lowered with

factorizations exploiting the low-rank nature of the I’%' tensors” .

The lowest energy eigenvector from the diagonalization of this
Hamiltonian (whose dimensionality scales only with the number of
training points and is independent of system size) defines the specific
variationally optimal linear combination of training probability
amplitudes for the state, which can subsequently be used to predict
any electronic property at this test geometry. Due to the variationality
we have the desirable properties that the inferred state at a point which
coincides with a training geometry must necessarily be exact, as well as
the fact that each additional training point must necessarily lower the
inferred energy towards the exact electronic solution across all pos-
sible test atomic configurations, assuming linear independence. In this
way, the method more closely resembles a reduced order method than
a machine learning model, where we define the Hamiltonian in a sub-
space defined by a fixed set of many-body vectors taken from training
wave functions at different geometries, yet both are useful viewpoints.
Due to the fixed training amplitudes across geometries, as well as the
variational optimization of the model, computing analytic atomic
forces from the inferred state is also straightforward (see Methods),
ensuring a particular relevance of this acceleration in molecular
dynamics applications.

This approach also builds on the perspective of “eigenvector
continuation” which was recently introduced in both nuclear physics
and condensed matter lattice models, where an eigenstate is analyti-
cally continued to different parts of the phase diagram® °%, Even more
recently this was extended to simple ab initio quantum chemistry
applications, with a related scheme to the one proposed®*. However, a
crucial difference was the use of a non-orthogonal atomic basis, which
necessitated evaluation of the test point Hamiltonian directly from the
many-body states. This retained the exponential complexity of the
many-body state for inference at each test geometry, which is avoided
here. The method of Mejuto-Zaera et al. was therefore presented
instead as an approach for quantum computers, where many-body
unitary operations can be applied in polynomial complexity. In con-
trast, the SAO basis for the interpolation formally breaks this
requirement, ensuring the approach is amenable to classical compu-
tation in the predictions at test points with tractable mean-field
computational cost.

A simple example of the scheme is shown in Fig. 1, for the sym-
metric stretch of a chain of six hydrogen atoms, with up to three
atomic displacements considered in the training set. The compressed
intermediate representation of the overlaps and transition density
matrices between the training states in the SAO basis are shown,
enabling variationally optimal predictions across the whole potential
energy surface as linear combinations of the many-body training basis
transformed between geometries. The predictions are found to con-
verge to near exactness for this system with only three training points,
with a guarantee of smoothness on adiabatic surfaces, and exactness at
any training point geometry.

This approach is invariant to translation and rigid body rotations
of the chemical system, provided a consistent ordering of the SAO
representation is maintained, which is straightforward to achieve.
However, this is not trivial for atomic permutations or point group
symmetries which would change the SAO ordering, and hence prob-
ability amplitudes of the state definition. Furthermore, in contrast with
building a force field based on local descriptors, the inference requires
the same dimensionality Hilbert space for the electronic state, neces-
sitating that the training and prediction points are taken from the same
sized system. This is a significant difference to force field approaches
with local representations which allow for scaling the system size after
training, ensuring a different scope of applicability to the proposed
approach®. Future work will look to relax this constraint.

While the proof-of-principle in Fig. 1 demonstrates excellent
accuracy with few training points, it is also interpolation within a
simple one-dimensional phase space of geometries. We now compare
to a far larger phase space, composed of averaging the errors in both
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Fig. 1| Schematic overview of the proposed “eigenvector continuation” scheme
for the high accuracy prediction across conformational space from few ab
initio data points. a Three many-electron training wave functions via exact diag-
onalization at different geometries in a Lowdin atomic orbital (SAO) basis of a linear
6-atom hydrogen chain. The values of (n|¥®) show the (exponentially many) wave
function amplitudes for each training state. Geometry-agnostic one- and two-body
transition density matrices (") and overlaps (S) are constructed between all pairs
of training states (b), which allows for fast variational prediction of the potential
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energy surfaces at arbitrary test geometries in the many-body basis of these
training states (c). This allows efficient inference of wave functions at each test
geometry, as shown in (c.1), with its associated ground state on the basis of the
three training states. Plots in (c.2) show that enlarging the training space from one
to three geometries systematically converges the full symmetric stretching mode
of this system to the exact diagonalization result, with training data points where
explicit electronic structure calculations are performed denoted by crosses. Source
data are provided as a Source Data file.

