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ABSTRACT

This report presents an algorithm for obtaining Q-factor by fitting to swept-frequency scalar
measurements on resonances that are asymmetric as a result of a leakage signal. Formulae
for obtaining estimates of the unloaded Q-factor are also derived. Comparisons are made
between Q-factors fitted by scalar and vector algorithms to measured data, and to simulated
data. Example computer-codes and test examples are given.
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1 INTRODUCTION

The shapes of the electromagnetic resonances of cavities and LC circuits can be “probed” by
using a swept-frequency source and a detection system that measures transmitted amplitude or
power1 via a pair of couplings (Figure 1). Q-factor and resonant frequency can then be obtained
by various methods, including a number of fitting algorithms. A previous NPL Report [1] and a
paper [2] describe how Q-factor can be obtained by fitting from vector data obtained by using a
Vector Network Analyser (VNA) — a combined swept-frequency source and detection system for
measuring complex scattering (S-)parameters. Vector methods are more informative and often
more accurate than scalar methods but are not always possible, so scalar methods — the subject
of this report — are still needed.

In the simplest case, scalar transmission measurements on resonances are Lorentzians for which
there are straightforward published methods for fitting Q-factor [3]. The purpose of this report
is to present an algorithm for characterising resonances that appear to have asymmetric peaks
as a result of an interfering leakage signal that bypasses the resonator. It was developed for
obtaining Q-factor at terahertz frequencies from measurements made by using instrumentation
based on frequency combs [4] (for which phase data is not available), but it can be applied
more generally to measurements on resonators made with spectrum analysers, scalar network
analysers and VNAs if scalar output (|So1]) is selected.

This report also considers the topic of loading by the measuring instrument. The loaded
(measured) Q-factor is referred to as @; and the unloaded Q-factor as @,. Microwave instruments
such as VNAs typically have low impedance ports (e.g. 50 £2), which means that ; is significantly
smaller than @, if strong coupling is used. €, cannot be measured directly but, if the measured
data is calibrated (or normalised in an uncalibrated system), it can be estimated. When there is
a leakage signal, @, is found to have two possible solutions for scalar measurements.

Practical advice on measurement techniques and example computer code (Python2 with numpy
and scipy packages installed) are provided. Q-factor measurements obtained by using scalar-
fitting and vector-fitting techniques are also presented.

Vector network

analyser
Test Coaxial
cs test-port cabl
— port est-port cable
N . \‘\1;
Cylindrical

_ cavity
~~ Uncalibrated

line ~_ o
Adaptor
Port 1 Coupling Port 2
calibration plane loop calibration plane

Figure 1: Example measurement on a cavity resonator (from reference [1])..

! The “power” is actually the relative power in most cases, although some instruments allow absolute power in Watts
to be measured.
2 Python Software Foundation, https://www.python.org
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1.1 ASYMMETRIC RESONANT PEAKS

On a polar chart (Figure 2), vector So; data for swept resonances appear as circular arcs (known
as Q-circles). These can become distorted if long connecting-cables are used [1], but this has
no effect on scalar measurements. At the pole of the Q-circle, corresponding to frequency oo,
no energy is coupled via the resonance. In any practical experiment, however, the pole of the
Q-circle is displaced from the centre of the polar chart because of leakage (although this may be
very small). Leakage has the effect of making the scalar magnitude (or power) peak asymmetric,
which causes error in measurements by the “3 dB point” method as shown in Figure 2. For
scalar measurements, noise gives rise to the noise floor — a minimum signal level not predicted
by Lorentzian models for resonances.

Model equations that describe measurements on resonances with a leakage signal that does
not vary in the measured frequency range require five coefficients for scalar fitting, and six
coefficients for vector fitting. As the number of fitted coefficients is large, iterative methods
(Section 5) of fitting require reasonably accurate initial values for the iteration, otherwise a local
minimum that is far from the expected solution may be obtained. For vector measurements,
initial values that have high accuracy even when there is significant leakage are readily calcu-
lated [1, 2]. This is not necessarily true for convenient methods for obtaining initial values from
scalar data because these do not account for asymmetry. Finding initial values that enable a
reliable iterative solution is an important aspect of the scalar algorithm described in this report.

1.2 PREVIOUS WORK

Many publications describe equivalent-circuit models for resonators (the book by Pozar [5] is
recommended). An overview of methods for obtaining Q-factor from resonance data is given
in a previous NPL Report MAT 58 [1], which also presents algorithms for fitting to vector
data. Additional examples of vector fitting are provided by reference [2]. The website for
the LMFIT Python package [6] provides code examples for fitting scalar models of peaks of
various shapes, including Lorentzians, to data. Robinson & Clegg [3] calculate the Q-factor
and resonant frequency of a Lorentzian peak from the coefficients of a fitted polynomial. The
simplest technique for measuring the Q-factor of Lorentzian peaks uses readout from the cursor
facility of instruments such as VNAs and spectrum analysers (see Bray & Roy [7]). The “3 dB
points” are often chosen for convenience.

