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ABSTRACT This paper describes robust vector-fitting algorithms for determining the Q-factor and resonant
frequency of spectrally-isolated resonances from frequency-swept S-parameter measurements for both
one-port (reflection) and two-port (transmission) systems. It also provides guidance on measurement
techniques, and gives measurement examples from the electromagnetic and acoustic domains. These include
measurements on a LC resonator (unloaded Q-factor Q, =~ 57), a photonic-crystal resonator (Q, ~ 123 000)
and a superconducting notch resonator (Q, ~ 1.5 x 10°). The vector techniques advocated are often
advantageous compared to scalar techniques because they are more informative, and in many cases more
precise. Among the most common applications is the measurement of dielectric permittivity and loss by
resonance at RF and microwave frequencies by using Vector Network Analysers. The algorithms described,
however, are applicable more generally to sensing and imaging applications that use vector instrumentation.
This is demonstrated by one of the measurement examples, which shows that acoustic Q-factor can be fitted
to vibrational data obtained by Resonant Ultrasound Spectroscopy. Open-source software implementations
(Python and Matlab) of the algorithms have been made available.

INDEX TERMS Acoustic sensors, dielectric measurement, measurement techniques, microwave
measurement, millimeter-wave measurement, network analysers, photonic crystal resonator, Q-factor,
resonators, superconducting microwave devices, ultrasonic variables measurement.

I. INTRODUCTION

The applications for measurements of Q-factor and resonant
frequency are varied. They include traditional methods of
measuring the dielectric permittivity and loss of mate-
rials at RF and microwave frequencies [1], [2], and
computer-controlled experiments for near-field imaging [3],
[4], [5]. Numerous papers describe sensing through mea-
surement of Q-factor and resonant frequency [6]. Many of
these describe sensors based on Split-Ring Resonators, and
Complementary Split-Ring Resonators [4], [5], [7], [8], [9],
[10], [11], [12], [13]. Low-cost miniature VNAs make it
possible to find new uses for such devices, particularly for
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biosensing [14], [15]. Piezoelectric actuators can be used
to make resonant ultrasound systems for measuring the
elastic properties of materials [ 16]. Microwave measurements
on resonators cooled to cryogenic temperatures can be
used in studies of the loss mechanisms of superconducting
circuits [17]. These can require Q-factors of order 10° to be
measured.

This paper describes a collection of robust vector
algorithms (NLQFIT) for fitting quality (Q-)factor and
resonant frequency to swept measurements of the scattering
(S-)parameters of resonant electromagnetic and acoustic
systems when resonant modes are spectrally isolated.
It supplements a National Physical Laboratory report [18]
on Q-factor measurement by using Vector Network
Analysers (VNAs). Open-source software implementations
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(Python and Matlab) of NLQFIT have been made avail-
able [18]. An alternative implementation is available from
the scikit-rf project [19].

The new algorithms use an iterative method of solution that
is usually successful even when the swept frequency range
is many times broader than the resonance. This simplifies
searches for resonances in computer-controlled experiments.
Only two initial estimates for fitted values are needed: the
approximate resonant frequency and an order-of-magnitude
estimate for the Q-factor. These can be obtained from the
data. Convergence is not dependent on the accuracy of
initial estimates for multiple quantities, which is a limitation
for methods that use non-linear fitting routines from a
numerical software library [20]. For selected cases, software
produced by other authors is available. This has enabled
Q-factors fitted by using NLQFIT and by other methods to be
compared [18].

The vector techniques for measuring Q-factor that are
advocated in this paper are often advantageous compared to
scalar techniques because they are more informative, and in
many cases more precise [18]. Guidance on experimental
techniques for applying them is provided. Five measure-
ment examples that are complementary to those given in
reference [18] are given: (i) a comparison of measurements
made with high-specification and low-cost VNAs, (ii) a VNA
measurement on a low-Q reflection resonator connected via
a long cable, (iii) a measurement by Resonant Ultrasound
Spectroscopy, (iv) simultaneous measurements by reflection
and transmission on a high-Q photonic crystal resonator, and
(v) a measurement on a superconducting notch resonator at
cryogenic temperature.

A. LITERATURE SURVEY

Q-factor and resonant frequency can be obtained from swept
S-parameter data by fitting in the complex plane [21],
[22], [23], [24], [25], [26], scalar fitting [27], [28], and
by circle fitting [29]. Petersan & Anlage [30], and Bartley
& Begley [31] present experimental comparisons between
these methods. Q-factors fitted by these methods can show
significant differences. The reasons for this are outlined
in a more detailed literature survey given in reference
[18, Section 1.3].