the inferred energy and analytic forces on the atoms over randomly
oriented three-dimensional displacements of each atom from a ten-
atom linear hydrogen chain. This provides an exponentially large
phase space of distorted chain configurations to test, where the radius
of the displacements of each atom can be used to control the magni-
tude of the geometric distortions from the parent linear chain from
which the training data is obtained. Only five training points from the
symmetric stretch of the equidistant linear chain are used. We consider
the increase in error as the magnitude of the displacements is
increased in Fig. 2, as the test configurations move further from these
training samples. We also compare these errors to a Gaussian
approximated potential (GAP); a widely used machine-learning
approach based on Gaussian process regression in a space of local
descriptors from the superposition of atomic potentials®*®, This
models a force field directly from the same training energies, but
results in a materially larger error for the energy and forces over all
displacements. We note that five points would generally be a very small
training set for GAP, and that improved techniques to directly train on
the forces of the training data themselves or improved model defini-
tions were not used’®’",

Nevertheless, a demonstration that inferring the wave function
amplitudes themselves can outperform traditional machine-learning
inference of the properties directly is noteworthy. Furthermore, we
compare to Hartree-Fock theory (HF), which neglects all correlated
electron effects and has the same computational scaling as the infer-
ence of the proposed “eigenvector continuation” scheme. This is also
significantly worse at small distortions of the chain, though outper-
forms the largest distortions which are far from the training geome-
tries and deep in the extrapolation regime.

Bridging timescales

While it is easy to envisage many applications of an interpolation
scheme for accurate correlated electronic structure, an obvious target
is Born-Oppenheimer molecular dynamics (MD)*. In particular, the
variationality of the scheme allows for systematic and quantifiable
improvability to the exact solution of the electronic Schrodinger
equation in the inferred potential energy surface at each geometry,
while retaining a mean-field scaling with respect to the timescales
which can be accessed. To access larger systems and basis sizes we also
turn to modern electronic structure approximations for the evaluation
of training states. In particular, we use DMRG to obtain training states
with controllable accuracy to exactness'’. These DMRG calculations
can either be performed directly in the SAO basis or the state rotated
into this basis after optimization, in advance of computation of the
required overlaps and transition density matrices between the training
states. As an alternative to DMRG, we are also able to approximate the
training states by restricting the space of correlations to a low-energy
complete active subspace (CAS) selected from the low-energy orbitals
of a mean-field calculation™.

We consider these approaches for constructing training states
and the subsequent MD of a water molecule in increasing basis sets in
Fig. 3. In particular, we consider convergence of the predicted vibra-
tional frequency of the a; symmetric stretching mode as the number of
training points increases. For the smallest basis, we find the full
vibrational dynamics converge with just three training points, where
we can compare directly to exact FCI calculations of the dynamics. As
we increase the basis, FCl is intractable and we restrict the training to a
CAS of low-energy orbitals, where the number of training points
required grows modestly to seven and thirteen training points in a
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Fig. 2 | Mean relative energy error of the prediction for distorted ten-atom
hydrogen chains against the absolute displacement of each atom from the
equilibrium position. For each realization, a distorted chain was created by
moving each atom from their position in the equilibrium geometry by a fixed
displacement with a random direction. The comparison includes predictions from
Hartree-Fock (“HF”, red, dotted), the Gaussian approximation potential framework
(“GAP”, orange, dashed), as well as the variational continuation scheme from 5
training states of the symmetrically stretched chain (“Continuation”, blue, solid).
Each data point corresponds to the mean over 1000 randomly generated geome-
tries. The inset shows the mean squared force error obtained with the three
methods, where the shaded area denotes the range of the errors over the random
realizations. The training set of equidistant one-dimensional geometries include
the equilibrium length, with an interatomic distance of =1.79 a, as well as the 4
symmetric stretches of the atoms where the inter-atomic distance was increased
and decreased by 0.5 ap and 1ao. Source data are provided as a Source Data file.

cc-pVDZ and cc-pVTZ basis respectively. We validate the specific tra-
jectories found in Fig. 4, showing the difference between the inferred
and reference energies at every time step. For the DMRG-based con-
tinuation in the 6-31G basis, we find that increasing the number of
training states rapidly converges the full trajectory, with N = 6 training
states achieving an accuracy well below 10™ Ey, across all points.

The variationality of the method guarantees that the predicted
energies are always an upper bound to the exact ground state energy, at
any geometry. When the continuation is based on approximate training
wave functions, the inferred linear combination of training states may
result in an improved energy compared to the reference, since it can
mix contributions to the test state from other training geometries. This
is even true when considering a geometry corresponding specifically to
a training state. This is exemplified in the bottom panel of Fig. 4,
detailing the energetic difference between the prediction and CASCI
energies used for the training data along the trajectory in cc-pVDZ and
cc-pVTZ basis sets. While the same active space sizes were used for the
training states as for the computation of the reference energies, the
inferred energies generally lie variationally below the CASCI reference
energies. Although this improvement is small, mostly less than 1 mE;,, it
is obtained for the majority of geometries over the converged trajec-
tory, ultimately improving the accuracy beyond what is obtained with
the reference method. As a further noteworthy difference between the
reference CASCI and interpolated results based on CASCI training, for a
small path of the trajectory between 24 and 25 fs in the cc-pVTZ basis of
Fig. 4, a much more significant improvement of the continuation results
over the reference method becomes apparent. This was found to be
caused by a discontinuity in the CASCI ground state energies due to a
change of orbitals included in the active space for these geometries. A

