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ABSTRACT 

Chemical separation of target radionuclides from interferences is a key part of radioanalytical 
procedures to ensure accurate measurement. Over the last 30 years, automation of 
radiochemical separation has been pursued because of potential advantages over manual 
separation, including reduced worker exposure to radioactivity, improved reliability and 
safety, shorter analysis times, higher throughput, and improved reproducibility. Automation is 
still a relatively new approach for radiochemical separations, with limited literature reporting 
on its use compared to more common bench separations.  

NPL have recently acquired automated radiochemical separation, and as part of this have 
undertaken a review of the literature, from the first published work in 1994 to the present day 
to identify patterns in automated separation with regards to the radionuclides of interest and 
application area (e.g. nuclear medicine, decommissioning, forensics).  

Of the application areas, environmental radioactivity remained a consistent area of interest, 
with nuclear safeguards, radioecology, and tracer studies having fewer publications. Since 
the latest review of automated radiochemistry published in 2020, there has been an increase 
in the number of applications for medical radionuclides, with 68Ga and 89Zr frequently studied. 
In the areas of emergency preparedness and nuclear waste management, 90Sr is the most 
frequently studied radionuclide.  
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INTRODUCTION 

Chemical separation of radionuclides from interferences prior to measurement are a critical 
part of radioanalytical procedures. There are a number of techniques that have been applied 
to this, including precipitation, solvent extraction and chromatography. Over the last 30 years, 
extraction chromatography has become the gold standard for radiochemical separations to 
deliver high yield, high purity radionuclides in a range of applications.  

Extraction chromatography is a technique developed in the early 1990’s that combines the 
selectivity of liquid-liquid extraction with the straightforward operation of volume 
chromatography. Extraction chromatography has increasingly grown in popularity for 
radiochemical separations due to its radionuclide-specific separation capability and the 
diversity of resins available for different applications [1-2]. Separations were initially carried out 
using gravity, with flow rates of <1 mL min-1. This was improved to several mL min-1 using 
vacuum boxes however, depending on the application, this work can require separation times 
of several hours or more, with the operator having to perform manual changeover of reagents 
and collection of separation fractions. 

Development of automated radiochemistry focuses on reducing operator time through 
automatic changeover of reagents during the separation and collection of all separation 
fractions. This technique also aims to improve the reproducibility of flow rates through the 
extraction chromatography column. This development was initially seen through the 
development of flow injection analysis (FIA) and sequential injection analysis (SIA) systems. 
A review by O’Hara et al. explained FIA and SIA instrumentation and their applications for 
different radionuclide separations, including 90Sr and 99Tc, primarily for environmental 
monitoring and nuclear decommissioning applications [3]. 

Automated radiochemistry has also led to the development of commercial instruments such as 
the Automated System for Radionuclide Separation (ASRS) and the Hidex Q-ARE 50 (Hidex, 
Finland) [4-5]. Briefly, these instruments consist of a series of tubing connections, valves and 
pumps that automatically condition the column, load the sample, and deliver the load and 
elution fractions. Each fraction is automatically collected, with the pumps enabling careful 
control of the flow rate at each stage. A range of column sizes can be accommodated 
depending on the application and it is also possible to do tandem (multiple) column 
separations. An example of the layout of the HIDEX Q-ARE 50 is shown in Figure 1. 
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Figure 1: Diagram of Hidex Q-ARE 50 automated separator system including tubing, valve 
systems, peristatic pumps, and column positions. 

Automated radiochemistry allows operators to easily control and test flow rates to optimise the 
desired separation efficiencies (versus vacuum box method) whilst improving time efficiency 
of the actual separation. A necessary consideration in automated radiochemistry is to account 
for the higher dead volume compared to vacuum box methods due to the tubing that the 
solution needs to pass through. Successfully accounting for these dead volumes and applying 
to both elutions and line purges should allow for similar performance between automated 
radiochemistry separators and vacuum boxes. 

NPL have invested in automated radiochemistry (a Hidex Q-ARE 50). The main application 
areas of interest for this instrument are: 

• High volume separations to remove the manual addition of high volumes of reagents
and collection of fractions from the column:

o 226Ra separation for measurement in drinking water to comply with drinking
water regulations. This builds on work at NPL utilising vacuum box separation
and TK100 extraction chromatography resin [6].

o Uranium/Thorium separation for provision of high yield, high purity 232U as part
of a routine Measurement Service [7].