The five coefficients fitted to asymmetric peaks by the scalar algorithm given in this report are
the peak power, resonant frequency (f; ), loaded Q-factor (@;) and two additional coefficients
that characterise the effect of leakage (which is assumed not to vary with frequency). Other
workers have used scalar model equations that also include a leakage term that varies linearly
with frequency (increasing the number of coefficents in the model equation to six). These include
Petersan & Anlage [8], Zadler et al [9], and Kuptsov et al [10].

NPL Report MAT 58 [1] contains extensive background information on techniques for measuring
Q-factor by using VNAs. Of particular relevance, it is demonstrated that @; for two-port
resonators with weak coupling can be measured by using uncalibrated VNAs without significant
loss of accuracy. Moreover, for weak coupling it can often be assumed that @, ~ @;. Where
needed, there are more rigorous procedures for estimating €, in calibrated and uncalibrated
systems. These can be adapted for scalar measurements (Section 6).
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Figure 2: Polar (top) and magnitude vs frequency plots of transmission (S5 ) at
resonance. The resonant frequency and width obtained by the “3 dB points” method
are marked with asterisks on the magnitude plot. These show that the “3 dB point”
method of measuring of Q-factor is not accurate when there is significant leakage.

The -90°, 0° and 90° points are identified with open circles.
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2 SPECIFICATION

When fitting to asymmetric peaks by using the scalar algorithm described in this report, bear
in mind the following:

It is assumed that there may be unwanted couplings between the source and the detector [1,
Figure 1]. These are characterised by a leakage signal that bypasses the resonator and
causes measured peaks to be asymmetric as a result of interference. Causes of the leakage
signal include couplings between cables, and crosstalk between the loops/probes used to
couple energy into a cavity resonator.

The leakage signal is assumed not to vary significantly with frequency — in practice a
realistic assumption for typical measurements at RF and microwave frequencies (especially
if the Q-factor is high). The effect of leakage that has a clearly delineated slope can be
reduced by subtracting it from measurements — if an experiment that can estimate the
leakage is possible.

The underlying shape of resonances measured in an ideal system (without a leakage
signal) is assumed to be Lorentzian — leakage is the only phenomenon that causes peaks
to be asymmetric.

Measured resonances are assumed to be spectrally-isolated from other resonances. Over-
lapping resonances are considered in reference [1, Section 4.5].

The magnitude of the leakage signal is assumed to be smaller than the magnitude of the
resonant peak.

The work is aimed at measurement systems that record the magnitude of the transmission
coefficient, |So1|. The fitting algorithms can be applied when power is measured (e.g. with
a thermal detector), but the effects of noise on systems with amplitude and power detectors
are likely to be different (see Section 7.2).

The response of the detection system is assumed to be linear so there is no compression at
resonant peaks [1, Section 4.6]).

In most cases, §; can be obtained from uncalibrated |Sy| data without a significant loss
of accuracy.

For weak-coupling, it is often sufficient to assume that @, ~ @; . If this is not the case,
estimation of @, requires a scalar normalisation factor to be determined if the |[So;| data
is uncalibrated or if there are attenuating uncalibrated lines (see Figure 1). Refer to
Section 6 and reference [1] for more discussion.

The source has a narrow linewidth in comparison to the resonance width (otherwise the
shape of the resonance would be governed by a convolution).

Page 4 of 21
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3 THEORY

The vector transmission coefficient of a resonator as a function of frequency f can be obtained
from an equivalent circuit model [1, 2]. For a high Q-factor resonance (Q; = 100), this yields a
bilinear tranform

i@
S ) = S +d+,
eqfllfv. D 1 +]QLt

circuit

(1)

in which the fractional offset frequency ¢ is given by

(2)

Sp is a complex number that represents leakage signals that bypass the resonator, and d is the
diameter of the Q-circle. The angle 0 defines the orientation of the Q-circle.

For measurements made by using a calibrated vector instrument,

el'g

_ —j¢,—jA¢ -
S() =a(f) e’Pe lSD+d1+jQLt

] + imperfections + random noise. (3)
cal.

