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ABSTRACT
This report presents an algorithm for obtaining Q-factor by fitting to swept-frequency scalar
measurements on resonances that are asymmetric as a result of a leakage signal. Formulae
for obtaining estimates of the unloaded Q-factor are also derived. Comparisons are made
between Q-factors fitted by scalar and vector algorithms to measured data, and to simulated
data. Example computer-codes and test examples are given.
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1 INTRODUCTION

The shapes of the electromagnetic resonances of cavities and LC circuits can be “probed” by
using a swept-frequency source and a detection system that measures transmitted amplitude or
power1 via a pair of couplings (Figure 1). Q-factor and resonant frequency can then be obtained
by various methods, including a number of fitting algorithms. A previous NPL Report [1] and a
paper [2] describe how Q-factor can be obtained by fitting from vector data obtained by using a
Vector Network Analyser (VNA) — a combined swept-frequency source and detection system for
measuring complex scattering (S-)parameters. Vector methods are more informative and often
more accurate than scalar methods but are not always possible, so scalar methods – the subject
of this report – are still needed.

In the simplest case, scalar transmission measurements on resonances are Lorentzians for which
there are straightforward published methods for fitting Q-factor [3]. The purpose of this report
is to present an algorithm for characterising resonances that appear to have asymmetric peaks
as a result of an interfering leakage signal that bypasses the resonator. It was developed for
obtaining Q-factor at terahertz frequencies from measurements made by using instrumentation
based on frequency combs [4] (for which phase data is not available), but it can be applied
more generally to measurements on resonators made with spectrum analysers, scalar network
analysers and VNAs if scalar output (|𝑆21|) is selected.

This report also considers the topic of loading by the measuring instrument. The loaded
(measured) Q-factor is referred to as 𝑄𝐿 and the unloaded Q-factor as 𝑄𝑜. Microwave instruments
such as VNAs typically have low impedance ports (e.g. 50 Ω), which means that 𝑄𝐿 is significantly
smaller than 𝑄𝑜 if strong coupling is used. 𝑄𝑜 cannot be measured directly but, if the measured
data is calibrated (or normalised in an uncalibrated system), it can be estimated. When there is
a leakage signal, 𝑄𝑜 is found to have two possible solutions for scalar measurements.

Practical advice on measurement techniques and example computer code (Python2 with numpy
and scipy packages installed) are provided. Q-factor measurements obtained by using scalar-
fitting and vector-fitting techniques are also presented.

Figure 1: Example measurement on a cavity resonator (from reference [1])..

1 The “power” is actually the relative power in most cases, although some instruments allow absolute power in Watts
to be measured.

2 Python Software Foundation, https://www.python.org
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1.1 ASYMMETRIC RESONANT PEAKS

On a polar chart (Figure 2), vector 𝑆21 data for swept resonances appear as circular arcs (known
as Q-circles). These can become distorted if long connecting-cables are used [1], but this has
no effect on scalar measurements. At the pole of the Q-circle, corresponding to frequency ±∞,
no energy is coupled via the resonance. In any practical experiment, however, the pole of the
Q-circle is displaced from the centre of the polar chart because of leakage (although this may be
very small). Leakage has the effect of making the scalar magnitude (or power) peak asymmetric,
which causes error in measurements by the “3 dB point” method as shown in Figure 2. For
scalar measurements, noise gives rise to the noise floor — a minimum signal level not predicted
by Lorentzian models for resonances.

Model equations that describe measurements on resonances with a leakage signal that does
not vary in the measured frequency range require five coefficients for scalar fitting, and six
coefficients for vector fitting. As the number of fitted coefficients is large, iterative methods
(Section 5) of fitting require reasonably accurate initial values for the iteration, otherwise a local
minimum that is far from the expected solution may be obtained. For vector measurements,
initial values that have high accuracy even when there is significant leakage are readily calcu-
lated [1, 2]. This is not necessarily true for convenient methods for obtaining initial values from
scalar data because these do not account for asymmetry. Finding initial values that enable a
reliable iterative solution is an important aspect of the scalar algorithm described in this report.

1.2 PREVIOUS WORK

Many publications describe equivalent-circuit models for resonators (the book by Pozar [5] is
recommended). An overview of methods for obtaining Q-factor from resonance data is given
in a previous NPL Report MAT 58 [1], which also presents algorithms for fitting to vector
data. Additional examples of vector fitting are provided by reference [2]. The website for
the LMFIT Python package [6] provides code examples for fitting scalar models of peaks of
various shapes, including Lorentzians, to data. Robinson & Clegg [3] calculate the Q-factor
and resonant frequency of a Lorentzian peak from the coefficients of a fitted polynomial. The
simplest technique for measuring the Q-factor of Lorentzian peaks uses readout from the cursor
facility of instruments such as VNAs and spectrum analysers (see Bray & Roy [7]). The “3 dB
points” are often chosen for convenience.

The five coefficients fitted to asymmetric peaks by the scalar algorithm given in this report are
the peak power, resonant frequency (𝑓𝐿), loaded Q-factor (𝑄𝐿) and two additional coefficients
that characterise the effect of leakage (which is assumed not to vary with frequency). Other
workers have used scalar model equations that also include a leakage term that varies linearly
with frequency (increasing the number of coefficents in the model equation to six). These include
Petersan & Anlage [8], Zadler et al [9], and Kuptsov et al [10].

