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Abstract: This paper presents a comprehensive survey of state-of-the-art UAV–based antennas and
propagation measurements. Unmanned aerial vehicles (UAVs) have emerged as powerful tools for
in situ electromagnetic field assessments due to their flexibility, cost-effectiveness, and ability to
operate in challenging environments. This paper highlights various UAV applications, from testing
large–scale antenna arrays, such as those used in the square kilometer array (SKA), to evaluating
channel models for 5G/6G networks. Additionally, the review discusses technical challenges, such as
positioning accuracy and antenna alignment, and it provides insights into the latest advancements in
portable measurement systems and antenna designs tailored for UAV use. During the UAV–based
antenna measurements, key contributors to the relatively small inaccuracies of around 0.5 to 1 dB
are identified. In addition to factors such as GPS positioning errors and UAV vibrations, ground
reflections can significantly contribute to inaccuracies, leading to variations in the measured radiation
patterns of the antenna. By minimizing ground reflections during UAV–based antenna measurements,
errors in key measured antenna parameters, such as HPBW, realized gain, and the front-to-back
ratio, can be effectively mitigated. To understand the source of propagation losses in a UAV to
ground link, simulations were conducted in CST. These simulations identified scattering effects
caused by surrounding buildings. Additionally, by simulating a UAV with a horn antenna, potential
sources of electromagnetic coupling between the antenna and the UAV body were detected. The
survey concludes by identifying key areas for future research and emphasizing the potential of UAVs
to revolutionize antenna and propagation measurement practices to avoid the inaccuracies of the
antenna parameters measured by the UAV.

Keywords: absorbers; broadcasting systems; knife edge diffraction (KED); parabolic reflector;
path loss; propagation measurements; square kilometer array (SKA); UAV-based measurements;
unmanned aerial vehicles (UAVs)

1. Introduction

Unmanned aerial vehicles (UAVs) or remotely piloted aircraft systems, simply known
as drones, are in high demand for in situ measurements because of their mobility, low
cost, hovering capability, and low maintenance expenses. Advances in technology, such
as software–defined radios (SDRs), have facilitated the utilization of UAVs for antenna
and propagation measurement [1,2]. UAVs are an effective antenna measurement solution
for projects such as the square kilometer array (SKA) [3], broadcasting systems [4], large
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biconical antennas [5], such as those of the French aerospace research center Office National
d’Etudes et de Recherches Aérospatiales (ONERA) [6], and parabolic reflector antennas [7],
because of their in situ electromagnetic field measurement capabilities. UAV measurements
can also help to identify multipath–related propagation losses. In radar applications that
use antenna arrays, UAV measurements are useful for the final calibration after the antennas
are enclosed in radomes and deployed. This is particularly crucial in cases in which the
RF system is large. Climatic conditions, such as rain, snow, or harsh weather, degrade the
antenna radiation performance in terms of side–lobe level (SLL) and ripples in the beam
peak. The degradation of these antenna parameters can eventually lead to a deterioration
of the antenna gain and cross-polarization levels [8]. Conventional methods may not be
feasible in such situations, making UAV–based measurements a viable alternative.

In practice, antenna measurements with UAVs can be performed either in the Fresnel
region (also known as the radiative near field) or in the Fraunhofer region (also known as the
far field). For example, in shortwave communications, an antenna operating at 20–30 MHz
can achieve very long communication distances owing to ionospheric propagation. Nev-
ertheless, in this frequency range, the antenna size is large. To avoid large separation
distances between the antenna under test (AUT) and the UAV, near–field measurements
are an appropriate and practical alternative, whereby the near–field measurements are
mathematically transformed into far–field radiation patterns. In this paper, the utilization
of UAVs to perform near–field measurements is presented and involves the UAV following
a specific spatial path [9–11] to collect measurements of the AUT using an SDR.

Measuring antenna performance using the traditional outdoor method [12] involves
measuring the antenna in the far–field region. Accordingly, these measurements require
several pieces of expensive and heavy equipment. The AUT is in the receiving mode and is
connected to a mixer and microwave receiver [13], which can retrieve the amplitude and
phase information of the AUT. Supported by model towers, the AUT is placed on a multi-
axis rotary positioner, such as an azimuth–over–elevation-over-azimuth positioner [14].
These positioners can rotate the AUT by 360◦ in the azimuth plane and provide limited
motion in the elevation plane.

Unlike traditional outdoor measurements, UAV–based measurements do not rely on
large or heavy equipment. For example, instead of a heavy spectrum analyzer, an SDR,
which is compact and lightweight, can be used. In addition, these SDRs can be controlled
from ground level. Taking advantage of UAVs’ capability to hover and perform circular tra-
jectories would make them free from the positioners and controllers used in the traditional
measurement methods. In addition to the UAV–based antenna measurements, UAVs can
also be used for propagation measurements. UAVs equipped with SDRs can be used to
perform propagation measurements, which involve estimating signal strength as a function
of frequency and time. These measurements are then post–processed to extract the channel
coefficients, such as path loss and angle of arrival, which are used to model the channel.
The channel model can then be used to design an air–to–ground (ATG) communication
system [15] and evaluate its performance under different operating conditions. UAVs are
used to evaluate the performance of existing ATG communication systems and to identify
potential sources of interference or signal degradation [16]. Propagation measurements
can be conducted by mounting a transmitting antenna and lightweight transmitter with
a built–in battery on a UAV and a standard calibrated antenna acting as a receiver con-
nected to a spectrum analyzer at the ground level. A critical issue is airframe shadowing,
which obstructs the line–of–sight (LOS) path between the transmitter and receiver caused
by the UAV body. In this regard, it is important to verify that the transmitting antenna
mounted on the UAV is in direct LOS with the receiver before performing any propagation
measurements [17].

This article describes how UAVs equipped with an antenna and an SDR configured
as a receiver can be used to measure antenna and propagation characteristics in various
practical cases. In contrast, previous studies have emphasized only one specific case each
time. The main contributions of this study are in the following topics:
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• A comprehensive review of the latest advancements in UAV–based antenna and
propagation measurements encompassing various techniques and applications.

• Implementation of both near–field and far–field measurement techniques, emphasiz-
ing the practical advantages, including a discussion on the use of SDRs in UAV–based
measurements.

• Exploration of a wide range of applications, from the SKA and large–scale biconical
antennas to 5G/6G network evaluations.

• Illustration of practical implementations and effectiveness of UAV–based measurement
systems, presented using real–world test cases, such as measurements of parabolic
reflector systems and large–scale propagation channel effects.

The remainder of this paper is organized as shown in Figure 1. Section 2 focuses on
UAV–based measurements. In this section, we provide design recommendations for UAV–
based measurements. By following the design recommendations, we describe how UAV–
based measurements can be performed in the far– and near–field regions. For UAV–based
antenna measurements in the far–field region, we describe the procedure for measuring
base station antennas (BASTAs) and digital television (DTV) stations deployed in the field.
To measure antennas operating at lower frequencies, a larger distance between the AUT
and UAV is required, owing to the large dimensions of the AUT. To overcome these large
separation distances, antenna measurements can be performed in the near–field region.
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Figure 1. Organization of the paper.