The term a(f) is a real valued quantity that describes attenuation in the uncalibrated lines.
The terms ¢ and A¢ represent a constant and a frequency-dependent phase delay associated
with cable connections (uncalibrated lines). A¢ can be significant for vector measurements
because it causes change in the shape of Q-circles. NPL report MAT 58 [1] discusses methods of
accounting for uncalibrated lines for vector measurements where necessary. One advantage of
scalar measurement is that phase delay caused by uncalibrated lines need not be considered.

The imperfections term is included because the resonance (neglecting leakage) may not be
Lorentzian. To proceed further, this possibility must be neglected. In this analysis, it is also
assumed that Sp) is constant in the measured frequency range.

The random noise is a complex quantity that represents nonrepeatability of data measured
by the detection system (i.e. the receivers of a VNA). This gives rise to the noise floor of scalar
measurements of [S(f)|. It is important to note that the random noise and the leakage vector
are not separable quantities.

In most experiments, measurements on transmission resonators can be made with uncalibrated
instruments because mismatches have very little effect [1]. The lack of scaling of uncalibrated
measurements is not significant for determinations of @; (but does become important if unloaded
Q-factor @, is required — see Section 6). A model-equation which allows for unscaled data can
be obtained from equation (3) by introducing new real-valued coefficients b1, b9, ¢1 and cq :

b]_ + ] b2 + leLt + ] CzQLt

S(f) = 1+Q1

(4)

After some manipulation, real and imaginary parts can be separated. These are

Page 5 of 21



NPL Report TQE 33

by +eiQpt +boQpt +ea(Qrt)”

s’ (5)
1+ (Qpt)?
and
»  ba+coQpt —ba@Qrt—cq (QLt)2
S” = . (6)
1+ (Qpt)?
The transmitted power is given by
’ 2 V4 2
p=|s|2=(s) +(S) (7)
which is
1+ Q1)
_ L) [0 + b3 + 2b1c1Qt + 2b9c2Qpt +c5(Q )% +c5(Q %] (8)

C(1+ (@ 1)2)2

For convenience new coefficients mq, m; and mq are introduced to enable equation (8) to be
written in the simpler form,

2
mg + leLt + mgy (QLt)

P =
1+ (Qpt)?

9

Thus, five coefficients ( mg, my, mg, @y, and f; ) are sufficient to describe a scalar measurement
on a resonance. Note that some of the terms contain products of coefficients (e.g. m Q). If the
leakage and noise floor have negligible effect, m; = mg = 0 and so equation (9) reduces to the
Lorentzian,

Py

P=—— 10
T+ @02 (10)

where the peak power Py = my.

4 ROBINSON & CLEGG'S 3-COEFFICIENT SOLUTION

The solution by Robinson and Clegg [3] was originally developed for measuring the Q-factor
of resonances of stirred-mode chambers that are used for measurements of Electromagnetic
Compatibility (EMC). Their method solves equation (10) for f; , @, and m,. Leakage and the
noise floor are assumed to be small enough to neglect which, for the intended application, is
often the case as power levels are high.

11 o 2 _f
P_m_0(1+4QL (P_ZEJrl)) (11)

L

or
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—=af? +bf +c (12)
where
40,2
o= L Qg (13)
mO fL
2
po 184 (14)
mo fL
and
1 2
c= —4Q2+1). (15)
mo

The coefficients a, b and ¢ can be obtained by using a polynomial fit. This yields

b
fL = —%. (16)

At the peak f = f;, so m is related to @ by

8Q,° 16aQ;’

mg = — = v
0 bfy, b2
A solution for @; is obtained by substituting for m, giving the expression
i Q> +1) (18)
c=—— .
16a @ L2 L
Therefore )
4ac T2
QL = (b—2 - 1) . (19)
Similarly, m is given by
b2\
=|lc—— . 20
mo (C 4a) (20)

Listing 1 shows how Robinson and Clegg’s method can be implemented in Python. A polynomial
fitting routine to obtain a, b and c¢. The accuracy of this method for symmetric resonances is
tested in simulations presented in Section 7.2. For typical measurements spanning a 3 dB width
(frequency range f; + 0.5 f; /@Q;), the best results are obtained when the data is unweighted.
For the purpose of obtaining estimates of @;, and f; for asymmetric resonances, however, it is
found to be beneficial to weight the data in proportion to P.
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5 ITERATIVE 5-COEFFICIENT SOLUTION

Resonances that are asymmetric as a result of leakage, or subject to a noise floor, are described
by equation (9). The five coefficients can be obtained by iteration provided that estimates (termed
initial values or seed values) are available. Convergence on the correct solution requires that
these are reasonably close to the true values.