NPL Report MAT 58 [1] contains extensive background information on techniques for measuring
Q-factor by using VNAs. Of particular relevance, it is demonstrated that 𝑄𝐿 for two-port
resonators with weak coupling can be measured by using uncalibrated VNAs without significant
loss of accuracy. Moreover, for weak coupling it can often be assumed that 𝑄𝑜 ≈ 𝑄𝐿. Where
needed, there are more rigorous procedures for estimating 𝑄𝑜 in calibrated and uncalibrated
systems. These can be adapted for scalar measurements (Section 6).

Page 2 of 21
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2 SPECIFICATION

When fitting to asymmetric peaks by using the scalar algorithm described in this report, bear
in mind the following:

• It is assumed that there may be unwanted couplings between the source and the detector [1,
Figure 1]. These are characterised by a leakage signal that bypasses the resonator and
causes measured peaks to be asymmetric as a result of interference. Causes of the leakage
signal include couplings between cables, and crosstalk between the loops/probes used to
couple energy into a cavity resonator.

• The leakage signal is assumed not to vary significantly with frequency — in practice a
realistic assumption for typical measurements at RF and microwave frequencies (especially
if the Q-factor is high). The effect of leakage that has a clearly delineated slope can be
reduced by subtracting it from measurements — if an experiment that can estimate the
leakage is possible.

• The underlying shape of resonances measured in an ideal system (without a leakage
signal) is assumed to be Lorentzian — leakage is the only phenomenon that causes peaks
to be asymmetric.

• Measured resonances are assumed to be spectrally-isolated from other resonances. Over-
lapping resonances are considered in reference [1, Section 4.5].

• The magnitude of the leakage signal is assumed to be smaller than the magnitude of the
resonant peak.

• The work is aimed at measurement systems that record the magnitude of the transmission
coefficient, |𝑆21|. The fitting algorithms can be applied when power is measured (e.g. with
a thermal detector), but the effects of noise on systems with amplitude and power detectors
are likely to be different (see Section 7.2).

• The response of the detection system is assumed to be linear so there is no compression at
resonant peaks [1, Section 4.6]).

• In most cases, 𝑄𝐿 can be obtained from uncalibrated |𝑆21| data without a significant loss
of accuracy.

• For weak-coupling, it is often sufficient to assume that 𝑄𝑜 ≈ 𝑄𝐿. If this is not the case,
estimation of 𝑄𝑜 requires a scalar normalisation factor to be determined if the |𝑆21| data
is uncalibrated or if there are attenuating uncalibrated lines (see Figure 1). Refer to
Section 6 and reference [1] for more discussion.

• The source has a narrow linewidth in comparison to the resonance width (otherwise the
shape of the resonance would be governed by a convolution).

Page 4 of 21
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3 THEORY

The vector transmission coefficient of a resonator as a function of frequency 𝑓 can be obtained
from an equivalent circuit model [1, 2]. For a high Q-factor resonance (𝑄𝐿 ≳ 100), this yields a
bilinear tranform

𝑆(𝑓 )
equiv.
circuit

= 𝑆𝐷 + 𝑑
𝑒j𝜃

1 + j𝑄𝐿𝑡
, (1)

in which the fractional offset frequency 𝑡 is given by

𝑡 = 2
𝑓 − 𝑓𝐿

𝑓𝐿
. (2)

.

𝑆𝐷 is a complex number that represents leakage signals that bypass the resonator, and 𝑑 is the
diameter of the Q-circle. The angle 𝜃 defines the orientation of the Q-circle.

For measurements made by using a calibrated vector instrument,

𝑆(𝑓 )
cal.

= 𝛼(𝑓 ) 𝑒−j𝜙𝑒−jΔ𝜙 ⎡⎢
⎣

𝑆𝐷 + 𝑑
𝑒j𝜃

1 + j𝑄𝐿𝑡
⎤⎥
⎦

+ imperfections + random noise. (3)

The term 𝛼(𝑓 ) is a real valued quantity that describes attenuation in the uncalibrated lines.
The terms 𝜙 and Δ𝜙 represent a constant and a frequency-dependent phase delay associated
with cable connections (uncalibrated lines). Δ𝜙 can be significant for vector measurements
because it causes change in the shape of Q-circles. NPL report MAT 58 [1] discusses methods of
accounting for uncalibrated lines for vector measurements where necessary. One advantage of
scalar measurement is that phase delay caused by uncalibrated lines need not be considered.

The imperfections term is included because the resonance (neglecting leakage) may not be
Lorentzian. To proceed further, this possibility must be neglected. In this analysis, it is also
assumed that 𝑆𝐷 is constant in the measured frequency range.

The random noise is a complex quantity that represents nonrepeatability of data measured
by the detection system (i.e. the receivers of a VNA). This gives rise to the noise floor of scalar
measurements of |𝑆(𝑓 )|. It is important to note that the random noise and the leakage vector
are not separable quantities.