We explain UAV–based near–field measurements for structurally large antennas, such
as low–frequency aperture arrays (LFAAs) and biconical antennas. UAV–based propagation
measurements are presented in Section 3. In this section, a detailed explanation of the
simulation results for large–scale and small–scale propagation measurements is presented.
Based on the UAV–based antenna and propagation measurements, we explain the design
considerations for selecting the UAV probe, and the conclusions are provided in Section 4.
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2. UAV–Based Measurements

Characteristics such as the matching impedance, polarization, radiation efficiency,
directivity, gain, and radiation patterns are used to ascertain the antenna performance. For
radar systems with stringent specifications, such as polarimetric weather radar, calibration
of the systems after deployment in the field is crucial. Figure 2 describes the methodology
adopted for UAV–based measurements, in which the UAV is equipped with an antenna at a
height huav that serves as a signal source, while the AUT is at a height haut from the ground
plane. An antenna mounted on a UAV can act as either a transmitting (TX) or a receiving
(RX) antenna. As shown in Figure 2, the AUT and the TX antenna mounted on the UAV
were separated by distance R. Here, α denotes the half–power beam width (HPBW) of the
TX antenna mounted on the UAV, and αh denotes the plane angle subtended at the antenna
mounted on the UAV by the AUT height [18].
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In the process of measuring the radiation pattern of an AUT using a UAV, several
factors, such as the phase curvature of the incident wave, ground reflections, and ampli-
tude taper of the source antenna, affect the measurement accuracy. To avoid measurement
inaccuracies, caution should be exercised regarding the variations in the phase and ampli-
tude of the incident field and the interference from ground reflections. For UAV–based
measurements, as a rule of thumb, the TX antenna is selected such that it has a wider HPBW
than the AUT to prevent measurement errors. Similarly, the phase curvature of the incident
field on the AUT affects the accuracy of the measured SLL. To overcome these errors, the
phase deviation over the planar test aperture is maintained below 22.5◦. To achieve this
phase deviation, it is necessary to have a separation distance greater than 2D2/λ, where D
is the maximum dimension of the antenna and λ is the operating wavelength [19]. The
other factors that affect the accuracy of the measurements are ground reflections.

Ground reflections can often cause signals to be added constructively/destructively,
resulting in apparent gain values that are higher or lower than expected. Also, maintaining
a sufficient distance between the TX and RX antennas prevents the distortion of the patterns
caused by ground reflections. Different approaches have been used to reduce ground
reflections, including diffraction screening and absorbers between the TX and RX antennas.
The use of a TX antenna with a low SLL can also prevent ground reflections [20]. At the
same time, aligning the beam peak of the TX antenna with the AUT is essential. This can
be achieved in a couple of iterations, which involve measuring the power received at the
AUT when a UAV is carrying the TX antenna that flies at different altitudes. At a particular
height, the UAV can further vary its altitude slightly to detect the position corresponding
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to the maximum received power of the AUT. At this height, the beam peak from the TX is
appropriately aligned with the AUT. With the TX aligned with the AUT and by maintaining
a low SLL, ground reflections can be avoided to a certain extent.

2.1. UAV–Based Far–Field Measurements

To perform far–field measurements, it is essential to maintain a minimum distance of
2D2/λ, as discussed previously. A UAV equipped with high–precision controller boards
and RF measurement equipment, such as an SDR [21] with directional antennas, can be
used for far–field measurements. For instance, in the inspection of reflector systems [7]
and structurally large antennas, UAV–based measurements are cost–effective and reliable.
The measurement techniques proposed here have several advantages over conventional
methods, such as the use of helicopters equipped with RF payloads [22], in terms of cost
and maneuverability. A compact and lightweight design allows UAVs to easily reach any
location for measurements. They can also hover at a specific location, which enhances their
ability to conduct RF measurements, with improved results. Various techniques, such as
fast Fourier transform (FFT) [23], angular deconvolution [24], spatial mode filtering [25],
frequency impulse response, and Hilbert transform, can be used to filter noise when
measurements are conducted outdoors in a noisy environment. Considering that the
above methods are not generic and cannot be applied to all environmental conditions, [26]
proposed a filtering technique referred to as locally weighted regression and dispersion
smoothing, which can be used to filter out high–frequency noise.

To validate this methodology, measurements were conducted in an anechoic chamber
as well as an outdoor environment using the proposed filtering technique on a Yagi–Uda
antenna operating at 2.4 GHz and a horn antenna at 5.3 GHz. An analysis of the HPBW
measured in an anechoic chamber and an outdoor environment showed that they were in
good agreement, with a difference of only 1◦. In the far–field measurements, the far–field
patterns on a sphere of a constant radius were estimated. The elevation and azimuth angles,
denoted by θ and ψ, were the variables used to identify the location on the sphere. The
phase information of the AUT was obtained using a vector network analyzer (VNA), and
the two-dimensional amplitude information may be calculated using the total electric field:

|E| =
√
(Eθ)

2 +
(
Eψ

)2, (1)

where Eθ , Eψ are the electric field in the elevation and azimuth planes, respectively.
In UAV–based far–field measurements, the AUT is placed on a tripod and the UAV

follows a vertical and horizontal path around the AUT. The UAV carries an RX antenna
while moving and collecting data points. The AUT is stationary in this scenario, unlike the
conventional outdoor ranges, which can be either elevated or elevated slant ranges, and
requires the AUT to rotate by means of positioning commands operated by a computer.An
example of a conventional elevated slant range is shown in Figure 3, in which a TX antenna,
such as a quad–ridged horn, is mounted on a tall structure, and an AUT, such as an offset–
fed parabolic reflector system, is mounted on an azimuth positioner. To eliminate errors
caused by ground reflection, absorbers are placed between the source antenna and the
AUT. Generally, a TX antenna is designed to have a low SLL, and the height at which the
source antenna is mounted should be selected such that the main beam illuminates the
AUT. Traditional measurements are performed using a stationary source antenna, and the
radiation pattern can be obtained in both the elevation and azimuth cuts by rotating the
AUT placed on the positioner. However, in UAV–based measurements, the UAV carrying
the antenna follows a trajectory and the AUT is stationary. The advantage of this setup is
that it does not require heavy and expensive positioners to obtain AUT radiation patterns.
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Figure 3. Conventional elevated slant test range.