0.9
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Fig. 3 | Vibrational dynamics of a water molecule from molecular dynamics
simulations with eigenvector continuation scheme. a Predicted frequency of the
a; symmetric stretch. Trajectories were started from a stretched initial configura-
tion, and predicted with increasing numbers of training data geometries. We
simulate the system in increasingly large 6-31G (blue, dashed), cc-pVDZ (orange,
dotted), and cc-pVTZ (red, dash-dotted) basis sets where the larger two bases use
training data restricted to a complete active space (CAS) of 4 electrons in 8 Har-
tree--Fock orbitals. Horizontal lines give reference values from trajectories on a FCI
surface in the 6-31G basis, and CAS simulations in the cc-pVDZ and cc-pVTZ basis.
b Oxygen-hydrogen distance over the trajectory in the 6-31G basis, as obtained
from continuation with N = 6 (blue, solid) and N = 2 (red, dotted) training points, as
well as the reference trajectory from full configuration interaction (“Exact”, black,
dashed). Source data are provided as a Source Data file.

more careful choice of active space is likely to have alleviated this
problem in the reference trajectory, but we highlight it here since it is
clear that this discontinuous change does not affect the interpolated
surface. In contrast to the reference method on which it is trained, the
continued results necessarily change smoothly with geometry, there-
fore mitigating a significant challenge in the use of active space meth-
ods in molecular dynamics.

It was found important to develop an active learning scheme for
the selection of appropriate atomic configurations to include in the
training data for rapid convergence. In ref. 54, the energy variance was
motivated as an appropriate measure for the inclusion of data points,
however this is impractical in the current lower-scaling scheme as it
would require the evaluation of higher-body transition density matri-
ces between training states. Instead, we consider the addition of
training points which will maximize the improvement in the MD tra-
jectories while respecting the invariances in the model predictions.
This is performed by selecting the point on the trajectory where the
Hamiltonian operator in the SAO basis, Kj/(R), has changed most (in
the least squares sense) compared to the Hamiltonians employed to
generate the current training data set. Since the probability amplitudes
are uniquely defined by this Hamiltonian, it is a suitable measure for
the addition of new data points. Furthermore, due to the variationality
of the method, it is guaranteed that the potential energy with the
enlarged training data will be equal or lower to the previous
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Fig. 4 | Difference between the predicted energy and a reference method over
all geometries from the dynamical trajectory of a water molecule. a Error
compared to exact diagonalization of density matrix renormalization group
(DMRG) trained eigenvector continuation with increasing data set (N) in a 6-31G
basis. b Difference between (4, 8) complete active space (CAS) trained eigenvector
continuation and independently computed CAS energies at each geometry along
the trajectory for N=9 training points in a cc-pVDZ basis, and N = 14 training points
in a cc-pVTZ basis. We stress that variationality with respect to this approximate
training data is not expected, enabling the continued energies to be lower than the
reference method, as shown. Source data are provided as a Source Data file.

predictions, across the whole trajectory. This can therefore be used as
a rigorous metric for the systematic convergence of the potential
energy surface for the MD, with more details in the “Methods” section.
We consider the potential energy surface over the whole MD simula-
tion fully converged when the maximum reduction in energy for any
point over the whole trajectory is less than 1 mE, for two consecutive
increases in the data set size.

A semi-infinite symmetric one-dimensional chain of hydrogen
atoms has emerged as a paradigmatic benchmark system of strongly
correlated electronic structure in recent years, as a platform towards
larger ab initio and extended systems. Almost all modern electronic
structure methods have been applied to the system with varying suc-
cess, and it has motivated further developments in both theory and
understanding of its unexpectedly rich phase diagram'’>. While the
symmetric stretch of this system has been considered extensively via
single-point electronic structure, its full dynamics at this level have not.
In Fig. 5, we release the atoms to dynamically move on a tightly-
converged ground state surface (see Fig. S1 of the supplementary
information for validation of the energy accuracy) of the DMRG-
trained continuation scheme, starting from a ~ 10% symmetric
stretching of thirty atoms equally from the symmetric equilibrium
structure. We find that along with the vibrations of the bonds, the
atoms rapidly dimerize and separate, with the overall length of the
chain increasing approximately linearly with time. We are able to
converge the dynamics of this dimerization and dissociation (albeit in
a minimal basis) to the equivalent explicit DMRG AI-BOMD with only a
small number of single-point training DMRG calculations. We note that
in comparison, DFT-based AI-BOMD significantly underestimates the
rate of dimerization of the chain, while Hartree-Fock theory con-
versely results in a bond for the hydrogen dimers which is too stiff,
demonstrating the importance of an accurate treatment of the elec-
tronic correlations in the dynamics.