In most experiments, measurements on transmission resonators can be made with uncalibrated
instruments because mismatches have very little effect [1]. The lack of scaling of uncalibrated
measurements is not significant for determinations of 𝑄𝐿 (but does become important if unloaded
Q-factor 𝑄𝑜 is required — see Section 6). A model-equation which allows for unscaled data can
be obtained from equation (3) by introducing new real-valued coefficients 𝑏1, 𝑏2, 𝑐1 and 𝑐2 :

𝑆(𝑓 ) =
𝑏1 + j 𝑏2 + 𝑐1𝑄𝐿𝑡 + j 𝑐2𝑄𝐿𝑡

1 + j𝑄𝐿𝑡
. (4)

After some manipulation, real and imaginary parts can be separated. These are

Page 5 of 21
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𝑆′ =
𝑏1 + 𝑐1𝑄𝐿𝑡 + 𝑏2𝑄𝐿𝑡 + 𝑐2(𝑄𝐿𝑡)2

1 + (𝑄𝐿𝑡)2 (5)

and

𝑆″ =
𝑏2 + 𝑐2𝑄𝐿𝑡 − 𝑏2𝑄𝐿𝑡 − 𝑐1(𝑄𝐿𝑡)2

1 + (𝑄𝐿𝑡)2 . (6)

.

The transmitted power is given by

𝑃 = |𝑆|2 = (𝑆′)
2

+ (𝑆″)
2

(7)

which is

𝑃 =
(1 + (𝑄𝐿𝑡)2)

(1 + (𝑄𝐿𝑡)2) 2 [𝑏2
1 + 𝑏2

2 + 2𝑏1𝑐1𝑄𝐿𝑡 + 2𝑏2𝑐2𝑄𝐿𝑡 + 𝑐2
1(𝑄𝐿𝑡)2 + 𝑐2

2(𝑄𝐿𝑡)2] . (8)

For convenience new coefficients 𝑚0, 𝑚1 and 𝑚2 are introduced to enable equation (8) to be
written in the simpler form,

𝑃 =
𝑚0 + 𝑚1𝑄𝐿𝑡 + 𝑚2(𝑄𝐿𝑡)2

1 + (𝑄𝐿𝑡)2 . (9)

Thus, five coefficients ( 𝑚0, 𝑚1, 𝑚2, 𝑄𝐿 and 𝑓𝐿) are sufficient to describe a scalar measurement
on a resonance. Note that some of the terms contain products of coefficients (e.g. 𝑚1𝑄𝐿). If the
leakage and noise floor have negligible effect, 𝑚1 = 𝑚2 = 0 and so equation (9) reduces to the
Lorentzian,

𝑃 =
𝑃0

1 + (𝑄𝐿𝑡)2 , (10)

where the peak power 𝑃0 ≡ 𝑚0.

4 ROBINSON & CLEGG'S 3-COEFFICIENT SOLUTION

The solution by Robinson and Clegg [3] was originally developed for measuring the Q-factor
of resonances of stirred-mode chambers that are used for measurements of Electromagnetic
Compatibility (EMC). Their method solves equation (10) for 𝑓𝐿, 𝑄𝐿 and 𝑚0. Leakage and the
noise floor are assumed to be small enough to neglect which, for the intended application, is
often the case as power levels are high.

1
𝑃

=
1

𝑚0

⎛⎜⎜
⎝

1 + 4𝑄𝐿
2 ⎛⎜⎜

⎝

𝑓 2

𝑓𝐿
2 − 2

𝑓
𝑓𝐿

+ 1⎞⎟⎟
⎠

⎞⎟⎟
⎠

(11)

or
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1
𝑃

= 𝑎𝑓 2 + 𝑏𝑓 + 𝑐 (12)

where

𝑎 =
1

𝑚0

4𝑄𝐿
2

𝑓𝐿
2 (13)

𝑏 = −
1

𝑚0

8𝑄𝐿
2

𝑓𝐿
(14)

and

𝑐 =
1

𝑚0
(4𝑄𝐿

2 + 1). (15)

The coefficients 𝑎, 𝑏 and 𝑐 can be obtained by using a polynomial fit. This yields

𝑓𝐿 = −
𝑏

2𝑎
. (16)

At the peak 𝑓 = 𝑓𝐿, so 𝑚0 is related to 𝑄𝐿 by

𝑚0 = −
8𝑄𝐿

2

𝑏 𝑓𝐿
=

16 𝑎 𝑄𝐿
2

𝑏2 . (17)

A solution for 𝑄𝐿 is obtained by substituting for 𝑚0, giving the expression

𝑐 =
𝑏2

16 𝑎 𝑄𝐿
2 (4𝑄𝐿

2 + 1). (18)

Therefore

𝑄𝐿 = (4𝑎𝑐
𝑏2 − 1)

− 1
2

. (19)

Similarly, 𝑚0 is given by

𝑚0 = ⎛⎜
⎝

𝑐 −
𝑏2

4𝑎
⎞⎟
⎠

−1

. (20)

Listing 1 shows how Robinson and Clegg’s method can be implemented in Python. A polynomial
fitting routine to obtain 𝑎, 𝑏 and 𝑐. The accuracy of this method for symmetric resonances is
tested in simulations presented in Section 7.2. For typical measurements spanning a 3 dB width
(frequency range 𝑓𝐿 ± 0.5 𝑓𝐿/𝑄𝐿), the best results are obtained when the data is unweighted.
For the purpose of obtaining estimates of 𝑄𝐿 and 𝑓𝐿 for asymmetric resonances, however, it is
found to be beneficial to weight the data in proportion to 𝑃.
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5 ITERATIVE 5-COEFFICIENT SOLUTION

Resonances that are asymmetric as a result of leakage, or subject to a noise floor, are described
by equation (9). The five coefficients can be obtained by iteration provided that estimates (termed
initial values or seed values) are available. Convergence on the correct solution requires that
these are reasonably close to the true values.