As shown in Figure 4, a UAV with a quad-ridged dual–polarized horn operating at
6–24 GHz was used as a far–field transmitting antenna [27] to measure the microwave vi-
sion group (MVG) SR40 parabolic reflector system. During the outdoor measurements, the
UAV and AUT were maintained at 350 and 750 m, respectively. The TX antenna mounted
on the UAV was supported by a gimbal, which was used to detect radiation patterns in the
elevation plane, and the rotation of the UAV around the parabolic antenna was performed
to measure the radiation patterns in the azimuth plane. All the measurements were per-
formed at 14.5 GHz. During UAV measurements, errors may occur because of external
winds, reflections from surfaces, and misalignment between the probe and the AUT caused
by UAV propeller vibrations. To minimize these errors, various methods are employed,
such as measurement of the AUT under additional conditions, such as rotating the device
at 180◦, conducting measurements with different separation distances, and taking multiple
measurements at a time in one cut and averaging them.
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Figure 5 illustrates how UAVs can measure the performance of antennas mounted on
ships. In [28], a UAV carrying a vertically polarized ground plane monopole antenna and
three vertical radials was used as an RX antenna to measure an X–band vertically polarized
reflector antenna mounted on a ship that resonates at 9.5 GHz. Throughout the UAV flight,
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the antenna mounted on the UAV is directed towards the AUT; however, the variance in
the pitch and roll axes while the UAV is in motion creates a polarization mismatch. Based
on the experiments conducted in [28], a loss of 0.2 dB is observed in the measured radiation
pattern due to polarization mismatch. Traditionally, to measure the performance of an
antenna installed on a ship, an RX antenna connected to a spectrum analyzer is required
to collect the signals. The RX antenna is placed at the ground level on the shore. The
reflector antenna, which is the AUT installed on the ship, continuously transmits signals.
To measure the radiation pattern of the AUT in the azimuth plane, the ship carrying the
reflector antenna should follow a circular trajectory in the sea, while the receiver collecting
the signals is static at ground level. Conversely, for UAV–based measurements, an SDR
mounted on the UAV is used to receive the signals. A reflector antenna installed on the
ship transmits signals. Here, the ship carrying the TX is static, and the UAV carrying the
RX antenna follows a circular trajectory with a constant radius around the ship situated at
the center of the circle. When measuring an antenna installed on a ship, it is essential to
meet specific criteria to ensure that there are no losses due to polarization mismatches [29]
or multipath reflections from seawater [30]. Considering that the AUT has a maximum
diameter of 1 m and operates at 9.5 GHz, it is imperative to maintain a far–field distance
(Fraunhofer distance) greater than 60 m, and no obstacles should block the first Fresnel
zone between the ship and the UAV.
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2.1.1. Aerial Measurement of Base Station Antennas

To establish communication, a mobile BASTA [31] is essential and serves as a com-
munication hub for wireless devices. Owing to the exponential increase in the number of
devices connected to wireless networks, BASTAs are being deployed at an unprecedented
rate to provide connectivity to users. Certain errors may occur when BASTAs are deployed
in the field. These errors include undesired antenna twists, antenna tilts, errors in antenna
alignments, and the effects of adjacent objects and towers on radiation patterns. In such
cases, performing an in–situ measurement allows one to identify faults and repair the sys-
tem, thereby improving its performance. In traditional airborne measurements, a helicopter
is used to measure the radiation pattern. However, these methods are expensive and require
heavy equipment. Advancements in UAVs and the miniaturization of RF components,
such as portable spectrum analyzers, have enabled the measurement of mobile BASTA
systems using UAVs [32].

UAV–based measurements for BASTAs involve measuring vertical and horizontal
radiation patterns. The vertical radiation pattern is determined using the procedure shown
in Figure 6. To ensure optimal reception from the AUT, the UAV should be positioned at an
appropriate height to maintain LOS with the BASTA. Once the optimal vertical location
is determined, the UAV follows a vertical path and reconstructs the radiation pattern.
Typically, a BASTA consists of several antenna elements, such as dipoles, arranged in an
array. Each of these elements has its own radiation pattern. The resultant radiation pattern
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is formed by combining all the elements in an array. Therefore, the UAV must follow a
vertical path to reconstruct its vertical radiation pattern. The electrical down–tilt and null
fill can be determined by obtaining the vertical radiation pattern of the BASTA. Electrical
down–tilt [33] and null fills are significant parameters that affect the base station coverage
area. Ground users experience maximum signal strength when the main lobe is directed
towards their area, whereas they do not receive any signal when a null fill is directed
towards them. In [31], a UAV programmed with a mask R–CNN was used to automatically
determine the base station orientation. R–CNN is an object detection algorithm used
to detect specific regions in an image. The proposed method in [31] involves creating a
database named UAV–antenna, which consists of 19,715 communication BASTA images.
This is achieved by the capturing of BASTA images by UAVs. Secondly, mask R–CNN
applies a selective search scheme to identify the pixel coordinates of the BASTA. These pixel
coordinates are used to measure the BASTA’s tilt angle. Based on the proposed method,
after completing the measurements it was found that the actual tilt angle of the antenna
system deviated by 1◦–2◦ from the intended tilt angle.
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Figure 7 illustrates the procedure followed to obtain the horizontal radiation pattern
of a BASTA deployed in the field, which was measured using a UAV with an RX antenna.
Based on the optimum height, at which the RX antenna mounted on the UAV receives
the maximum power from the AUT, which is determined during the vertical pattern
measurements, the UAV follows a trajectory in a circular path around the AUT. Obtaining
a horizontal radiation pattern enables one to determine azimuth HPBW, sector power ratio
(SPR), and front-to-back ratio (FBR). SPR is the ratio of power outside the desired sector to
power inside the desired sector. This helps to improve the antenna design, which requires
the SPR to be as low as possible to achieve lower co–channel interference and better call
quality. Ideally, a BASTA should have an SPR less of than 3% and an FBR greater than
25 dB [34].
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2.1.2. Aerial Measurement of Broadcasting Antennas

In [35], a SixArms custom-built hexacopter with a log–periodic antenna was used to
perform broadcasting antenna measurements in the far-field region. It was used to measure
the effective radiated power (ERP) and horizontal radiation pattern (HRP), as well as the
vertical radiation pattern (VRP). As shown in Figure 8, high–power broadcast antennas can
experience certain deviations in their performance, leading to a degradation in the overall
coverage area. The feeding mechanism of a broadcast antenna [36] plays a significant role,
and these systems are vulnerable to changes. Upon performing the in–situ measurements
and comparing the measured VRP with the design specifications, it was observed that
there was a 1◦ deviation in the tilt in the test case of [32]. Similarly, a change of 0.5◦ in the
electrical tilt was observed owing to the change in the mechanical lean of the broadcast
antennas. By measuring the HRP, other common errors, such as incorrect panel orientation
and inverted panels, could be identified and eliminated, thereby enhancing the overall
performance of the broadcast antenna [37]. By comparing the HRP of the broadcasting
antenna measured with the UAV with the design specifications, it became apparent that a
10◦ deviation arose in this test case from an incorrect panel orientation after the panel was
installed on the tower. Similarly, measuring the HRP of the broadcast antenna, when there
was a taller tower at just 650 ft, showed a 3 dB notch in the plots, which implies that the
adjacent tower impacts the measured system.
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Ideally, when amplitude–only measurements are performed, UAVs carrying transmit-
ters/receivers are in the far–field region (the Fraunhofer region) to measure the radiation
pattern [20]. To validate the theoretical concept of far–field regions, the SixArms Airborne
Radio Measurement Systems (ARMS-RFX) UAV was used to measure a DTV station at
720 m and 2025 m from the AUT. DTV broadcasting antennas are composed of antenna
arrays formed by similar elements. The total height of a DTV broadcasting antenna with all
the elements in an array is typically 20 m, with a maximum antenna dimension of 20 m and
a frequency of operation at 515 MHz (UHF channel 21 in the USA). Far–field measurements
with UAVs can be performed by maintaining at least 1450 m from the AUT. As shown
in Figure 9, ARMS–RFX UAVs equipped with an ARMS receiver comprising a real–time
spectrum analyzer and an embedded PC [38] were used to measure the DTV transmitter
station at 720 m and 2025 m from the AUT. Log–periodic antennas (LPDA) mounted on
top of the UAV received signals from the AUT. The radiation pattern of the AUT was
calculated instantly for every 0.1◦, as the UAV took a vertical path. Using a telemetry link,
the measured radiation patterns were transmitted to the ground user for quick verification.
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The elevation patterns taken at 720 m, which should have been 1450 m according to
the theoretical far–field distance calculations, and at a far–field distance of 2025 m from the
AUT, are depicted in Figure 10. In Figure 10a, the red dashed lines represent the elevation
pattern of the AUT according to the manufacturer’s data sheet, and the solid black line
represents the measurements performed with the UAV at 720 m. Similarly, Figure 10b
represents the measurements performed at 2025 m from the AUT. From the elevation
patterns measured at 720 and 2025 m, it was observed that the measurements do not always
have to be in the far–field region. UAV–based measurements can be performed closer
to the AUT and are still valid. From the two cases depicted in Figure 10, it is evident
that when measurements are performed at 720 m from the AUT, the null fill and null
depths vary slightly compared to measurements performed at 2025 m from the AUT. In the
following sections, we discuss UAV–based antenna measurements in near–field regions.
This technique enables the assessment of antennas that are significantly large. Additionally,
conducting measurements in the near–field offers the advantage of reducing the flight
times required for UAV operations. In Table 1, we present an overview of the reflector and
broadcasting antennas measured in far–field regions using UAVs.
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Table 1. Far–field measurements.