—— Continuation, N =47
Continuation, N =10

—— Continuation, N =2
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Fig. 5| Molecular dynamics of a 30 atom hydrogen chain in a STO-6G basis from
an initially symmetrically stretched geometry. The panels report the time-
dependent Euclidean distance between two of the hydrogen atoms; a first and last
atom in the chain, ||R; — R, b first and second atom, ||R; — Ry||. This shows that the
first two hydrogen atoms form a stable vibrating dimer while the overall chain
lengthens. The trajectories were obtained from the eigenvector continuation
(“Continuation”) with N = 47 (blue), N = 10 (orange) and N = 2 (red) training points,
together with the trajectories from density matrix renormalization group (“DMRG*,
black, dashed), Hartree-Fock (“HF”, brown, dotted) and density functional theory
with PBE exchange correlation (“DFT”, light blue, dash-dotted) potential energy
surfaces. Additional snapshots shown depict the initial and final hydrogen chain
arrangements obtained from the converged eigenvector continuation (N = 47).
Source data are provided as a Source Data file.

Towards chemical accuracy for realistic (thermo)chemistry

We consider the feasibility of converging faithful thermodynamic
quantities and reactive chemistry on a near-exact potential energy
surface for the gas-phase dynamics of a Zundel cation, comprising a
water molecule and hydronium ion—a system whose intricate potential
energy surface poses a challenging test case for novel numerical
techniques, yet is particularly important for the understanding of
proton diffusion in aqueous solution®’*7%, We first consider a statis-
tical ensemble of 500 different trajectories, starting from the same
geometry (taken from ref. 79), and sampling initial velocities from a
Maxwell-Boltzmann distribution at 298.15K. The BOMD was propa-
gated under NVT conditions to thermalize according to a Berendsen
integration scheme®’. We consider N = 60, 80, and 100 single-point
DMRG training configurations to observe the convergence of the
thermodynamically equilibrated properties on a 6-31G basis. Each
ensemble of trajectories at one of these training numbers involved
5x10° potential energy and force evaluations, which would be out of
reach with a brute-force DMRG approach, but required a relatively
modest 7500 CPU hours for the propagation of the full ensemble.
Nevertheless, we can explicitly verify convergence to the accuracy of
the underlying DMRG by a validation of the “test error” via additional
DMRG calculations for sampled geometries along the trajectories. The
achieved test error, shown in Fig. S2 of the supplementary information,
demonstrates that the PES is well below chemical accuracy of the exact
potential energy surface within the employed basis as the thermal
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Fig. 6 | Thermalized (298.15K) ensemble-averaged distance between the central
hydrogen and the oxygen atom of the Zundel cation. a Mean distance as a
function of propagation time obtained by interpolating from N = 60, 80, 100
density matrix renormalization group training geometries, as well as results from
density functional theory (“DFT” with CAM-B3LYP'** and PBE'** exchange-
correlation functionals) and coupled-cluster with singles and doubles (“CCSD”)
trajectories. The mean corresponds to a running average of the distance between
the atoms with a window of 100 timesteps (=60.4 fs), and averaging over 500
independent trajectories and both oxygen atoms. Each emsemble of trajectories
required 5 million energy and force calculations. b Thermalized radial distribution
function of the oxygen from the central hydrogen, using Gaussian smearing of
individual data points in a kernel density analysis'®'%, with a bandwidth of
0=0.0025A. Source data are provided as a Source Data file.

equilibrium is approached, reaching relative correlation energy errors
below that of both CCSD and CCSD(T) - the “gold standard” of
quantum chemistry®',

Figure 6 shows this thermalization in the average distance
between the central hydrogen atom and the two oxygen atoms in the
explored Zundel configurations. We find this statistically equilibrated
distance to be converging to a slightly shorter length than CCSD as
the number of training configurations is increased. An accurate
description of this multi-center bond is key for the Grotthuss
mechanism of proton transfer. The differences in these quantities are
in stark contrast to the much shorter distances predicted by DFT MD
simulations with two widely used exchange-correlation functionals,
which indicate a more localized central hydrogen. We can observe
this in the radial distribution function of the equilibrated config-
urations (bottom panel) where the distribution is far flatter than the
DFT methods, indicating an increased delocalization of the hydrogen
between the water subunits. This is further corroborated by con-
sidering the magnitude of the dipole moment from the thermalized
ensemble (see supplementary information, Fig. S3), which we find
decreases as the level of theory is increased from DFT to CCSD to the
DMRG-interpolated configurations, indicating a preference for more
symmetric distributions where the central hydrogen is delocalized
and less bound at any instant to an individual oxygen atom.