The first step is to obtain estimates of f; and @;. The simplest approach is to estimate these
from the peak maximum and 3 dB points, which can be found from the swept data by making
searches. The built-in Lorentzian model in Python package LMFIT [6] uses this technique. The
approach adopted here is to use Robinson and Clegg’s polynomial-fitting method (Listing 1).
The estimates are not very accurate for resonances that are asymmetric or have a high noise
floor, but they are still useful as initial values. Simulations show that using the power data as
weighting factors for the polynomial fit improves the robustness of the iterative solution that
follows.

The second step is obtain initial values for mg, m1 and mq. It is often sufficient to use mgy =
max(P) and assume m; = mg = 0, but closer estimates can be obtained by using another
polynomial fit (Listing 2). This requires x and y in equation (21) to be calculated at each
measured frequency according to the estimates of /; and @y :

x=Qrt
y=P(1+2%) @1

y = m0+m1x+m2x2 Fit -

The third step is a weighted least-squares fit of the five coefficients to minimise the sum-squared
residual error, given by:

RSS =Y W, (P, —P;)". 22)

where P; and W; are the measured power and weighting at the ith frequency in the sweep, and
P; = P (mg, my, mg, Qr, f7,, f;) calculated by using equation (9).

The author has used the curve_fit and least_squares functions from the scipy package to fit
Q-factor, in both cases selecting the Levenberg-Marquardt algorithm. Identical results are
obtained, but there are differences in the required coding. This is because the curve_fit function
allows pre-calculated weighting factors (specified by the input parameter ¢ = W~°) while the
least_squares function requires that the weighting factors are incorporated in the minimised
function. This can be an advantage as they can be updated continually.

The least_squares function (Listing 3) requires the residual error to be defined by the weighted
differences as follows:

ResidErr (P,P,W) = VW (P —P). (23)
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Listing 1: Robinson and Clegg’s method of solution (modified to use optional weightings).

from numpy.polynomial import polynomial

# Data: F is a numpy of frequency data.

# P is a numpy array of power data.

RP = 1.0/P

# W = None # Weighting factors if required.

W=P # Recommend using weightings when used to

# generate initial values for iterative
# solution for asymmetric peaks (Listing 3).

fit = polynomial.polyfit(F, RP, deg=2, w=W)
c, b, a=fit
tmp = 4*a*c/(b*b)

assert tmp>1.0, 'Failed.(leakage.too.large?)’
QL = 0.5/math.sqgrt(tmp - 1.0) # QL and FL are used as initial values
FL = -0.5%b/a # for iterative solution.

m0 = 1.0/(c-b*b/(4%a))

Listing 2: Obtain all five initial values (array XA) for iterative solution.

# Method 1: Polynomial fit
from numpy.polynomial import polynomial

x = 2.0*QL*(F/FL - 1.0)

y = P*(1.0 + x**2)

fit = polynomial.polyfit(x, y, deg=2)
mO0, ml, m2 = fit

XA =m0, ml, m2, FL, Q

# Method 2: assume ml = m2 = 0
# XA = max(P), 0.0, 0.0, FL, QL

To calculate the weighting factors, the Jacobian matrix, and the residual error, requires addi-
tional computer code which is described below.

Weighting factors Q-factor is defined at resonance, so it would appear natural to apply a re-
duced weighting for data which is not close to the resonant frequency. Closer investigation
shows that for scalar fitting measurements by amplitude detection (e.g. using a VNA),
it is often better to apply no weightings (see Section 7.2 for more discussion). The code
listings give a few options which are chosen by using input parameter WeightMode.

WeightMode = 0 The data is not weighted (normally recommended).

Page 9 of 21
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Listing 3: Iterative solution by using a library function (least_squares).

from scipy.optimize import least_squares

WeightMode = 0 # Unweighted - but weighting options are available
WeightArray = None

LFun = lambda X: Fun5(X, F, P, WeightMode, SqrtWtArray)

LJac = lambda X: Jacobian5(X, F, P, WeightMode, SqrtWtArray)

scm = max(XA[0:3]) # Indicative scale for mO, ml and m2

RES least_squares (LFun, XA, method='lm', jac=LJac,
x_scale = [scm,scm,scm,FL,QL])

assert RES['success'], 'Least-squares.fit.failed'
X = RES[ 'x']

# Get the fitted coefficients
mO, ml, m2, FL, QL = X

WeightMode = 1 The data is weighted in proportion to power for an equivalent pure
Lorentzian (i.e. m1 and mq are disregarded). The weighting factor at the ith frequency
is given by

W, = ! (24)

1+ [2QL (f; _fL)]2 '
i

The same weighting formula is derived in reference [1, equation (28)] for fitting in
the complex domain.