Reference Frequency of Operation Far–Field Distance AUT

[27] 14.5 GHz 350 m Parabolic reflector.
[28] 9.5 GHz 60 m Reflector mounted on ship.
[35] 515 MHz 2025 m Broadcasting antenna.

2.2. UAV–Based Near–Field Measurements

To meet the far–field criteria, low–frequency antennas require a considerable distance
between the AUT and UAV carrying the antenna. Such long distances may result in
excessive free–space path loss, which can reduce overall system accuracy. In such cases,
near–field measurements can be useful for EM wave measurements in the radiative near–
field region. It is easy and quick to conduct near–field measurements with a UAV and
does not require heavy and complicated equipment. In [39], a biconical antenna operating
at 110 MHz was measured using a UAV under indoor conditions. Time domain gating
techniques were applied to avoid ground reflections and UAV motion. Similarly, in [40],
navigation systems were measured in the near–field region. The measurement results
from [39,40] prove that UAV–based near–field measurements can be performed accurately
with low–cost equipment.

As shown in Figure 11, UAV–based measurements were performed at radiating near–
field regions beginning at 2.5 m for a grid reflector with a maximum diameter of 1 m that
operates at 4.65 GHz [41]. Because the accuracy of UAV–based near–field measurements
depends on UAV coordinates, [42] used dual–band real–time kinematics (RTK), which
made it possible to obtain UAV coordinates within 10 arcseconds. The UAV was equipped
with two monopoles operating in the 4–7 GHz frequency band that were separated from
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each other by a space of 80 cm. This setup measured a reflector system operating at
4.65 GHz fed by a circularly polarized helix antenna. The monopoles were mounted
on a UAV using three–dimensional (3D) printed components, which are highly resistant
to mechanical vibrations and transparent to EM waves. Near–field measurements were
performed by obtaining the equivalent current distribution over the surface of the AUT.
A phase–less retrieval technique was utilized to plot the radiation pattern based on the
integral equation method [43], in which the simulated AUT was modeled with equivalent
electric and magnetic fields on a closed surface. After obtaining the radiation patterns
for the reflector system deployed in the field, measurements were conducted in anechoic
chambers. Comparisons between the results obtained from the UAV–based near–field
measurements and the measurements in anechoic chambers indicate that when the reflector
system is deployed in the field, there is an offset in the beam position and the main beam is
widened owing to misalignment errors and ground reflections.
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In Figure 12, a UAV carrying a monopole is used to characterize an antenna operating
at 3–30 MHz. The AUT is a Nostradamus ONERA system [44] consisting of a set of 288
biconical antennas arranged along a branch separated by 120◦. Biconicals are omnidirec-
tional, and each has a height of 7 m and a width of 6 m. To validate the accuracy and
functionality of UAV–based near–field measurements for characterizing the high–frequency
(HF) antenna by ONERA, ref. [6] used a Dà-Jiāng Innovations (DJI) Matrice 600 Pro carrying
an antenna to measure a monopole that was 6 m high when placed on a ground plane. The
measured data were compared with simulated data, and good agreement was achieved,
thus proving that UAV–based near–field measurements are a cost–effective solution for
characterizing HF antenna systems.

When selecting the appropriate material for mounting the antenna on the UAV, it is
important to ensure that the UAV body does not degrade the performance of the antenna.
In [45], a Mikrokopter equipped with a signal generator and a short monopole was em-
ployed to measure a 6 m parabolic dish fed by a dual–polarized LPDA operating in the
frequency range of 300 MHz to 3 GHz. In this UAV model, the ground plate was made of
aluminum, and to minimize the impact of the UAV body on the antenna, a mesh structure
was placed between the frame of the UAV and the antenna. Similarly, the UAV propellers
can generate harmonics that are influenced by the propellers’ rotations per minute (RPM)
and their dimensions. The Doppler spectrum and harmonics [46] generated by the pro-
pellers can be studied using the double–edge diffraction model [47]. It was observed that
when an antenna mounted on a UAV transmits signals while the propellers rotate, the
signal received by the AUT exhibits a Doppler effect. The Doppler effect, harmonics, and
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scattering experienced by EM waves from an antenna lead to a drop in the power received
by the AUT, which affects the radiation pattern of the AUT. The effects of propellers can be
avoided by placing the antenna on the UAV at a location which is far from the propellers.
Other approaches, such as using fiber glass material instead of carbon fiber for the pro-
pellers, are validated in [48,49]. All the measurements of the radiation patterns in this case
were performed at 328.5 MHz.
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Aerial Measurements of Low–Frequency Antennas

The SKA is an array of telescopes that operates based on the principle of aperture
synthesis and is designed for excellent spatial and angular resolution. A square kilometer
array log–periodic antenna (SKALA) is a very large structure, and measuring such a
large structure in the far–field region requires a large measurement distance. Performing
UAV–based far–field measurements for these antennas is not economical owing to the
battery limitations of UAVs. Sometimes, the UAV altitude needs to be more than 120 m,
which is not possible owing to UAV flying guidelines. In such cases, the antennas are
measured in near–field regions. One such case is the SKALA; it consists of 256 LPDAs with
a diameter of 38 m. In the SKALA, each LPDA comprises a bowtie dipole for impedance
matching. In [50], a pre–aperture array verification system for SKA was measured with
UAVs in the near field. The AUT consisted of 16 active elements. All the elements were
designed to feature a dual–polarization operation in the frequency range of 50–350 MHz, a
minimum directivity of 8 dBi, and an intrinsic cross–polarization ratio exceeding 15 dB. An
inter–element spacing of λ/2 was maintained to achieve better control over beam steering.
However, maintaining an inter–element spacing of λ/2 is subject to mutual coupling [3].