The first step is to obtain estimates of 𝑓𝐿 and 𝑄𝐿. The simplest approach is to estimate these
from the peak maximum and 3 dB points, which can be found from the swept data by making
searches. The built-in Lorentzian model in Python package LMFIT [6] uses this technique. The
approach adopted here is to use Robinson and Clegg’s polynomial-fitting method (Listing 1).
The estimates are not very accurate for resonances that are asymmetric or have a high noise
floor, but they are still useful as initial values. Simulations show that using the power data as
weighting factors for the polynomial fit improves the robustness of the iterative solution that
follows.

The second step is obtain initial values for 𝑚0, 𝑚1 and 𝑚2. It is often sufficient to use 𝑚0 =
max(𝑃) and assume 𝑚1 = 𝑚2 = 0, but closer estimates can be obtained by using another
polynomial fit (Listing 2). This requires 𝑥 and 𝑦 in equation (21) to be calculated at each
measured frequency according to the estimates of 𝑓𝐿 and 𝑄𝐿:

𝑥 = 𝑄𝐿𝑡

𝑦 = 𝑃 (1 + 𝑥2)

𝑦 ≈ 𝑚0 + 𝑚1 𝑥 + 𝑚2 𝑥2 ∣
Fit

.
(21)

The third step is a weighted least-squares fit of the five coefficients to minimise the sum-squared
residual error, given by:

RSS = ∑
𝑖

𝑊𝑖 (𝑃𝑖 − 𝑃𝑖)
2

. (22)

where 𝑃𝑖 and 𝑊𝑖 are the measured power and weighting at the 𝑖th frequency in the sweep, and
𝑃𝑖 ≡ 𝑃 (𝑚0, 𝑚1, 𝑚2, 𝑄𝐿, 𝑓𝐿, 𝑓𝑖) calculated by using equation (9).

The author has used the curve_fit and least_squares functions from the scipy package to fit
Q-factor, in both cases selecting the Levenberg-Marquardt algorithm. Identical results are
obtained, but there are differences in the required coding. This is because the curve_fit function
allows pre-calculated weighting factors (specified by the input parameter 𝜎 = 𝑊−0.5) while the
least_squares function requires that the weighting factors are incorporated in the minimised
function. This can be an advantage as they can be updated continually.

The least_squares function (Listing 3) requires the residual error to be defined by the weighted
differences as follows:

ResidErr(𝑃, 𝑃, 𝑊) = √𝑊 (𝑃 − 𝑃) . (23)
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Listing 1: Robinson and Clegg’s method of solution (modified to use optional weightings).
from numpy . polynomial import polynomial

# Data : F i s a numpy of frequency data .
# P i s a numpy array of power data .

RP = 1.0/P
# W = None # Weighting factors i f required .
W = P # Recommend using weight ings when used to

# generate i n i t i a l values for i t e r a t i v e
# so lu t ion for asymmetric peaks ( L i s t i n g 3 ) .

f i t = polynomial . p o l y f i t ( F , RP , deg=2 , w=W)
c , b , a = f i t
tmp = 4*a*c / ( b*b )
assert tmp>1.0 , ' Fa i l ed ␣ ( leakage␣too␣ large ? ) '
QL = 0.5/math . sqr t ( tmp - 1 .0 ) # QL and FL are used as i n i t i a l values
FL = -0 .5* b/a # for i t e r a t i v e so lu t ion .
m0 = 1 .0/ ( c - b*b / (4*a ) )

Listing 2: Obtain all five initial values (array XA) for iterative solution.
# Method 1 : Polynomial f i t
from numpy . polynomial import polynomial

x = 2.0*QL* ( F/FL - 1 .0 )
y = P * (1 .0 + x * *2 )
f i t = polynomial . p o l y f i t ( x , y , deg=2)
m0, m1, m2 = f i t

XA = m0, m1, m2, FL , Q

# Method 2 : assume m1 = m2 = 0
# XA = max( P ) , 0 .0 , 0 .0 , FL , QL

To calculate the weighting factors, the Jacobian matrix, and the residual error, requires addi-
tional computer code which is described below.

Weighting factors Q-factor is defined at resonance, so it would appear natural to apply a re-
duced weighting for data which is not close to the resonant frequency. Closer investigation
shows that for scalar fitting measurements by amplitude detection (e.g. using a VNA),
it is often better to apply no weightings (see Section 7.2 for more discussion). The code
listings give a few options which are chosen by using input parameter WeightMode.