WeightMode = 2 An array of pre-calculated weighting factors is used.

Scaling The fitted coefficients can differ by many orders of magnitude. The input parameter
x_scale is a list of values for normalising the fitted coefficients so that they all have
similar magnitude. If this is omitted, the fitting process may terminate without finding
the optimum solution.

Jacobian matrix This is the name used for a matrix of partial differentials that can be
provided to improve efficiency (Listing 4). It also makes the fitting process more robust.
Note that the partial differentials must be multiplied by the square root of the weighting
factors when fitting is performed using the least_squares function in the scipy package.

Residual error function The difference between measured data P and the values calculated
for current estimate for coefficients (Listing 5). Note that this must be multiplied by the
square root of the weighting factors when fitting is performed using the least_squares
function in the scipy package.
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Listing 4: Function for calculating the Jacobian matrix (weighted).

def Jacobian5(X, F, P, WeightMode, SqgrtWtArray):
mO, ml, m2, FL, QL = X
Jac = np.zeros([len(F),5])
t = 2.0%(F/FL - 1.0)
qt = QL*t
qt2 = qt**2

den = 1.0+qt2

den2

= den**2

d dmO = 1.0/den

d_dml = gt/den

d dm2 = qt2/den

v = m2fqt2 + ml*qt + mO

d_dF = (-4.0*QL*F*m2*qt/FL**2 2.0*QL*F*ml1/FL**2)/den \
+ 4.0*QL*F*qgt*v/(FL**2*den2)

d_dg = -2.0*qt*t * v/den2 + (2.0*qgt*m2*t + ml*t)/den

if not WeightMode: RootW = 1.0

elif WeightMode==1: RootW = np.sqrt(1.0/(1.0+qt2))
elif WeightMode==2: RootW = SqrtWtArray

Jac[:,0] = RootW*d_dmO

Jac[:,1] = RootW*d_dml
Jac[:,2] = RootW*d_dm?2
Jac[:,3] = RootW*d_dF
Jac[:,4] = RootW*d_dq

return Jac

Listing 5: Function for calculating the residual error (weighted).

def Fun5(X, F, P, WeightMode, SqrtWtArray):
mO, ml, m2, FL, QL = X
qt = 2.0*QL*(F/FL - 1.0)
qt2 = qt**2
if not WeightMode: RootW = 1.0
elif WeightMode==1: RootW = np.sqrt(1.0/(1.0+qt2))
elif WeightMode==2: RootW = SqrtWtArray
pfit = (m0 + ml*gt + m2*qt2)/(1.0+qt2)
Resid = (pfit -P)*RootW
return Resid
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6 ESTIMATION OF UNLOADED Q-FACTOR

If the coupling factors at the two ports are similar, unloaded Q-factor can be estimated from the
calibrated Q-circle diameter d of the S5 Q-circle by using a simple formula [1],

QL
1-d

Q, = (25)

For weak coupling (e.g. d =~ 0.01) it may be sufficient to assume that @, ~ ;.

It is usually the case that the fitted coefficients are determined from uncalibrated measurements
of |S51|. To obtain d therefore requires a normalisation factor to be determined. This can be
obtained by measuring the magnitude at “full-scale deflection” (FSD) when the resonator is
replaced by a through connection [1]. This measurement should be made at approximately the
resonant frequency. It is convenient to define a scaling factor A = 1/FSD. For measurements in
a calibrated system in which the uncalibrated lines are non-attenuating, A = 1.

For vector measurements, the d is provided directly by the fitting process [1]. For scalar
measurements, a calculation is needed when there is leakage. The frequencies at the minimum
and maximum power levels are found by differentiating equation (9) and solving for frequency (it
may be helpful to refer to Figure 2). The diff and solve functions in the Python sympy package
can be used to assist these derivations.

fr,(mg —mg) + 2f; @ my —fL\/m% + m% + m% — 2mgmgq

min = (26)
h 2Qrmq

p B fr, (mg —mg) + 2f; @y my +fL\/mg + m% + m% — 2mgmgo
max ZQLml

(27)

From equations (26) and (27) the minimum (p,,,5x) and maximum (p,;,) power levels can be
calculated by using equation (9). They could be in either order. Two differing solutions for the
calibrated Q-circle diameter are obtained when there is a leakage signal:

d=A (,/Pmax + \/ﬂ) . (28)

Consequently, there are two possible solutions for €, — see Section 7.3 for further discussion
and an example.

If the leakage is negligible (i.e. m/my =~ 0 and mq/mg = 0) the pole of the resonance is located
at the origin of the polar chart (so p,i, = 0). Moreover, the maximum power occurs at frequency
fmax = f7, and there is a unique solution for Qo.