The pre–aperture array verification system of SKA, which is the AUT, has an overall
size of 9.2 m over a 16 m ground plane mesh. The metallic grid ground plane improved
the overall directivity of the system and provided protection from humidity, weather, and
terrain conditions. The UAV was equipped with a portable signal generator and a dipole
resonating at 175 MHz. The main challenge in these measurements is obtaining accurate
phase values. In [50], to address this problem, an additional reference antenna with a
known phase [51] was used. This reference antenna was placed 12 λ (20 m) from the center
of the array, as shown in Figure 13. The UAV was equipped with a dipole and followed a
quasi–planar trajectory at an altitude of 24 m. With an average speed of 3 m/s, the UAV
took 15 min to complete the trajectory.
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When the UAV follows the trajectory, the receiver system connected to the AUT at
the ground level acquires voltages corresponding to the horizontal and vertical directions.
The time stamps of the global navigation satellite systems (GNSSs) on the UAV and the
time stamps of the GNSS at the ground level are synchronized at the receiver connected
to the AUT. Finally, with the complex voltages and phase values, the embedded element
patterns are reconstructed by performing a near–field to far–field transformation. The
measured data from the UAV were compared with the simulated data, and the simulations
were performed in the CST studio suite. From these comparisons, it was observed that the
UAV–based near–field measurements were accurate. A deviation of 1 dB was observed
in the amplitude. Thus, UAVs can be used to measure large structures such as the SKA in
the near–field region. Thus, UAV–based measurements for the SKALA can help to identify
areas where design improvements are required to improve the efficiency of the entire
system. Table 2 presents a summary of large antennas, such as reflector antennas, ground
plane antennas, ONERA biconicals, and SKALA LPDAs measured by UAV near–field
techniques.

Table 2. Near–field measurements.

Reference Frequency of
Operation Near–Field Distance AUT

[41] 4.65 GHz 3.4 m Offset reflector

[52] 20 MHz 4 m Ground plane
antenna

[50,51] 175 MHz 15 m SKALA

3. UAV–Based Propagation Measurements

With advancements in technology and the demand for wireless connectivity, especially
for UAVs and other applications, there is a great demand for wireless networks with
low latency. These networks require a latency as low as 1 ms, which is a significant
improvement over the 40 ms latency of fourth–generation (4G) networks. Transmission
needs to be moved to millimeter wave (mmWave) or even terahertz (THz) frequencies
to achieve such low latency. EM waves experience higher propagation losses at such
high frequencies, owing to diffraction [53] and scattering from rough surfaces. Therefore,
understanding the propagation environment through propagation measurements [54] is
essential. The propagation of EM waves in an environment can be evaluated by using UAV–
based propagation measurements. In addition, UAV–based propagation measurements
enable the measurement of key performance indicators (KPIs), such as reference signal
received quality (RSRQ) and reference signal received power (RSRP). In [55], a hexacopter
carrying a smartphone, sensors, and guided autonomous flight paths was used to measure
RSRP and RSRQ. During the transmission, the signal was attenuated by various factors



Sensors 2024, 24, 7395 15 of 27

before it reached the receiver. The most common reasons for signal attenuation are path
loss, shadowing, and multipaths. Shadowing and multipath components, such as reflection,
refraction, diffraction, and scattering, are primarily caused by obstacles. In sub-Section 3.1,
we discuss large–scale and small–scale propagation in detail.

3.1. UAV–Based Large–Scale Propagation Measurements

UAVs can be used to measure large–scale propagation effects that occur mainly owing
to path loss and shadowing. To estimate the path loss, the commonly used models are
the free–space path loss (FSPL), two–ray, basic log–distance, and modified log–distance
models. For the path loss calculation, the FSPL requires information about the transmitter
antenna gain (Gt), receiver antenna gain (Gr), operating wavelength (λ), and separation (d)
between the UAV and receiver. On the other hand, when the UAV is at a lower altitude
and ground reflections are present between the UAV and receiver, two–ray models can be
utilized to estimate the path loss. In [56], a DJI Mavic 2 Enterprise UAV equipped with a
LoRa sleeve dipole operating at 868 MHz was used for propagation measurements between
a UAV and a wireless sensor network (WSN) and between a UAV and an unmanned
surface vehicle (USV). The results of the UAV–based propagation measurements for a
scenario in which the UAV moved vertically up to 30 m, and another scenario in which
the UAV moved horizontally away from the receiver (WSN or USV), were compared with
path loss estimations from two–ray models. Based on the comparison, the two–ray model
underestimated the path loss, resulting in a mean difference of 6.45 dB between the UAV
and USV and 15.5 dB between the UAV and WSN. These findings demonstrate the necessity
of improving the two–ray model to increase the accuracy of path loss measurements.
A higher level of precision is required for mmWave [57–59] and for situations in urban
areas [60], which are surrounded by multiple buildings and obstacles.

Log–distance path loss models are more general and appropriate for calculating path
loss [61]. In evaluating the path loss for a channel between a UAV and a receiver, the
log–distance method considers the path loss exponent (α). An improvement in the log–
distance model is the modified log–distance model. According to the modified log–distance
model [62,63], we can determine the path loss by

PL(dB) = PL0(dB) + 10αlog10

(
d
d0

)
− 10log10

(
∆h
hopt

)
+ Cp + 10log10

(
1 +

∆ f
fc

)
, (2)

When estimating the path loss, the modified log–distance model considers an addi-
tional parameter known as the height of the UAV from the ground (hgnd), the minimum
height of the UAV (hopt) that provides the lowest path loss, and a constant loss factor Cp,
representing the losses due to the antenna orientation on the UAV and carrier frequency
fc. PL0 (dB) is the path loss at the reference distance d0, ∆f is the Doppler variation in
frequency, and ∆h is the difference between hgnd and hopt.

To determine the extent to which the various factors discussed above attenuate the
signals, we created a scenario with a UAV carrying the transmitting antenna. The propaga-
tion measurements [64], as described in Figure 14, consisted of a car and horn antenna that
was identical to that mounted on a UAV. The ground–level antenna worked in the receive
mode and was mounted on a 2 m mast in front of a 10 m building. The horn antenna was
mounted on the UAV hovering 12 m above ground level. Modeling and simulations were
performed using commercially available EM software, CST Studio suite 2023 [65] at 5 GHz.
Part of the signal was diffracted by the corners of the buildings at a height of 10 m and by
metallic components of masts and obstacles, such as cars, before reaching the receiver at
ground level.
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In [66], a UAV equipped with a dipole and scanner capable of measuring RSRP was
utilized to calculate the path loss, with the UAV’s altitude varying from 1.5 m to 120 m
above ground level. To understand the influence of LOS and non–line–of–sight (NLOS)
conditions on the path loss calculations in [67], the path loss was measured in an area of
500 m × 500 m. As part of this experiment, propagation measurements were performed
in an urban area in Greece, which consists of buildings and trees. Measurements were
conducted at 2.12 GHz for both LOS and NLOS scenarios, with the UAVs operating at
an altitude of 6 to 200 m above ground level. The attenuation caused by reflections and
diffractions from buildings and obstacles was also considered for the path loss calculations
using the log–distance path loss model. The calculations were based on the uniform
theory of diffraction (UTD) and geometric optics (GO). The path loss calculations varied
for the LOS and NLOS conditions. The UAV flew at 100 m above the ground; for the LOS
condition, α was as low as 2.6; however, at the same altitude, for the NLOS condition, α
was 7.2, indicating that the path loss values differed depending on the test conditions.