• High precision separations where the behaviour of radionuclides and interferences on
the column are very similar, necessitating precise control of reagents and flow rates:

o Radiolanthanides- the first of multiple applications linked to medical
radionuclide production is separation of 155Tb from pseudo-isobaric 139Ce16O.
This builds on work utilising a Triskem Ln-resin column and a peristaltic pump
with manual changing of reagents and fractions collected [8].
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METHODOLOGY 

As part of NPLs investment in automated radiochemistry, a literature review was conducted to 
understand the specific use cases regarding radionuclides and application areas of interest. 
This was supported by a review of current and prospective users of automated radiochemistry, 
with an aim of developing a technical working group or similar in the radioanalytical community. 

An extensive review of automated radiochemistry was undertaken by J. Qiao in 2020 [9], 
covering various application areas and radionuclides from 1994 to 2018. The results from this 
are included in the plots and analysis, alongside a further literature review focused on 
publications between late 2018 and 2024. The application areas chosen for this review were 
selected based on the review by J. Qiao, who identified six key areas that use automated 
radiochemical separations:  

• Environmental radioactivity monitoring- recording human exposure to radiation by
measuring both the general environment and areas surrounding nuclear installations
for natural (e.g. 210Po, 210Pb, 222Rn, 226,228Ra, 232Th, 236U) and artificial (e.g. 3H, 14C, 89Sr,
90Sr, 99Tc, 237,239Np, Pu isotopes, 241Am) radionuclides [9].

• Medical isotopes- the production of short-lived radioisotopes (e.g. 18F, 64Cu, 68Ga,
85Sr, 89Zr, 90Y, 99m,99Tc, 131I, 188Re, 213Bi) for cancer diagnosis and treatment [10].

• Nuclear emergency preparedness- involves measuring radionuclides that would
often need to be measured in emergency situations (e.g. 89Sr, 90Sr, 99Tc, 137Cs,
237,239Np, Pu isotopes, 241Am) [10].

• Nuclear safeguards- secure reprocessing and recycling of spent nuclear fuel to
prevent the illicit development of nuclear weapons (236,238U, 237Np, Pu isotopes) [11].

• Nuclear waste management- nuclear decommissioning and operational materials
(e.g. concrete, graphite, steel, ion exchange resin, nuclear reactor coolant) for multiple
radionuclides (e.g. 3H, 14C, 36Cl, 41Ca, 55Fe, 63Ni, 90Sr, 99Tc, 230Th, 233U, 234Th, Pu
isotopes, 241Am, 242,243+244Cm) [9].

• Radioecology and tracer studies- using radionuclides as tracers of environmental
processes, including aerosol and transportation of air masses (e.g. 7B, 10Be, 22Na), soil
erosion (e.g. 239,240Pu), sedimentation and geochronology (e.g. 137Cs, 210Pb, 237Np),
marine ecosystems (e.g. 99Tc, 236U), and climate change [12].

Results are shown for application area and radionuclides of interest. A full set of plots 
summarising the outcomes of the literature review are given in Appendices A, B, and C. 
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RESULTS 

APPLICATION AREAS 

Figure 2 summarises the application areas where automated radiochemistry has been used. 

Figure 2: Relationship between application area and the number of publications per year 
between 1994 and 2024. 

• Environmental radioactivity monitoring is continually reported on between 1994 and
2024, with no significant change in the number of publications since the 2020 review
paper [9, 12-21].

• Medical isotope production publications have increased significantly (2018-2024)
since the last review on automated separation, averaging three publications a year [9,
22-41].

• Nuclear emergency preparedness has been a continual area of interest since 2009,
averaging one publication a year since the last review paper on automated separation
(2018-2024) [9, 18-20, 42-46].

• Nuclear safeguards remain an application area of minimal interest, with only five total
publications between 1994 and 2024, with no significant change since the 2020 review
on automated separation [9, 21, 47].

• Nuclear waste management was highly reported on between 1994 and 2004,
averaging one publication a year. After a period of no reporting on this application area,
the number of publications per year has increased back to one per year (2020-2024)
[9, 19-20, 48-49].

• Radioecology and tracer studies remain an application area of minimal interest, with
only four total publications between 1994 and 2024, with no significant change since
the last review on automated separation [9].

• The cumulative total has significantly increased since the 2020 review on automated
separation from 51 to 89 publications, with a change in the average increase in the
number of publications from 2.4 to 5.9 [9, 12-49].
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RADIONUCLIDES OF INTEREST 

Figures 3 and 4 show the link between the number of publications for each radionuclide. 

Figure 3: Graph showing the radionuclide and the number of publications per year between 
1994 and 2024. 