Listing 6 shows a Python implementation of the calculation of @, from a scalar fit by using the
equations above.
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Listing 6: Calculation of unloaded Q-factor from the fitted mg, m, mg, f; and Q..

QCircleDial = QCircleDia2 = Qol = Qo2 = None
CorrQCircleDial = CorrQCircleDia2 = None
Magleak = 0.0

if abs(ml/m0)+abs(m2/m0)>1.0e-6:

fl = FL*( m2-m0 + 2.0*QL*ml + math.sqrt( (m2-m0)**2 + ml**2) )/(2*QL*ml)

f2 FL*( m2-m0 + 2.0*QL*ml1 - math.sqrt( (m2-m0)**2 + ml**2) )/(2*QL*ml)

pl = Power(fl, X)

p2 = Power(f2, X)

if pl>p2: tmp=pl; pl=p2; p2=tmp

if pl<0.0:

print ( 'Minimum.power.negative ._.Assuming.this.is.a.rounding.error ')

else:
MaglLeak = math.sqrt(pl)

if p2>0.0:

QCircleDial = math.sqgrt(p2)-MaglLeak

QCircleDia2 = math.sqgrt(p2)+MaglLeak

CorrQCircleDial = A*QCircleDial

Qol = QL/(1.0-CorrQCircleDial)

CorrQCircleDia2 = A*QCircleDiaZ2

Qo2 = QL/(1.0-CorrQCircleDia?2)

print( 'Corrected.Q-circle.diameters.(two.solutions) '

CorrQCircleDial ,CorrQCircleDia2)

print( 'Unloaded.Q-factors ',Qol,Qo2)
else:

’

print( 'Power.fitted._at.peak.negative.-.cannot.get.unloaded.Q")

else:
pl = Power(FL, X)
QCircleDial = math.sqgrt(pl)
CorrQCircleDial = A*QCircleDial
Qol = QL/(1.0-CorrQCircleDial)
print('Corrected.Q-circle.diameter.(one.solution)',CorrQCircleDial)
print( 'Unloaded.Q-factor ' ,Qol)
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7 TESTS

Table 1 lists fitting methods that are tested. In three tests, Q-factors fitted by these methods to
measured and simulated data are compared.

Table 1: Q-factor fitting methods that are investigated.

Algorithm No. of fitted Type | Comments
coefficients
NLQFIT6 6 Vector | Documented in references [1] and [2].
ROBINSON 3 Scalar | As Listing 1. Optional weighting-factors (W).
SCALARQFIT3 3 Scalar | Lorentzian (fits equation (10) to data).
SCALARQFITS 5 Scalar Asymmetric peak (fits equation (9) to data).
Code in Listings 1 to 6.

7.1 TEST 1: FITTING-METHOD COMPARISON FOR WELL-SHAPED
EXPERIMENTAL DATA

A swept measurement of the complex transmission-coefficient (Sy;) of Split-Post Dielectric
Resonator (SPDR) is used for this test. The data has been published previously in reference [1,
Figure 6(b)]. The measured mode (quasi-TE010) is a well-shaped Lorentzian with low leakage.
Moreover, the noise floor of the data measured by the VNA (Agilent 8753ES) is very low —
approximately 50 dB below the peak of the resonance. Very good agreement between the
algorithms and measured data is obtained (Table 2 and Figure 3). For this almost ideal data,
Robinson and Clegg’s method [3], which requires only a few lines of computer code, is observed
to have similar accuracy to the other methods. The frequency range of the data is f; +f; /@y

For this set of data, the fit obtained by using SCALARQFIT5 has a minor anomaly: the minimum
of the fitted power (at the pole of the resonance) is negative, albeit by a very small amount.
This occurs because the shape of the resonance is not quite perfect and the leakage is very low.
To avoid a runtime error when calculating the Q-circle diameter d by using equation (28), the
power at the pole (Listing 6) is rounded to zero. Therefore, the two solutions for @, are identical.
An alternative tactic is to repeat the fit with a small offset added to the S5 amplitude data.

Table 2: Vector and scalar fits for a measurement on a Split-Post Dielectric Resonator (SPDR)

Algorithm Weightings | Q, *d (calibrated) | Q,
NLQFIT6 [1, Eqn. (28)] | 7454 | 0.0121 7546
ROBINSON None 7458 | 70.0120 7548
SCALARQFIT3 | None 7451 | 10.0120 7542
SCALARQFITS | None 7444 #0.0120 +7534
$0.0120 17534

* The fitted diameter of the So; Q-circle normalised to a “thru” measurement.
T The square root of the fitted peak power.
f Calculated by using equation (28). The solutions are identical — see text for explanation.
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Figure 3: Fitted resonance of a Split-Post Dielectric Resonator
(magnitude vs. frequency).