The polarization mismatch of the antenna mounted on the UAV also affects the
accuracy of the path loss measurements. In [68], a DJI Phantom 4 UAV with a vertically
polarized dipole working in the 3.1–4.8 GHz range was used for propagation measurements
in three different scenarios. Initial measurements were performed between the UAV and
receiver, assuming that no obstacles were present between the UAV and receiver. During
this experiment, the receiver antenna at ground level was vertically polarized in one case
and horizontally polarized in the other. By always leaving the transmitter located on the
UAV vertically polarized, the VV and VH cases were produced. For the VV condition,
a path loss of 72 dB and a path loss of 80 dB were observed for the VH condition. This
indicates that there was an additional path loss resulting from the polarization mismatch.
For ATG propagation measurements, EM waves are attenuated by multipath components,
such as reflections, diffractions, and scattering. To estimate these losses, using the FSPL,
two–ray [69], and log–distance path loss models may not be accurate in certain scenarios.
Alternatively, empirical models, such as multi–slope log–distance path loss models [70],
height–dependent two-ray models [71], and excess path loss models [72], are more reliable.

The models that have been addressed so far are all deterministic. These models do not
consider the dielectric properties of obstacles that attenuate the signals. In such instances,
statistical models such as log–normal shadowing are used to calculate the attenuation
of signals due to random variations. There are two crucial variables in a log–normal
shadowing expression, µψB: the mean of the random variable, and σψB: its standard
deviation. A DJI N3 UAV, in combination with a λ/4 monopole, was used in [73] to
measure path loss while the UAV moved from 0 to 24 m in height. In the context of path
loss measurements, [73] proposed an altitude–dependent propagation loss model based
on a zero-mean-behavior random variable. Under NLOS conditions, after performing
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propagation measurements at 1 GHz and 4 GHz, the σψB [74] value increased with the
frequency and distance of the UAV from the receiver. The typical range of σψB is 5–12 dB
for terrestrial macrocells and 4–13 dB for terrestrial microcells. For aerial wireless channels,
σψB ranges from 1.2 to 5.24 dB, and it is observed that when UAVs fly at high altitudes, σψB
can be as low as 1.2 dB [75].

3.2. UAV–Based Small–Scale Propagation Measurements

In [76], to investigate the dependence of small–scale fading on the altitude of a UAV, a
hexacopter was equipped with a circularly polarized cloverleaf wire antenna, as shown in
Figure 15. The receiving system consisted of a magnetic mount wideband high–frequency
(MGRM–WHF) antenna, which is independent of the ground plane and was installed on
a mast at the ground station, 1.5 m above the ground. The test environment consisted of
multiple buildings and metal containers with the UAV taking a vertical path ranging from
0 to 100 m in height and a horizontal path maintaining 20–60 m from the receiver at ground
level. The path loss exponents (PLEs) were estimated by varying the height of the UAVs to
determine the relationship between small–scale fading and the UAV altitude. Furthermore,
small–scale fading calculations are categorized into LOS and NLOS conditions. The Rician-
K factor was utilized in the LOS case to explain the fading behavior. Adding the height
parameter of a UAV to the Rician–K factor provided a better understanding of the small–
scale fading. At lower altitudes, multipath components [77] from buildings and metallic
containers combined vectorially at the receiver, causing fading. The cumulative distribution
functions (CDF) [78] estimated small–scale fading in both the LOS and NLOS conditions.
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In [75], a DJI N3 six–rotor UAV, equipped with a λ/4 monopole, was used to determine
the fading depth, using UAVs by varying their vertical paths from 0 to 24 m in height,
with a receiving station positioned 25 m away from the UAV. A λ/4 monopole with
a ground plane and gain of 5.2 dBi, connected to a portable signal generator, enabled
the continuous transmission of signals. We note from the measurements that the fading
depth was independent of the operation frequency, which was more evident for the LOS
conditions than for the NLOS conditions. A distribution function, such as the Nakagami,
Rayleigh, Weibull, or Gaussian function, can describe the fading amplitude. By maintaining
a root mean square error (RMSE) as low as 0.02 dB for both the LOS and NLOS scenarios, the
log–logistic function [79] is the best distribution function among the available distribution
functions.

In [80], to investigate the scattering effect of the buildings, ATG propagation mea-
surements were conducted using a custom–built UAV equipped with a mmWave conical
horn antenna (operating in the 26–40 GHz range) configured as the receiver and a planar
elliptical dipole ultra–wideband (UWB) antenna (operating in the 3.1–5.3 GHz range) con-
figured as the transmitter. In contrast, the ground station featured an mmWave conical horn
antenna as the transmitter and a UWB antenna as the receiver. These ATG propagation
measurements were instrumental in understanding the propagation characteristics of urban
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environments. This study presented power angle profiles for ATG propagation, which
showed that in urban areas the presence of building rooftops causes a reduction in signal
strength due to scattering. Additionally, the power elevation profile results indicated that
when the UAV was at a higher altitude (50 m), the dominant propagation mechanism was
due to reflections from buildings located behind the ground station. Measurements of
outdoor–to–indoor coverage, conducted with the UAV hovering outside a building and
the ground station positioned inside the building, revealed significant losses as the signals
propagated through the building walls at both mmWave and UWB frequencies.

In ATG channels, which consist of a wireless channel between the UAV and the ground
system, knife–edge diffraction (KED) is a commonly employed method for estimating the
signal strength attenuation caused by diffraction. In KED, the EM wave diffracted by
the building corners is determined by considering the obstacles to be thin and perfectly
absorbing. The magnitude of the diffraction losses is calculated using mathematical for-
mulas that consider Fresnel diffraction parameters. According to the UTD, diffraction
losses are estimated using wedge geometry, which involves the wedge angle and reflection
coefficient of obstacles and empirical models such as the linear regression model and the
creeping wave linear model [81]. In [82], to understand the accuracy of KED and the
empirical models, diffraction loss measurements were performed over a roof top in urban
environments at 28 GHz. The measurement setup consisted of a transmitter antenna with
a beamwidth of 10◦ and a receiver antenna with a beamwidth of 30◦. The measurements
were conducted at two sites to understand the influence of the TX distance from the LOS
boundary and the RX distance from the LOS/NLOS boundary. The study found that the
diffraction losses increased when the distance from the diffraction edge increased and
decreased when the distance between the TX and the building decreased. The loss was
shown to be proportional to the diffraction angle.