Figure 4: Graph showing the radionuclide and total number of publications between 1994 and 
2024. 

• 68Ga is a radionuclide of increasing interest, going from one publication in the most
recent automated separation review to two publications per year, on average, between
2018 and 2024 [9, 22, 25-26, 28-30, 31-33, 37-41].

• 89Zr is a radionuclide of increasing interest, going from one publication in the most
recent automated separation review to five publications between 2018 and 2024 [9, 23-
24, 27, 36].
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• 90Sr is a radionuclide of increasing interest, going from eight publications in the most
recent automated separation review to two publications per year, on average, between
2018 and 2024 [9, 12-14, 18-20, 42-46, 48-49].

• 89Sr, 90Y, 99mTc, 210Pb, and 232Th are reported on an equal amount before and after the
most recent review on automated separation [9, 13, 16, 31-33, 45].

• 226Ra, 236U, 238,239,240Pu, 238U, and 241Am are reported on less since the most recent
review on automated separation [9, 14-17, 21, 42, 47].

• 99Tc, 188Re, 210Po, 213Bi, 230,234Th, 233U, 237,239Np, 239+240,241,242Pu, and 242,243+244Cm have
not been reported on since the most recent review on automated separation [9].

TRENDS 

Figure 5 shows the application area, radionuclide of interest and total number of studies. 

Figure 5: Graph showing the relationship between radionuclide type and the number of 
publications in each application area per year between 1994 and 2024. 

• There is a significant increase in interest for medical isotope production since
the most recent review on automated separation. This is reflected in the increase in the
number of publications for 68Ga and 89Zr, as well as the continual coverage of 90Y and
99mTc in literature [9, 14-21].

• There is a large increase in interest for nuclear emergency preparedness since
the most recent review on automated separation. This is reflected in the increase in the
number of publications for 90Sr, as well as the continual coverage of 89Sr in literature
[9, 22-41].

• There is some increasing interest for nuclear waste management since the most
recent review on automated separation. This is reflected in the increase in the number
of publications for 90Sr [9, 18-20, 42-46].

• There is persistent interest in environmental radioactivity monitoring both before
and after the most recent review on automated separation. This is reflected in the
continual coverage of 89Sr, 90Sr, 210Pb, and 232Th in literature [9, 21, 47].
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• There is minimal interest in nuclear safeguards both before and after the most
recent review on automated separation. This is reflected in the decrease in the number
of publications for 236U, 237Np, 238U, and 239,240,241,242Pu [9, 19-20, 48-50].

• There is minimal interest in radioecology and tracer studies both before and after
the most recent review on automated separation. This is reflected in the decrease in
the number of publications for 99Tc, 236.238U, 237Np, and 239,240Pu [9].

CONCLUSIONS AND FUTURE WORK 

Automated radiochemistry continues to be considered as a technique of interest for multiple 
radionuclides and application areas. This review shows that improved separation efficiency of 
medical radionuclides is an area of growing interest, in line with the drive to produce the next 
generation of medical radionuclides for improved cancer treatment. Several papers outside of 
this review focused on automated radiolabelling of medical radionuclides post-separation, 
including 225Ac, 161Tb and 177Lu [43-46]. Terbium isotopes of interest to cancer diagnosis and 
treatment (149Tb, 152Tb, 155Tb and 161Tb) are a priority for automated separation at NPL. 

Following contact with the Hidex manufacturer, several other labs using the Q-ARE system for 
automated radiochemical separation have been identified. NPL will aim to set up a technical 
working group to discuss progress and any issues, working closely with the manufacturer and 
presenting these at relevant working groups and conferences. 
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APPENDICES 

APPENDIX A: APPLICATION AREAS 

Figure A1: Graph showing the relationship between application area and the number of 
publications that year between 1994 and 2018. 

Figure A2: Graph showing the relationship between application area and the cumulative 
number of publications between 1994 and 2024. 
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APPENDIX B: RADIONUCLIDE TYPE 

Figure B1: Graph showing the relationship between radionuclide type and the number of 
publications that year between 1994 and 2018. 

Figure B2: Graph showing the relationship between radionuclide type and the total number of 
publications between 1994 and 2018. 
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Figure B3: Graph comparing the number of publications for each radionuclide in the periods 
1994-2018 (blue) and 2018-2024 (red). 

APPENDIX C: TRENDS 

Figure C1: Graph showing the relationship between radionuclide type and the number of 
publications in each application area per year between 1994 and 2018. 
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