WeightMode = 0 The data is not weighted (normally recommended).
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Listing 3: Iterative solution by using a library function (least_squares).
from sc ipy . opt imize import least_squares

WeightMode = 0 # Unweighted - but weight ing opt ions are ava i l ab le
WeightArray = None

LFun = lambda X : Fun5 (X , F , P , WeightMode , SqrtWtArray )
LJac = lambda X : Jacobian5 (X , F , P , WeightMode , SqrtWtArray )
scm = max(XA [ 0 : 3 ] ) # I nd i c a t i v e scale for m0, m1 and m2
RES = least_squares ( LFun , XA , method= ' lm ' , jac=LJac ,

x_scale = [scm , scm , scm , FL ,QL ] )

assert RES [ ' success ' ] , ' Least - squares␣ f i t ␣ f a i l e d '
X = RES [ ' x ' ]

# Get the f i t t e d coe f f i c i e n t s
m0, m1, m2, FL , QL = X

WeightMode = 1 The data is weighted in proportion to power for an equivalent pure
Lorentzian (i.e. 𝑚1 and 𝑚2 are disregarded). The weighting factor at the 𝑖th frequency
is given by

𝑊𝑖 =
1

1 + ⎡⎢
⎣

2𝑄𝐿 (𝑓𝑖 − 𝑓𝐿)
𝑓𝐿

⎤⎥
⎦

2 . (24)

The same weighting formula is derived in reference [1, equation (28)] for fitting in
the complex domain.

WeightMode = 2 An array of pre-calculated weighting factors is used.

Scaling The fitted coefficients can differ by many orders of magnitude. The input parameter
x_scale is a list of values for normalising the fitted coefficients so that they all have
similar magnitude. If this is omitted, the fitting process may terminate without finding
the optimum solution.

Jacobian matrix This is the name used for a matrix of partial differentials that can be
provided to improve efficiency (Listing 4). It also makes the fitting process more robust.
Note that the partial differentials must be multiplied by the square root of the weighting
factors when fitting is performed using the least_squares function in the scipy package.

Residual error function The difference between measured data 𝑃 and the values calculated
for current estimate for coefficients (Listing 5). Note that this must be multiplied by the
square root of the weighting factors when fitting is performed using the least_squares
function in the scipy package.
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Listing 4: Function for calculating the Jacobian matrix (weighted).
def Jacobian5 (X , F , P , WeightMode , SqrtWtArray ) :

m0, m1, m2, FL , QL = X
Jac = np . zeros ( [ len ( F ) , 5 ] )
t = 2 .0 * ( F/FL - 1 .0 )
qt = QL* t
qt2 = qt **2
den = 1.0+qt2
den2 = den**2
d_dm0 = 1.0/den
d_dm1 = qt /den
d_dm2 = qt2/den
v = m2* qt2 + m1* qt + m0
d_dF = ( -4 .0 *QL* F *m2* qt /FL **2 - 2 .0*QL* F *m1/FL * *2 ) / den \

+ 4.0*QL* F * qt * v / ( FL **2*den2 )
d_dq = -2 .0* qt * t * v/den2 + (2 .0 * qt *m2* t + m1* t ) / den

i f not WeightMode : RootW = 1.0
e l i f WeightMode==1: RootW = np . sqr t (1 .0/ (1 .0+ qt2 ) )
e l i f WeightMode==2: RootW = SqrtWtArray
Jac [ : , 0 ] = RootW*d_dm0
Jac [ : , 1 ] = RootW*d_dm1
Jac [ : , 2 ] = RootW*d_dm2
Jac [ : , 3 ] = RootW*d_dF
Jac [ : , 4 ] = RootW*d_dq

return Jac

Listing 5: Function for calculating the residual error (weighted).
def Fun5 (X , F , P , WeightMode , SqrtWtArray ) :

m0, m1, m2, FL , QL = X
qt = 2.0*QL* ( F/FL - 1 .0 )
qt2 = qt **2
i f not WeightMode : RootW = 1.0
e l i f WeightMode==1: RootW = np . sqr t (1 .0/ (1 .0+ qt2 ) )
e l i f WeightMode==2: RootW = SqrtWtArray
p f i t = (m0 + m1* qt + m2* qt2 )/ (1 .0+ qt2 )
Resid = ( p f i t - P ) * RootW

return Resid
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6 ESTIMATION OF UNLOADED Q-FACTOR

If the coupling factors at the two ports are similar, unloaded Q-factor can be estimated from the
calibrated Q-circle diameter 𝑑 of the 𝑆21 Q-circle by using a simple formula [1],

𝑄𝑜 =
𝑄𝐿

1 − 𝑑
. (25)

For weak coupling (e.g. 𝑑 ≈ 0.01) it may be sufficient to assume that 𝑄𝑜 ≈ 𝑄𝐿.

It is usually the case that the fitted coefficients are determined from uncalibrated measurements
of |𝑆21|. To obtain 𝑑 therefore requires a normalisation factor to be determined. This can be
obtained by measuring the magnitude at “full-scale deflection” (FSD) when the resonator is
replaced by a through connection [1]. This measurement should be made at approximately the
resonant frequency. It is convenient to define a scaling factor 𝐴 = 1/FSD. For measurements in
a calibrated system in which the uncalibrated lines are non-attenuating, 𝐴 = 1.

For vector measurements, the 𝑑 is provided directly by the fitting process [1]. For scalar
measurements, a calculation is needed when there is leakage. The frequencies at the minimum
and maximum power levels are found by differentiating equation (9) and solving for frequency (it
may be helpful to refer to Figure 2). The diff and solve functions in the Python sympy package
can be used to assist these derivations.