Methods for fitting in the complex plane, the subject of this
paper, are described in a number of papers. Inoue et al. [25]
used a linear solution for measurement by transmission in
which leakage signal that bypasses the resonator is small
enough to neglect. Cox & Jones [26] use a non-linear
least-squares fitting routine from a standard library. Kajfez
and his co-workers produced several publications [21],
[22], [23] in the years after VNAs first became available.
These fit Q; as a complex value, but discard the imag-
inary part. Q-factors obtained by using Kajfez’'s QZERO
compiled program are in good agreement [18, Table 2]
with NLQFIT6 — the equivalent algorithm described in
this paper.
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FIGURE 1. S-parameter data for reflection and transmission resonances
plotted as a function of frequency on the complex plane. The data was
calculated by using equation (1). Phase delays caused by connecting
cables are assumed to be zero. Note that couplings are usually chosen to
give diameter d ~ 0.01 (i.e. smaller than shown) for measurement by
transmission, and 0.1 < d < 1.0 for measurement by reflection.

B. GENERAL PRINCIPLES

Resonance equations can be obtained from equivalent-circuit
models [18]. For both transmission and reflection resonators
that have Q-factor 2 100 and lossless coupling, the complex
S-parameter at a frequency f is given by a bilinear
transform [22], [24]

jo
S¢f) =S +d———, (H
equiv. I+jOrt
circuit
in which the fractional offset frequency 7 is given by
t = zf__fL. )
It

The symbols Q; and f; represent the loaded (indicated)
Q-factor and resonant frequency, respectively. Other sym-
bols are explained in Fig. 1, which also shows plots of
S-parameters as a locus of frequency. Circular responses
known as Q-circles are obtained because it is a property
of bilinear transforms to map straight lines to arcs on the
complex plane by [32]. It is often the case that there are
significant mismatches associated with resonator couplings
which have a first-order effect on measurements by reflection.
In a narrowband approximation these can be described by
an additional bilinear transformation. Resonances, however,
still appear as Q-circles because the bilinear transform of a
bilinear transform is another bilinear transform [22].

Calibrating a VNA with impedance standards defines the
positions of phase reference planes. For an uncalibrated VINA
these are at an unknown location, but are usually close to
the front panel connectors of the instrument. Cables between
the phase reference planes of the VNA and the resonator,
as shown in Fig. 2, are referred to as uncalibrated lines.
The total physical length of uncalibrated lines is represented
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FIGURE 2. One-port cavity with coupler made from semi-rigid coaxial
cable.

here by £. Uncalibrated lines cause phase delay, may cause
significant attenuation, and will be mismatched unless the
50 € characteristic impedance of the VNA ports is maintained
throughout. If mismatches are small enough to neglect, the
measured S-parameters of resonators that are connected via
uncalibrated lines can to an approximation be described by

"

e—} 3)
1470t

where «(f) is a real valued quantity that describes attenuation
in the uncalibrated lines. In the narrow frequency range
used for measuring resonances, it is normally sufficient to
assume that a(f) has the constant value a(f;) measured at
(or close to) resonance. The phase terms ¢ and A¢ are
given by

Sa(f) = a(f) e P8¢ [SD +d

p=2mlvf [c 4)

and

Ap=2rlv(f—f)/c )

in which c is the velocity of light in a vacuum, v is the
velocity factor of the uncalibrated lines (for coaxial cables
with solid dielectric v 2~ ,/€, where €, is the real part of the
dielectric permittivity) and

- £, transmission
= ) (6)
2¢, reflection.

A¢ represents a frequency-dependent phase delay which
is significant because it modifies the shape of the Q-circle,
especially if the Q-factor is low. Prior to fitting Q-factor,
it is recommended that cables are de-embedded from the
measured S-parameter data. If the exact value of / is not
known, which is generally the case, an estimate should be
used. A¢ is then reduced to

Ap=2mslv(f—f)/c @)

where 81 is the error in the estimate of I. The rotated detuned
S-parameter Sy is given by

Sy = Spei?. 8)

A calibrated value for the Q-circle diameter is required
if an estimate of the unloaded Q-factor (Q,) is needed
(Section III-D). This should consider attenuation in uncal-
ibrated lines, and the calibration state of the VNA
(i.e. calibrated or not calibrated).
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Typically, input/output couplers form an integral part of
resonators, as shown in Fig. 2. An alternative resonator type,
termed a notch resonator, uses reactive coupling between a
propagating wave in a waveguide, and a one-port resonator
that becomes low-impedance at resonance.