Using UAV–based propagation measurements, we can estimate the attenuation of the
signal when the transmitter follows vertical and horizontal paths. In contrast, conventional
methods fail to evaluate diffraction losses and multipath components from the corners and
edges of buildings, which are typically between 10 m and 25 m in height. In [83], horn
antennas with a gain of 20 dBi and an HPBW of 17◦ were used indoors and outdoors for
propagation measurements. The indoor measurements were analyzed using three types of
wall construction: plastic boards, wooden walls, and dry walls. During the measurements,
the receiving and transmitting horns were placed at a 1.4 m height above the corner of
the wall. The measurements were performed at 10 GHz, 20 GHz, and 26 GHz. The
measured data were compared with the theoretical estimates using the KED model. The
practical measurements were in good agreement with the theoretical calculations for a dry
wall. However, the KED overestimated losses by 2–4 dB in the case of wooden walls and
plastic boards. For outdoor measurements, it was found that KED accurately calculated
the diffraction losses for sharp edges, whereas linear models using a minimum mean
square error (MMSE) linear fit derived from actual measured data were more accurate for
rounded edges.

To investigate the scattering effects of buildings, we created an ATG propagation
scenario. In this setup, two buildings with heights of 10 m and 20 m were modeled using
CST Studio Suite. Building 1 was modeled with a height of 20 m while Building 2 was
modeled with a height of 10 m. A horn antenna configured as a receiver was mounted on a
mast placed on top of Building 2 to identify potential scattering regions. In the simulation
environment, we modeled a UAV equipped with a horn antenna flying at a height of 17 m
above ground level. The complete simulation setup, including the scattered rays, is shown
in Figure 16. The two buildings were positioned 30 m apart in this scenario. The structure
was analyzed using an asymptotic solver based on the shooting and bouncing ray (SBR)
technique, which allowed us to observe how signals were diffracted at the corners of the
buildings. The SBR technique provides an initial estimation of ATG propagation. However,
to accurately understand scattering effects in real–world scenarios, practical UAV–based
propagation measurements are necessary. In such measurements, a UAV equipped with
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a transmitter antenna and a portable signal generator would be used. On the ground, a
receiver setup consisting of a horn antenna mounted on a mast and a spectrum analyzer
connected to the antenna would be used to calculate the power levels of the received signal.
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Several propagation measurements were carried out in [84] using a hexacopter equipped
with a narrowband antenna resonating at 440 MHz and a wideband antenna operating
between 1 GHz and 6 GHz. The measurements were performed in a suburban area at
440 MHz and 1 GHz. The UAV flew in a vertical path with an altitude of 0–25 m over
two buildings of 15 m and 25 m in height. Although there were other obstacles, such as
trees and cars, in addition to the two main buildings, the diffraction losses owing to other
obstacles were minimal at high altitudes. A comparison was made between UAV–based
propagation measurements and theoretical modeling, such as the KED model. In general,
the measurements by UAVs and the theoretical calculations are in good agreement at lower
frequencies; however, at higher frequencies, the diffraction losses are more significant, and
the theoretical calculations underestimate these losses.

3.3. Selecting the UAV Antenna

Choosing an appropriate antenna for UAV–based measurements is essential before
conducting measurements. To ensure that the UAV–based in situ measurements are accu-
rate, it is important to calibrate the antenna before mounting it on the UAV. Several factors
are considered when selecting a UAV antenna: it should be compact, lightweight, mechan-
ically stable, unaffected by wind, and electromagnetically insensitive to the structure of
the UAV. Because of the several metallic components on the body of the UAV, directional
antennas are likely to experience EM coupling with the UAV body, which can degrade its
performance.

To understand the EM behavior of the antenna [85] mounted on the UAV, we simulated
a complete UAV structure using the CST Studio Suite. Figure 17 depicts a DJI F450 UAV
equipped with a pyramidal horn antenna simulated at 8 GHz using the SBR technique.
Apart from the main beam from the horn, there is a portion of signals scattered from the
UAV body, which can create errors in antenna measurements. This explains the necessity
for care to be taken before selecting an antenna and understanding its behavior after mount-
ing [86] it on the UAV [87]. There are several ways to mitigate the effects of scattering,
including changing the antenna design [87,88], optimizing the antenna location [89], and
using RF absorbers in areas where the UAV body exhibits potential reflections. Whenever
we choose antennas for UAVs, there is always a tradeoff between an antenna with a narrow
beamwidth and an antenna with wider beamwidth. Antennas with a wider beamwidth
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cover wide angles, which means that small deviations in the alignment of the UAV relative
to the AUT have a less pronounced effect. The signal remains closer to the intended polar-
ization, minimizing the introduction of unwanted cross–polarized components. However,
with an antenna with a wider beamwidth, there will be high scattering from UAVs, affecting
the co–polarization and cross–polarization patterns.
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On the other hand, antennas with narrow beam widths have an advantage in terms
of low scattering from the UAV body. However, they have some limitations as well. The
major challenge for these antennas is alignment between the antenna mounted on the UAV
and the AUT. In the case of an antenna with a narrow beamwidth, vibrations from the
UAV body can create a misalignment between the antenna mounted on the UAV and the
boresight of the AUT. To minimize misalignment errors, additional efforts must be made to
maintain the antenna’s beam peak at the AUT’s boresight throughout its trajectory.

Table 3 presents the different antennas used in the literature. An omnidirectional or
directional antenna was used depending on the area of application. These antennas are
specially designed for UAV applications, considering beamwidth and radiation pattern con-
straints. In cases such as dipole [90] and helix [91] antennas, the ground plane is included
as part of the antenna. The commonly used antennas with directional or omnidirectional
patterns have limitations. Directional antennas are prone to misalignment errors; hence,
additional precautionary steps are required to overcome them. Omnidirectional antennas
have the limitations of low gain. On the other hand, in [92], an array of half-bowtie antennas
was designed to cover all hemispherical regions. This design has better coverage with an
HPBW of 240◦ in the azimuth and 98.6◦ in elevation, similar to an omnidirectional antenna;
with a gain of around 5.9 dBi.
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Table 3. State–of–the–art antennas for UAV applications.

Reference Antenna Frequency Range (GHz) Radiation Pattern

[21] Micro–Strip Patch 1.8–2.7 Directional
[87] Micro–Strip Patch 2.4–5.2 Directional

[93] Log–periodic meandered
dipole array 0.85–2.2 Directional

[94] Vivaldi 1.5–4.5 Directional
[95] Horn 7.5–18 Directional
[90] Dipole 0.55–1.6 Omnidirectional
[96] Surface Wave 6.1–18 Directional
[91] Helix 0.6–1.1 Omnidirectional
[97] Quasi–Yagi 23–28.5 Directional
[92] Half–bowtie antenna 4.1–5.6 Directional

3.4. Accuracy Analysis of UAV–Based Antenna Measurement

The accuracy of the UAV-based antenna measurements mainly depends on the accu-
racy of the RF equipment mounted on the UAV, the amount of vibration experienced by the
UAV, the accuracy of the GPS positioning, and the external environmental conditions. To
understand how these aspects affect the measurements, Table 4 describes the variations in
the radiation patterns measured by the UAV. All these measurements were performed by
a UAV to characterize an antenna installed outdoors. After characterizing the antenna in
terms of the radiation pattern, the same antenna was measured in anechoic chambers, and
in some cases, it was simulated using commercially available EM solvers. As described in
Table 4, it can be understood that due to the UAV vibrations, external environmental condi-
tions, and drifting in the UAV positions, a maximum error of 1 dB in the peak amplitude
is noticed. These results indicate that UAV measurements are an accurate and a reliable
solution for characterizing an antenna.