The verifiably high-accuracy interpolation coupled with the high-
accuracy DMRG training allows for validation in the use of CCSD for

Mulliken charge
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Fig. 7 | Predicted Mulliken charge distribution for isolated high-energy mole-
cular dynamics trajectories of a single Zundel cation. Panels show the predicted
Mulliken charges for the hydronium (a) and water (b) sub-units from a dynamical
simulation of the reaction from eigenvector continuation with N = 40 (orange) and
N = 84 (blue) training points from density matrix renormalization group. The sys-
tem uses a 6-31G basis, with snapshots depicting the evolution of the molecular
geometry at four evenly spaced times. Reference charges from simulations with
density functional theory with a B3LYP exchange correlation (“DFT”, light blue,
dash-dotted) and Hartree-Fock (“HF”, brown, dotted) are included for comparison.
Source data are provided as a Source Data file.

this system, with thermalized expectation values qualitatively in
agreement. This is due to the lack of strong correlation in the explored
molecular configurations. However, a significant advantage of this
framework is the ability to also reliably converge the PES over the full
phase space, including strongly correlated atomic configurations fur-
ther from equilibrium where CCSD is unreliable and will potentially
fail, including bond-breaking and transition state geometries.

To consider this scenario, we also propagate a single high-
energy trajectory within an NVE ensemble far from the Grotthuss
mechanism dynamics, where the additional proton is inserted
between the water monomers, interrupting the traditional hydrogen
bond framework with a four-atom bridging bond as shown in the
initial snapshot of Fig. 7. Increasing the number of DMRG training
points to N= 84, we are able to observe convergence in the specific
short-time MD trajectory over the 120 fs of the simulation (see Fig. S4
of the supplementary information for evidence of this convergence
with training data over the trajectory). Due to the fact that an explicit
representation of the electronic state is retained over the trajectory,
we also extract non-energetic electronic properties of the system
over time. We use this to consider the evolution of the Mulliken
charge as the electron density is redistributed around the system in
response to the atomic motion, beyond the physics considered in
traditional polarizable force fields.

The positive charge is initially fairly evenly distributed amongst
the water monomers, with the anticipation being that the water
would rotate to adopt a lower-energy configuration. However, on the
DMRG interpolated PES we find that before this is able to occur, a
(neutral) hydrogen is ejected from the system leaving a bound
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hydronium and hydroxide radical system. The charges on the sub-
units of this reaction show the redistribution of charge as the
hydrogen oscillates a number of times before its eventual ejection
from the system. This behavior is not seen on the more approximate
HF or DFT electronic surfaces where the additional hydrogen
remains bound over timescales enabling the water to rotate its
orientation, with the HF charge distribution substantially in error
even in the initial state. Comparing to CCSD across the N = 84 tra-
jectory, we find =40 atomic configurations visited result in the CCSD
energy diverging due to the presence of strong correlation effects,
underlining the unreliability of the method for MD in these more
unusual atomic conformations and transition states where strongly
correlated electronic structure is found. This behavior is discussed
further in the supplementary information, but underlines the
applicability of the continuation across the phase space of the MD
and the potential to describe dissociative dynamics®.

While these results demonstrate an effective acceleration scheme
to converge the energy surface of this system to that of high-accuracy
methods, more consideration of the effects of basis size, nuclear
quantum and solvent effects may be needed before predictions as to
the nature of this physical reaction can be given with confidence**°.
However, the fact that qualitative changes in dynamical behavior
already result from the quality of the treatment of electronic correla-
tion effects in the determination of the potential energy surface
underlines the importance of a robust and systematically improvable
approach to this electronic structure. The eigenvector continuation
acceleration allows computation of this surface with high-level quan-
tum chemical methods, and extends their scope to enable them to
access timescales of atomic dynamics with provable convergence.

Perspective

We develop a practical approach for eigenvector continuation of
many-body electronic wave functions in ab initio settings. In contrast
to the traditional paradigm of machine-learning force fields from
training energies, this considers the interpolation of accurate wave
functions across the space of structural changes, from which all elec-
tronic properties as well as atomic forces can be efficiently computed
via a variational ansatz, avoiding the exponential complexity of the
many-body states themselves. Using the scheme to converge the
potential surface for molecular dynamics, we find examples of quali-
tatively different behavior to state-of-the-art techniques, demonstrat-
ing the importance of systematically converging the electronic
structure across the timescales.