𝑓min =
𝑓𝐿(𝑚2 − 𝑚0) + 2𝑓𝐿𝑄𝐿𝑚1 − 𝑓𝐿√𝑚2

0 + 𝑚2
1 + 𝑚2

2 − 2𝑚0𝑚2

2𝑄𝐿𝑚1
(26)

𝑓max =
𝑓𝐿(𝑚2 − 𝑚0) + 2𝑓𝐿𝑄𝐿𝑚1 + 𝑓𝐿√𝑚2

0 + 𝑚2
1 + 𝑚2

2 − 2𝑚0𝑚2

2𝑄𝐿𝑚1
(27)

From equations (26) and (27) the minimum (𝑝max) and maximum (𝑝min) power levels can be
calculated by using equation (9). They could be in either order. Two differing solutions for the
calibrated Q-circle diameter are obtained when there is a leakage signal:

𝑑 = 𝐴 (√𝑃max ± √𝑃min) . (28)

Consequently, there are two possible solutions for 𝑄𝑜 — see Section 7.3 for further discussion
and an example.

If the leakage is negligible (i.e. 𝑚1/𝑚0 ≈ 0 and 𝑚2/𝑚0 ≈ 0) the pole of the resonance is located
at the origin of the polar chart (so 𝑝min ≈ 0). Moreover, the maximum power occurs at frequency
𝑓max ≈ 𝑓𝐿 and there is a unique solution for 𝑄𝑜.

Listing 6 shows a Python implementation of the calculation of 𝑄𝑜 from a scalar fit by using the
equations above.
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Listing 6: Calculation of unloaded Q-factor from the fitted 𝑚0, 𝑚1, 𝑚2, 𝑓𝐿 and 𝑄𝐿.
QCircleDia1 = QCircleDia2 = Qo1 = Qo2 = None
CorrQCircleDia1 = CorrQCircleDia2 = None
MagLeak = 0.0

i f abs (m1/m0)+abs (m2/m0)>1.0e - 6 :
f1 = FL * ( m2-m0 + 2.0*QL*m1 + math . sqr t ( (m2-m0) * *2 + m1**2 ) ) / ( 2 *QL*m1)
f2 = FL * ( m2-m0 + 2.0*QL*m1 - math . sqr t ( (m2-m0) * *2 + m1**2 ) ) / ( 2 *QL*m1)
p1 = Power ( f1 , X)
p2 = Power ( f2 , X)
i f p1>p2 : tmp=p1 ; p1=p2 ; p2=tmp
i f p1<0.0:

pr int ( 'Minimum␣power␣negative . ␣Assuming␣ t h i s ␣ i s ␣a␣ rounding␣ error ' )
else :

MagLeak = math . sqr t ( p1 )

i f p2>0.0:
QCircleDia1 = math . sqr t ( p2 ) -MagLeak
QCircleDia2 = math . sqr t ( p2)+MagLeak
CorrQCircleDia1 = A* QCircleDia1
Qo1 = QL/ (1 .0 - CorrQCircleDia1 )
CorrQCircleDia2 = A* QCircleDia2
Qo2 = QL/ (1 .0 - CorrQCircleDia2 )
pr int ( ' Corrected␣Q- c i r c l e ␣diameters␣ ( two␣ so lu t ions ) ' ,

CorrQCircleDia1 , CorrQCircleDia2 )
pr int ( ' Unloaded␣Q- factors ' ,Qo1 ,Qo2)

else :
pr int ( ' Power␣ f i t t e d ␣at␣peak␣negative ␣ -␣cannot␣get␣unloaded␣Q ' )

else :
p1 = Power ( FL , X)
QCircleDia1 = math . sqr t ( p1 )
CorrQCircleDia1 = A* QCircleDia1
Qo1 = QL/ (1 .0 - CorrQCircleDia1 )
pr int ( ' Corrected␣Q- c i r c l e ␣diameter␣ ( one␣ so lu t ion ) ' , CorrQCircleDia1 )
pr int ( ' Unloaded␣Q- factor ' ,Qo1)
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7 TESTS

Table 1 lists fitting methods that are tested. In three tests, Q-factors fitted by these methods to
measured and simulated data are compared.

Table 1: Q-factor fitting methods that are investigated.

Algorithm No. of fitted
coefficients

Type Comments

NLQFIT6 6 Vector Documented in references [1] and [2].
ROBINSON 3 Scalar As Listing 1. Optional weighting-factors (W).
SCALARQFIT3 3 Scalar Lorentzian (fits equation (10) to data).

SCALARQFIT5 5 Scalar Asymmetric peak (fits equation (9) to data).
Code in Listings 1 to 6.

7.1 TEST 1: FITTING-METHOD COMPARISON FOR WELL-SHAPED
EXPERIMENTAL DATA

A swept measurement of the complex transmission-coefficient (𝑆21) of Split-Post Dielectric
Resonator (SPDR) is used for this test. The data has been published previously in reference [1,
Figure 6(b)]. The measured mode (quasi-TE01𝛿) is a well-shaped Lorentzian with low leakage.
Moreover, the noise floor of the data measured by the VNA (Agilent 8753ES) is very low —
approximately 50 dB below the peak of the resonance. Very good agreement between the
algorithms and measured data is obtained (Table 2 and Figure 3). For this almost ideal data,
Robinson and Clegg’s method [3], which requires only a few lines of computer code, is observed
to have similar accuracy to the other methods. The frequency range of the data is 𝑓𝐿 ± 𝑓𝐿/𝑄𝐿.