Table 4. Accuracy of UAV–based antenna measurements.

Reference Frequency (GHz)
Difference Between UAV
and Anechoic Chamber

Measurements

Difference Between UAV
and Simulation Results

[1] 0.75 NA 0.5 dB in peak amplitude

[4] 0.47 to 0.7 NA 0.6 to 1 dB in peak
amplitude

[7] 0.7 to 0.8 NA 0.5 to 1 dB in peak
amplitude

[27] 14.5 0.38 dB in peak amplitude NA

[42] 4.65 Widening in radiation
pattens NA

[50] 0.175 NA <1 dB in peak amplitude

[98] 0.05 to 0.35 NA 0.5 to 1 dB in peak
amplitude

[99] 8 to 12 0.5 dB in peak amplitude,
0.06◦ in HPBW NA

[100] 0.05 to 0.32 NA <0.1 dB in peak amplitude
and 1 dB in SLL

[101] 44 1 dB in peak amplitude NA
[102] 4 to 6 3 dB in peak amplitude NA

In UAV–based antenna measurements, the radiation patterns of the antenna in either
the azimuth or elevation plane were obtained by following a predefined trajectory. For
the UAV to follow this predefined trajectory, the UAV path planning is achieved through
software tools such as QGroundControl v1.3.8 [103]. The accuracy with which the GPS
follows the defined waypoints depends on the accuracy of the GPS used on the UAV.
Based on the frequency of operation, GPS systems such as differential RTK (D–RTK), RTK,
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differential GNSS, and real–time differential GPS are used. These high–precision systems
are particularly used for UAV measurement applications, which can provide centimeter and
sub–meter accuracy. Based on the UAV–based antenna measurements conducted in [27], it
is evident that a total deviation of 0.38 dB between the UAV–based measurements and the
measurements in the anechoic chamber is observed. Out of the 0.38 dB variation in the peak
amplitude of the radiation patterns, 0.36 dB is due to the external environmental conditions;
small inaccuracies in D-RTK positioning result in a 0.01 dB variation, and variations in RF
component behavior due to outdoor temperature result in a 0.02 dB variation. In [7], the
horizontal deviation between the trajectory followed by the UAV and the trajectory planned
in the software was less than 2 m. These deviations were due to environmental conditions
such as wind; in any case, these effects resulted in an angular deviation of less than 0.38◦

in the UAV measurements. In [101], small deviations in the trajectory followed by the
UAV resulted in a deviation of 0.02 dB, and the variations in the relative orientation of the
UAV could produce an uncertainty of ±2%, producing a variation of 0.005 dB in the UAV
measured results. Similarly, in [50], differential GNSS, which can provide an accuracy of
only sub–meter level accuracy, was used. Although a centimeter–level accuracy GPS such
as D-RTK was not used here, a deviation of 0.03◦ was observed in the UAV measurements
due to the deviations in the UAV positioning. This is because the measurements were
performed at 175 MHz; in this case, such low frequencies do not demand centimeter–
level accuracy in UAV positioning. In [99], where UAV measurements were performed at
8–12 GHz, D–RTK was used for UAV positioning, and deviations in the UAV positioning
resulted in a variation of ±0.01◦ in the UAV measurements.

From these analyses of the accuracy of UAV–based antenna measurements, it is evident
that factors such as GPS positioning, vibrations in UAV, and changes in UAV alignment due
to external environmental conditions result in relatively small deviations in the radiation
pattern of the antenna. However, in [42,102], major deviations in UAV measurements
and measurements from anechoic chambers were observed. This is due to the ground
reflections that account for deviations in the antenna parameters, such as side-lobe level
and HPBW, and, in certain scenarios, in the peak gains. Ground reflections create multipath
interference, where signals add constructively or destructively before reaching the receiver
antenna [104]. Based on the constructive or destructive interference, ground reflections
lead to either an increase or decrease in the measured antenna gain.

To mitigate the effects of ground reflections, strategies such as those using radiation-
absorbent material or diffraction fencing can be employed. Radiation–absorbent material,
simply known as an absorber, is used in anechoic chambers, which helps to reduce interfer-
ences due to reflection from the ground. However, several absorbers would be required
for outdoor measurements to mitigate the ground reflections; this is impractical and costly.
Another approach is to use a metallic diffraction fence to block the ground–reflected waves.
This approach is applicable and used in elevated slant measurement ranges [105].

To overcome ground reflections, we propose the use of two UAVs, which allows
the AUT and receiving antenna mounted on the UAV to maintain higher altitudes from
the ground level. In the two proposed UAV antenna measurements, one of the UAVs is
configured as a transmitter consisting of a portable signal generator and an AUT. Similarly,
the second UAV, which is configured as a receiver, consists of a real–time spectrum analyzer
and an antenna to receive signals from the transmitter UAV. The proposed solution enables
non–tethered UAV operation, allowing UAVs to maintain a higher altitude from the ground
level, thus avoiding the effects of ground reflections. By adopting two UAV antenna
measurements and placing the antennas at appropriate locations on the UAV to avoid
electromagnetic coupling, antenna measurements with good accuracy can be performed in
outdoor environments.

4. Conclusions

In this article, we presented a comprehensive review of UAV–based antenna and
propagation measurements, offering a detailed analysis of the various factors influencing



Sensors 2024, 24, 7395 23 of 27

these measurements. The study provides a set of guidelines for selecting the UAV antennas,
ensuring higher levels of measurement accuracy. Additionally, we compared traditional
slant–range methods with innovative, low–cost UAV test setups and explored the extension
of path loss models by incorporating UAV altitude as a critical parameter.

The discussion included several practical test cases, such as the use of parabolic
reflector systems on ships, BASTAs, LFAAs, one of the world’s largest radio telescopes, and
ONERA’s Nostradamus system, which features 288 biconical antennas operating in the HF
range (3–30 MHz). We also examined propagation measurements for both large–scale and
small–scale channel effects.

The findings suggest that advancements in portable devices like SDRs, high–precision
positioning systems with centimeter–level accuracy, custom antenna designs, and UAVs
constructed from lightweight and durable materials such as carbon fiber have significantly
expanded the potential for UAV–based antenna and propagation measurements. For
applications in 5G/6G, where accuracy is paramount, UAV–based test setups have emerged
as the preferred measurement solution.

In conclusion, we anticipate that this review will serve as a valuable reference for
the further development of UAV–based measurement solutions, driving innovation and
precision in the field.
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