The acceleration scheme therefore holds huge potential to extend
the scope of modern highly accurate electronic structure to molecular
dynamics applications. However, the potential of reliable wave func-
tion interpolation also goes beyond this, towards a consideration of
non-adiabatic and beyond-Born-Oppenheimer effects, efficient geo-
metry optimization for ground, transition states or conical intersec-
tions, as well as a general procedure for vibrations and phonons,
raising the possibility of the routine extraction of thermodynamic
variables from accurate quantum chemistry. The move from single-
point electronic internal energies to (thermo)dynamical quantities
within correlated electronic structure theory is a long saught-after
ambition®’. The use of wave function interpolation with developments
in solvers for the training data to extend system sizes could bring this
closer to reality.

Methods

Interpolating across the ab initio potential energy surface

At the core of the methodology lies the prediction of the ground state
electronic energy for given molecular arrangement of Neje. electrons
based on few exemplary solutions of the electronic structure problem
at different molecular geometries. We define the ab initio electronic
Hamiltonian for a 3 x N, atomic configuration, R, in a discrete basis of

electronic orbitals {y(r; R)} as®

HR)= Zij:h“)(R) ele+ ZZh(Z),(R &lef ety + Enye(R) )

ijkl

= ZKUkI(R)éIéTé[ék +Enuc(R)' (6)
ijkl

with Fermionic creation and annihilation operators, & and & acting on
the orbitals, and E,,(R) the classical nuclear-nuclear repulsion energy.
The one-electron terms, hﬁ-})(R), are matrix elements of the electron-
nuclear and electronic kinetic operators, while the electron-electron
repulsion integrals are

Xk("l R) x,(r3;R),
(7)

hffk)[(R) //drlderz(th)Xj(l'pR)

= (JIkD(R). ®

A convenient reduced two-body Hamiltonian which subsumes the one-
body into the two-body term can be written as®*

{fjlkD)(R) +

Kyu®)= 2 YR+ 8, )R (9)

1
2(Nelec - 1) (

The eigenvector continuation proceeds via the definition of a
symmetrically (Lowdin) orthonormalized atomic orbital basis
(SAO)**, This allows the training wave functions to be transferred
between the Hilbert spaces of different geometries by fixing their
many-body probability amplitudes in this representation. These SAOs
are defined with an orbital transformation of an underlying non-
orthogonal atom-centered “AO” orbital basis set at each geometry,

{@a(r; R)}, as

Xi(r:R)= Z [SR)],"” @a(r;R). 10)
where S(R) is the atomic orbital overlap matrix
Sap(R) = / dr ¢, (r;R) p(r;R). (1)

The continuation then proceeds according to the scheme out-
lined in the main text, with the evaluation of the transition two-body
density matrices (t-2RDMs) and overlaps between the training points
in their SAO representations. Of particular importance for molecular
dynamics is the evaluation of analytic forces at each test geometry,
which is simplified due to the lack of response contributions from the
many-body basis and the fully optimized variational nature of the
interpolated states in the geometry-independent basis®***®. This
therefore only required the derivatives of the electron integrals in
the AO basis®”*’, as well as the derivative of the transformation from
the atomic orbitals to the SAOs with respect to nuclear positions (a
“Pulay force”°), which we evaluate via first order perturbation
theory”. The specifics of this evaluation is given in the supplemen-
tary information.

Approximate training data: DMRG. Rather than relying on exact (FCI)
training data, we also consider modern numerically efficient approx-
imations to the correlated electronic structure to allow for access to
larger systems, which are nevertheless systematically improvable to
the exact solution to the electronic Schrédinger equation for training.
These require not only the evaluation of accurate many-body wave
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functions at the training geometries, but also the evaluation of the
t-2RDMs and overlaps between different training states.

Firstly, we consider the compression of the training wave func-
tions in the form of Matrix Product States (MPS), optimized via the
density matrix renormalization group (DMRG) algorithm®, For this, we
used the spin-adapted implementation from the block2 library**,
working directly in the Fock space defined by the SAOs. We optimize
the training states with a schedule for exponentially increasing bond
dimension (a factor of 1.8 per increase) and decreasing noise in the
MPS, a standard practice for stable ab initio DMRG*, terminating when
the difference of the energy upon fully relaxing the state at an
increased bond dimension is less than a specified threshold, €. For all
presented results, we set € = 10 E;, and start the MPS with an initial
bond dimension of 34, giving training data confidently below the
accepted “chemical accuracy”. For the reference data for the hydrogen
chain evolution (Fig. 5), we set the tolerance to € =107 E;, and starting
MPS bond dimension to 61.