TEST 2: COMPARISON OF VECTOR AND SCALAR FITS TO SIMULATED
DATA WITH NOISE BUT NO LEAKAGE

Tests were made using simulated VNA transmission measurements with independent noise
on both real and imaginary receivers at each point in the frequency sweep of 201 points. The
leakage signal is specified as zero. Computer code for creating the data is shown in Listing 7.
Q-factors were obtained by vector and scalar methods for 10 000 trials. Figures 4a and 4b show
one trial. The following comparisons were made:

From the complex S5; data by performing weighted fits by using NLQFIT6 [1]. As noted
previously, fitting in the complex domain provides reliable solution even when the VNA
receiver-noise is high [2, Figure 5]. The weightings used are calculated according to the
Lorentzian formula — see reference [1, Section 2.4] for more information.

From the measured power |821|2 by performing scalar fits by using ROBINSON. The data
is weighted by the measured power (W=P in Listing 1).

From the measured power |Soq 2 by performing scalar fits by using ROBINSON. No weight-
ings are used, as in the original paper [3] (W=None in Listing 1).

From the measured power |821|2 by performing scalar fits by using SCALARQFIT5. The
data is Weigh‘ced3 in proportion to the power calculated from the f; and @;, obtained in
the previous iteration according to the Lorentzian formula, i.e. W; = 1/ (1.0 + (QLti)2)
(WeightMode=1 in Listings 3 — 5).

From the measured power |S21|2 by performing scalar fits by using SCALARQFIT5. No
Wei,c:,fhtin,g{s3 are used during the iterative solution (WeightMode=0 in Listings 3 — 5).

The above calculations were carried out for three frequency ranges: f; +2f; /@y, f; +f; /@, and
fr, £ 0.5f; /@y, The data obtained is plotted as histograms in Figures 4c and 5. The standard
deviations of Q-factors obtained from the simulations are shown in Table 3.

8 SCALARQFITS always applies weightings during the calculation of initial values (Listing 1).
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Listing 7: Function for generating trial S9; data with VNA receiver noise.

import random

# Data

FL = 10.0 # Resonant frequency in arbitrary units
QL = 1000.0 # Loaded Q-factor

gamma_s = complex(0.0,0.0) # Leakage vector (no leakage)

d = 0.01 # Q-circle diameter

noise = 0.0005 # random noise, normal distribution

# Function

def

model_gamma(gamma_s, d, QL, deltaF, FL, noise):

g = gamma_s + d*exp(complex(0.0,pi))/complex(1.0, 2.0*QL*deltaF/FL)

return complex(random.normalvariate(g.real, noise), \
random.normalvariate(g.imag, noise))

# Note: deltaF = fFrequency - FL

Several observations can be made:

The simulated amplitude noise on VNA receivers results in power noise that is greatest
at peaks (Figure 4b). Noise associated with other types of instrumentation, e.g. ones that
use direct measurement of power, may not show this behaviour.

At higher noise-levels NLQFIT6 is the most robust of the methods tested (see also refer-
ence [2, Section IV]).

When the standard deviation of the noise =10 % of the Q-circle diameter, SCALARQFIT5
can find the wrong least-squares minimum, or not converge on a solution at all.

The standard deviation of the mean of the 10 000 trials (¢/100) and the average @; are
consistent to within 0.1 % of the defined value @; = 1000 for simulations fitted by using
NLQFIT6. None of the scalar methods offer such good consistency, although several of
them are consistent to within better than 1 %.

For weighted fits to a wide sweep (Figure 5a and Table 3), ROBINSON produces rather low
values of @; . In other words, the simulated noise makes the fitted peak appear broader.

Unweighted fits to a wide sweep made by using ROBINSON showed a large variation in
fitted Q-factors (Figure 5a) and sometimes exited with an error (tmp < 1.0 in Listing 1).
The SCALARFITS algorithm applies weights for the calculation of initial values using
ROBINSON because this improves the likelihood of convergence on the correct solution.