For this set of data, the fit obtained by using SCALARQFIT5 has a minor anomaly: the minimum
of the fitted power (at the pole of the resonance) is negative, albeit by a very small amount.
This occurs because the shape of the resonance is not quite perfect and the leakage is very low.
To avoid a runtime error when calculating the Q-circle diameter 𝑑 by using equation (28), the
power at the pole (Listing 6) is rounded to zero. Therefore, the two solutions for 𝑄𝑜 are identical.
An alternative tactic is to repeat the fit with a small offset added to the 𝑆21 amplitude data.

Table 2: Vector and scalar fits for a measurement on a Split-Post Dielectric Resonator (SPDR)

Algorithm Weightings QL * d (calibrated) Qo
NLQFIT6 [1, Eqn. (28)] 7454 0.0121 7546
ROBINSON None 7458 †0.0120 7548
SCALARQFIT3 None 7451 †0.0120 7542

SCALARQFIT5 None 7444 ‡0.0120 ‡7534
‡0.0120 ‡7534

* The fitted diameter of the 𝑆21 Q-circle normalised to a “thru” measurement.
† The square root of the fitted peak power.
‡ Calculated by using equation (28). The solutions are identical — see text for explanation.
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Figure 3: Fitted resonance of a Split-Post Dielectric Resonator
(magnitude vs. frequency).

7.2 TEST 2: COMPARISON OF VECTOR AND SCALAR FITS TO SIMULATED
DATA WITH NOISE BUT NO LEAKAGE

Tests were made using simulated VNA transmission measurements with independent noise
on both real and imaginary receivers at each point in the frequency sweep of 201 points. The
leakage signal is specified as zero. Computer code for creating the data is shown in Listing 7.
Q-factors were obtained by vector and scalar methods for 10 000 trials. Figures 4a and 4b show
one trial. The following comparisons were made:

• From the complex 𝑆21 data by performing weighted fits by using NLQFIT6 [1]. As noted
previously, fitting in the complex domain provides reliable solution even when the VNA
receiver-noise is high [2, Figure 5]. The weightings used are calculated according to the
Lorentzian formula — see reference [1, Section 2.4] for more information.

• From the measured power |𝑆21|2 by performing scalar fits by using ROBINSON. The data
is weighted by the measured power (W=P in Listing 1).

• From the measured power |𝑆21|2 by performing scalar fits by using ROBINSON. No weight-
ings are used, as in the original paper [3] (W=None in Listing 1).

• From the measured power |𝑆21|2 by performing scalar fits by using SCALARQFIT5. The
data is weighted3 in proportion to the power calculated from the 𝑓𝐿 and 𝑄𝐿 obtained in
the previous iteration according to the Lorentzian formula, i.e. 𝑊𝑖 = 1/ (1.0 + (𝑄𝐿𝑡𝑖)2)
(WeightMode=1 in Listings 3 – 5).

• From the measured power |𝑆21|2 by performing scalar fits by using SCALARQFIT5. No
weightings3 are used during the iterative solution (WeightMode=0 in Listings 3 – 5).

The above calculations were carried out for three frequency ranges: 𝑓𝐿 ±2 𝑓𝐿/𝑄𝐿, 𝑓𝐿 ±𝑓𝐿/𝑄𝐿 and
𝑓𝐿 ± 0.5 𝑓𝐿/𝑄𝐿. The data obtained is plotted as histograms in Figures 4c and 5. The standard
deviations of Q-factors obtained from the simulations are shown in Table 3.

3 SCALARQFIT5 always applies weightings during the calculation of initial values (Listing 1).
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Listing 7: Function for generating trial 𝑆21 data with VNA receiver noise.
import random

# Data
FL = 10.0 # Resonant frequency in a rb i t r a r y un i t s
QL = 1000.0 # Loaded Q- factor
gamma_s = complex ( 0 . 0 , 0 . 0 ) # Leakage vector ( no leakage )
d = 0.01 # Q- c i r c l e diameter
noise = 0.0005 # random noise , normal d i s t r i b u t i o n

# Funct ion
def model_gamma(gamma_s , d , QL , deltaF , FL , noise ) :

g = gamma_s + d* exp ( complex ( 0 . 0 , p i ) ) / complex ( 1 . 0 , 2 .0*QL* del taF /FL )
return complex ( random . normalvar iate ( g . real , noise ) , \

random . normalvariate ( g . imag , noise ) )

# Note : de l taF = Frequency - FL

Several observations can be made:

• The simulated amplitude noise on VNA receivers results in power noise that is greatest
at peaks (Figure 4b). Noise associated with other types of instrumentation, e.g. ones that
use direct measurement of power, may not show this behaviour.

• At higher noise-levels NLQFIT6 is the most robust of the methods tested (see also refer-
ence [2, Section IV]).

• When the standard deviation of the noise ≳10 % of the Q-circle diameter, SCALARQFIT5
can find the wrong least-squares minimum, or not converge on a solution at all.

• The standard deviation of the mean of the 10 000 trials (𝜎/100) and the average 𝑄𝐿 are
consistent to within 0.1 % of the defined value 𝑄𝐿 = 1000 for simulations fitted by using
NLQFIT6. None of the scalar methods offer such good consistency, although several of
them are consistent to within better than 1 %.