Approximate training data: CAS. In addition to the continuation from
MPS training states optimized with DMRG, we also present the use of
complete active space (CAS) solvers to access the results of Fig. 3. These
give an approximate ground state of the full electronic structure
problem according to

[Wens) =10)% @ [Ws) @ 1) e, (12)
where |W,s) represents the fully variationally optimized state over all
many-electron configurations within a chosen active subspace of
orbitals and electrons, while |1)V represents fully occupied orbitals
spanning the remaining space of states that are occupied in a mean-
field (in this case Hartree-Fock) description of the system, and |0)"
explicitly indicate that the higher-energy virtual states are unoccupied.
In this way, the electronic fluctuations of a low-energy subspace are
considered fully, with the choice of active space in this work selected
purely based on the mean-field orbital energies about the chemical
potential of the system.

While this state can be straightforwardly optimized within a
“CASCI” scheme implemented in the PySCF package®*®, we also
require the evaluation of the overlap and the t-2RDMs between train-
ing states in their SAO basis, while the state is defined (and optimized)
in a mean-field canonical basis. Therefore, it is necessary to rotate
these many-body states into their respective SAO bases before the
t-2RDMs and overlaps are computed. We show this for the t-2RDM as

PN A
Lp(ca/ls\Um“’Cchckcl

I'Zlgl = < R(b; I‘UgisL (13)
where (W) denotes the CAS states at the different training points
and URm » is the unitary transformation from the state in the basis of its
canonical orbitals to the SAO basis for the corresponding training
point. This is evaluated efficiently as a double summation over the
active space many-electron configurations (including their core) of
each training state

Tkl = > c@cd (n|URm.c ¢ Ugn 1),

n,n'eAS

(14)

where C“’/ 5 are the CASCI probability amphtudes of the active spaces.

This smg{e particle unitary transformation UR can be formed as

ix= Zzaisaﬁzﬁx'

a.p )

where Z,; is the transformation matrix from AO to SAO and Z, gy i the
transformation matrix from AO to canonical Hatree-Fock orbitals,

while S,z is the AO overlap matrix. All of these quantities are depen-
dent on the specific training | eometry, R.

The inner products (n|UR<a>c Tckc, Ugo ') from Eq. (14) can be
identified as a matrix element between two different non-orthogonal
Slater determinants®. The efficient evaluation of such overlaps
between different non-orthogonal Slater determinants is discussed in
refs. 95,96. We utilize the libgnme package, together with its python
interface pygnme, to evaluate the overlaps and t-2RDMs between CAS
states for the continuation in the SAO basis. Due to the non-
orthogonality of the different CAS spaces, the double contraction of
Eq. (14) results in a cost scaling quadratically in the size of the active
space, thus more expensive than the evaluation of expectation values
of a single point CAS state, however this cost could be reduced in the
future by rotating to an intermediate basis representing the co-domain
of the occupied CAS orbitals in a pair of CASCI training states.

Gaussian Approximation Potentials. We include comparison results
obtained from the prediction of potential energies via Gaussian
Approximation Potentials (GAP)**—a well-established framework for
the prediction of potential energy surfaces and force fields. The model
is extracted by fitting a data set of training geometries, {R‘“)},, 1, With
associated energies (E@}_, using a kernel model” incorporating
symmetries of atomic environments via the smooth overlap of atomic
position (SOAP) descriptors*. We apply the GAP framework following
standard approaches from the literature’®’>?¢, based on the imple-
mentation of the SOAP descriptors in the dscribe package®. Additional
details of this prediction procedure can be found in the supplementary
information.

Eigenvector continuation for BOMD

The single-trajectory Born-Oppenheimer molecular dynamics of
Figs. 3, 5 and 7 were computed in vacuum based on a microcanonical
(NVE) ensemble using the Velocity-Verlet integration implemented in
PySCP%%88%190 ‘according to the analytic nuclear gradients derived for
the eigenvector continuation in the supplementary information. The
nuclei in these simulations were initialized at rest, and we chose a fixed
timestep of 6t = 5 a.u. = 0.121fs for the integration.

To extract a thermalized ensemble for the dynamics of the Zundel
cation of Fig. 6, we included a room temperate (298.15K) Berendsen
thermostat® as implemented in PySCF to obtain a canonical (NVT)
ensemble of trajectories. This scheme relies on an additional rescaling
of the velocities after each integration step to achieve an exponential
convergence to the target temperature with a timescale 7. Initial
velocities for each trajectory were drawn from a Maxwell-Boltzmann
distribution, while the nuclei positions were initialized in the ground
state geometry obtained from CCSD(T) in a large basis set from ref. 79.
The dynamics proceeded with a total of 10, 000 integration steps with
6t = 25a.u = 0.605fs, and a thermalization time constant of 7 = 250
a.u. = 6.05 fs. This required 5 x 10° force calculations to propagate the
ensemble of 500 trajectories over the 6 ps timescale considered.