For fitting Q-factors to data with simulated receiver noise, ROBINSON gives its best
repeatability for a narrow sweep, whereas SCALARQFIT5 gives its best repeatability
for a wide sweep. This is because the ROBINSON model is fitted to 1/P, whereas the
SCALARQFIT5 is fitted to P. For fits obtained by using SCALARQFIT5, this can lead to
a dilemma because Q; is defined at resonance and, in the absence of noise, the best
adherence of experimental data to the Lorentzian shape is usually near the peak. In other
words, an experimentalist would normally prefer to use a narrow sweep range.
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Figure 4: Simulated data with VNA receiver noise. Computer code for gen-
erating the data is shown in Listing 7. The nominal value of @, is 1000. The
simulations used 201 swept frequencies. The frequency range was f; +2f; /Q; .

Page 17 of 21



NPL Report TQE 33

—— ROBINSON
(weighted)
ROBINSON
(unweighted)
==nnESERERNRNERES
800 900 1000 1100 1200

Fitted Q-factor (Qr)

(a): Sweep range f; +2f; /@, .

ROBINSON
(weighted)

ROBINSON
I (unweighted)

800 900 1000 1100 1200
Fitted Q-factor (Q;)

(b): Sweep range f; +f, /@y .

800 900 1000 1100 1200
Fitted Q-factor (Q;)

—— ROBINSON
(weighted)

ROBINSON
— (unweighted)

(c): Sweep range f; +0.5f, /Q; .

Figure 5: Simulations of Q-factors fitted by ROBINSON plotted as histograms.
Data is weighted by the simulated power where indicated. Computer code for
generating the data is shown in Listing 7. The simulations used 201 swept
frequencies for sweep ranges as shown. Some of the unweighted fits shown in
(a) failed — in these cases fits to replacement trials were used.
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Table 3: Results of simulations for a resonance with noise but no leakage. Computer code for generating

the data is shown in Listing 7. There were 201 swept frequencies.

NPL Report TQE 33

Algorithm Span f; +2f, /Qy ‘ Span f; +f; /Qp ‘ Span f; +0.5f; /Qq,
Qp £ 0,_1 from 10000 trials

NLQFIT6 (Weightedt) 1001 + 18 1001 + 17 1001 + 24

ROBINSON (Weightedt) 917 + 24 971 + 20 987 + 26

ROBINSON (Unweighted) 1211 + 1011 1017 + 39 1005 = 30

SCALARQFIT5 (Weightedt) 1009 + 53 1014 + 56 1065 + 116

SCALARQFIT5 (Unweighted) | 1003 + 38 1004 + 52 1010 + 153

tSee page 15 for a description of the weighting scheme used for each algorithm.

7.3 TEST 3: CALCULATIONS OF UNLOADED Q-FACTOR WHEN THERE IS
LEAKAGE

To test the accuracy of Q-factors fitted by SCALARQFIT5, two sets of simulated data were created
(Figure 6). These have different leakage vectors, but no simulated noise. The fitted results are
shown in Table 4. For each set of data, one of the two solutions for @, has the correct value
(1010.10), but it would not be possible to say which on the basis of one set of scalar data alone.
The differences between @; and the solutions for @, for this example are quite small as the
coupling is weak (so d is low-valued). Resonant circuits used in some applications (e.g. low-noise
oscillators) require stronger coupling, in which case loaded and unloaded Q-factors may differ
significantly.

Table 4: Unloaded Q-factors obtained from the coefficients fitted by SCALARFITS by using
equations (26) and (27).

Simulated data First solution | Second solution
d QL TQO d Qo d Qo
Figure 6a 0.0100 | 1000.00 | 101010 0.0069 | 1006.93 | 0.0100 | 1010.10
Figure 6b 0.0100 | 1010.10 | 0.0126 | 1012.81

fTCalculated by using equation (25).
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Figure 6: Simulated resonances with leakage signal (@, =1000 and d = 0.01).

8 CONCLUSION

In this report, formulae for describing the power transmission for scalar resonances have
been derived. These apply to systems that measure amplitude, such as network analysers.
Leakage, which has the effect of making resonant peaks asymmetric, is accounted for in a
model equation that has five coefficients. Formulae for calculating the unloaded Q-factor @,
of scalar measurements have also been derived. It is found that when the leakage is non-zero,
the calculated unloaded Q-factor is ambiguous as it has two solutions. Scalar fitting is not
quite as accurate as vector fitting, nor as robust when used to fit noisy data. Nevertheless, good
agreement between vector and scalar methods has been demonstrated.

Minimal implementations of computer code for iterative solution of the five coefficients have
been tested against measured and simulated data. Estimates of the uncertainty of the fitted
coefficients can be obtained from repeatability measurements. Alternatively, tools provided
by the Python package LMFIT could be used for estimating uncertainty as a byproduct of each
least-squares fit. If there are significant Type B contributions, as is often the case, experimental
techniques may be needed to give realistic estimates of uncertainty [1].
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