• For weighted fits to a wide sweep (Figure 5a and Table 3), ROBINSON produces rather low
values of 𝑄𝐿. In other words, the simulated noise makes the fitted peak appear broader.

• Unweighted fits to a wide sweep made by using ROBINSON showed a large variation in
fitted Q-factors (Figure 5a) and sometimes exited with an error (tmp ≤ 1.0 in Listing 1).
The SCALARFIT5 algorithm applies weights for the calculation of initial values using
ROBINSON because this improves the likelihood of convergence on the correct solution.

• For fitting Q-factors to data with simulated receiver noise, ROBINSON gives its best
repeatability for a narrow sweep, whereas SCALARQFIT5 gives its best repeatability
for a wide sweep. This is because the ROBINSON model is fitted to 1/𝑃, whereas the
SCALARQFIT5 is fitted to 𝑃. For fits obtained by using SCALARQFIT5, this can lead to
a dilemma because 𝑄𝐿 is defined at resonance and, in the absence of noise, the best
adherence of experimental data to the Lorentzian shape is usually near the peak. In other
words, an experimentalist would normally prefer to use a narrow sweep range.
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(b): Trial 𝑆21 plotted as relative power (|𝑆21|2).
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(c): Histogram created from 10 000 trials.

Figure 4: Simulated data with VNA receiver noise. Computer code for gen-
erating the data is shown in Listing 7. The nominal value of 𝑄𝐿 is 1000. The
simulations used 201 swept frequencies. The frequency range was 𝑓𝐿 ±2 𝑓𝐿/𝑄𝐿.
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Figure 5: Simulations of Q-factors fitted by ROBINSON plotted as histograms.
Data is weighted by the simulated power where indicated. Computer code for
generating the data is shown in Listing 7. The simulations used 201 swept
frequencies for sweep ranges as shown. Some of the unweighted fits shown in
(a) failed — in these cases fits to replacement trials were used.
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Table 3: Results of simulations for a resonance with noise but no leakage. Computer code for generating
the data is shown in Listing 7. There were 201 swept frequencies.

Algorithm Span fL ± 2 fL/QL Span fL ± fL/QL Span fL ± 0.5 fL/QL
QL ± 𝜎𝑛−1 from 10 000 trials

NLQFIT6 (Weighted†) 1001 ± 18 1001 ± 17 1001 ± 24
ROBINSON (Weighted†) 917 ± 24 971 ± 20 987 ± 26
ROBINSON (Unweighted) 1211 ± 1011 1017 ± 39 1005 ± 30
SCALARQFIT5 (Weighted†) 1009 ± 53 1014 ± 56 1065 ± 116
SCALARQFIT5 (Unweighted) 1003 ± 38 1004 ± 52 1010 ± 153

†See page 15 for a description of the weighting scheme used for each algorithm.

7.3 TEST 3: CALCULATIONS OF UNLOADED Q-FACTOR WHEN THERE IS
LEAKAGE

To test the accuracy of Q-factors fitted by SCALARQFIT5, two sets of simulated data were created
(Figure 6). These have different leakage vectors, but no simulated noise. The fitted results are
shown in Table 4. For each set of data, one of the two solutions for 𝑄𝑜 has the correct value
(1010.10), but it would not be possible to say which on the basis of one set of scalar data alone.
The differences between 𝑄𝐿 and the solutions for 𝑄𝑜 for this example are quite small as the
coupling is weak (so 𝑑 is low-valued). Resonant circuits used in some applications (e.g. low-noise
oscillators) require stronger coupling, in which case loaded and unloaded Q-factors may differ
significantly.

Table 4: Unloaded Q-factors obtained from the coefficients fitted by SCALARFIT5 by using
equations (26) and (27).

Simulated data First solution Second solution
𝑑 𝑄𝐿 †𝑄𝑜 𝑑 𝑄𝑜 𝑑 𝑄𝑜

Figure 6a 0.0100 1000.00 1010.10 0.0069 1006.93 0.0100 1010.10
Figure 6b 0.0100 1010.10 0.0126 1012.81

†Calculated by using equation (25).
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Figure 6: Simulated resonances with leakage signal (𝑄𝐿=1000 and 𝑑 = 0.01).

8 CONCLUSION

In this report, formulae for describing the power transmission for scalar resonances have
been derived. These apply to systems that measure amplitude, such as network analysers.
Leakage, which has the effect of making resonant peaks asymmetric, is accounted for in a
model equation that has five coefficients. Formulae for calculating the unloaded Q-factor 𝑄𝑜
of scalar measurements have also been derived. It is found that when the leakage is non-zero,
the calculated unloaded Q-factor is ambiguous as it has two solutions. Scalar fitting is not
quite as accurate as vector fitting, nor as robust when used to fit noisy data. Nevertheless, good
agreement between vector and scalar methods has been demonstrated.

Minimal implementations of computer code for iterative solution of the five coefficients have
been tested against measured and simulated data. Estimates of the uncertainty of the fitted
coefficients can be obtained from repeatability measurements. Alternatively, tools provided
by the Python package LMFIT could be used for estimating uncertainty as a byproduct of each
least-squares fit. If there are significant Type B contributions, as is often the case, experimental
techniques may be needed to give realistic estimates of uncertainty [1].
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