Active learning for data selection. For the molecular dynamics
applications, we perform an active learning scheme in which we
identify and select suitable molecular configurations for training the
eigenvector continuation scheme on-the-fly. This scheme is based on
iteratively running the MD with a given training set, and selecting an
enlarged training dataset with a new molecular configuration from the
sampled trajectory. A correlated electronic structure calculation is
performed at the selected geometry which is then included in the
training data for an improved inferred potential energy surface and
resulting MD trajectory in the next step. Starting from just a single
training state (the initial geometry) and iteratively adding new con-
figurations to the dataset in this way, the number of costly electronic
structure calculations can be minimized and the trajectory can be
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systematically and rapidly converged, noting that adding training
geometries from the simulated trajectories guarantees an improved
prediction in each step.

To select the new training geometry, we develop a “distance”
heuristic for all geometries along the trajectory, which can be used as a
metric for the addition of the data, and quantifies the suitability of
the current training data in describing the test state at each point. The
point along the trajectory with the largest measure is added to the
training data set. Since the (non-degenerate) ground states along
the trajectory are uniquely defined by the ab initio Hamiltonian at each
geometry, we use the differences between the Hamiltonian elements at
the training points and all trajectory points in defining this measure.
Defining these elements in their respective SAQ basis of each geometry
used for the inference also ensures that the invariances and symme-
tries of the eigenvector continuation are also respected in this mea-
sure. Specifically, we define this Hamiltonian distance between two
geometries, D(R,R’), as

DR,R)=>" |k (R) — hi (R))?
ij

1 @ @ r2 (16)
+ j%'hijkl(k) — by (R,

In addition to respecting the symmetries of the model, this
ensures that two geometries with similar Hamiltonians (and thus wave
functions) are considered similar, even though an evaluation of the
Euclidean distance between these two geometries might be large (e.g.,
for geometries from near a dissociated limit). To add a new config-
uration, we evaluate D(R(5), R?) for all geometries R(¢) from the tra-
jectory and each training geometry R already contained in the
training set. We then pick that configuration R(t,44) from the trajectory
for which the distance to the closest training configuration is maximal,
i.e., where

taaa = arg max (min(D(R(0), R))) a7

To gauge the systematic convergence of the NVE MD single-shot
trajectories, we can track the variational lowering (and hence
improvement) of the potential energy surface as the dataset is
enlarged. This is done by comparing the PES from the two data set
sizes along the same trajectory corresponding to the larger of the two
data sets. Exploiting the variationality of the method, it is guaranteed
that the potential energy inference with the larger dataset will be lower
or equal to the predictions with the smaller dataset, and we use the
difference between the predicted energies as a convergence measure.
In our applications, we terminate the simulation when the predicted
energy with the enlarged data set stays within a tolerance of € =107 E;,
along the full MD trajectory for two iterations in a row. Examples of this
convergence are shown in Fig. S4 the supplementary information.

To manage the increased data volume when generating the sta-
tistical canonical ensemble of trajectories for the NVT Zundel cation
results of Fig. 6, we use a somewhat coarser scheme to select the
training configurations. We start with just the initial configuration in
the training set, and randomly sub-sample 100 trajectories from the
ensemble of 500 trajectories generated by the prior CAM-B3LYP DFT
dynamics. For all timesteps of these 100 trajectories, the Hamiltonian
distance metric of Eq. (16) is computed and the 19 geometries with the
largest value of this metric are identified for inclusion in an enlarged
training data set. The continuation scheme is then run for 500 NVT
trajectories with these 20 training points. We compute the Hamilto-
nian metric along the full path of a new random selection of 100 of
these inferred trajectories in order to identify a further set of 20
geometries to perform explicit DMRG calculations to iteratively
enlarge the training data set until the desired size is reached. This

training set is taken to be the same for all trajectories in an ensemble. It
should be stressed that only the first batch of 19 geometries are taken
from the DFT-derived trajectories, after which subsequent batches of
training geometries are found self-consistently to ensure a system-
atically reducing bias due to the DFT paths.

Data availability

The raw data in this manuscript are provided in a Source Data file. The
main molecular dynamics trajectories generated in this study have
been deposited in the data repository at https://doi.org/10.5281/
zenodo.14532437"", This repository also includes animated videos of
the simulated nuclear motions in the NVE ensemble. Source data are
provided with this paper.

Code availability
The code and inputs to fully reproduce the numerical experiments of
this work can be found at https://github.com/BoothGroup/evcont'®,
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