Requirements for the most common measurement tech-
niques are discussed below.

1) MEASUREMENT BY TRANSMISSION

VNAS s are sensitive instruments, which enables resonances in
cavities [1], parallel LC-circuits [2] etc. to be observed by
transmission even if weak couplings are used. Weak coupling
implies that O, ~ Q; because the loading effect of external
circuits on resonances is reduced. Moreover, unless there is
excessive noise, measurement precision is usually improved
with weak coupling. Typically, couplings are adjusted for
transmission loss & 40 dB (d =~ 0.01) at resonance.

For measurement by transmission, Sy is often referred to
as the leakage vector. It represents the signal detected by
the VNA receiver that has bypassed the resonator as a result
of unwanted couplings between cables, inside the VNA,
or directly between the coupling loops or probes of cavity
resonators (also known as crosstalk). Coefficients fitted by
NLQFIT account for leakage on the asssumption that it
occurs predominantly in the locality of the resonator.

Scalar measurements of |S(f)| as a function of frequency
yield the familiar Lorentzian [33] if | Sy | < d. These have the
advantage that measurements are unaffected by phase delay
in uncalibrated lines, but if there is significant leakage an
asymmetric response is obtained [18, Figure 2]. Moreover,
random fluctuations of complex S-parameter data manifest
themselves as the noise floor of scalar measurements. Algo-
rithms for fitting Q-factor to scalar transmission-coefficient
data can be adapted to fit additional coefficients that describe
the effects of leakage and the noise floor on the shapes of
resonances [28].

2) MEASUREMENT BY REFLECTION

Q-factor measurements by reflection are typically made
with the coupling adjusted for strong undercoupling
(0.1 < d < 1). Measurements can be made with Q-circle
diameters as small as d = 0.01, in which case the Q-circle
is a very small arc at the edge of the polar chart [18]. This
is not ideal, however, as the effect of noise is increased, and
iterative methods of obtaining Q-factor are less likely to be
successful. Overcoupling (i.e. with d > 1.0) is not ideal either,
as resonances tend to have poor shape [18].

A consequence of strong coupling into a 502 VNA is
that Q; is significantly lower than Q,. The steps required
to estimate Q, from a fit to complex S-parameter data are
outlined in Section III-D2. Using a calibrated VNA improves
measurement accuracy (Section III-A), but it is possible
to estimate O, from uncalibrated measurements. If scalar
instrumentation is used [27], [34], an additional measurement
to remove ambiguity between overcoupled and undercoupled
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FIGURE 3. Hanger-mode notch resonator and simplified equivalent
circuit.

values of O, may be required. For vector methods, there is no
such ambiguity.

3) FOR A NOTCH RESONATOR BY TRANSMISSION
If a coplanar waveguide is placed in close proximity to a
resonant circuit [7], [35], reactive coupling (predominantly
inductive) can cause energy to be absorbed at resonance,
resulting in a notch in |S21]. Strong coupling (Q-circle
d 2 0.1) is needed to give the best measurement accuracy.
The so-called hanger mode configuration (Fig. 3) is suitable
for low-temperature measurements made in the inaccessible
environment of a cryostat [17], [29] because Q, can
be estimated without additional calibration or normalisa-
tion measurements (Section III-D3). Very high Q-factors
(e.g. Q, > 10%) can be obtained for superconducting res-
onators. The Q-circles of hanger-mode resonators are often
pivoted around the fitted value of the detuned transmission
coefficent, Sy . This has the effect of making the notch in S |
asymmetric. Reference [36] explains this phenomenon by
using extended equivalent-circuits that represent features
at the input and output ports which are not identical;
wire-bonded connections that have differing inductance for
example.

A notch resonance in |S;| can also be obtained from
a planar circuit fabricated on a substrate with coupling
via a microstrip placed on the opposite surface [8], [13].
This configuration normally has a low Q-factor and an
asymmetric notch. Q-factors fitted by using the algorithms
described in this article will therefore be subject to error.
Enhanced equivalent circuits or full-wave numerical simu-
lation techniques [13] provide a more precise description.
The resonant modes of a dielectric resonator (e.g. a cylinder
of low-loss dielectric) coupled with microstrip also appear
as notch resonances [37]. Typically, some of these are
well-shaped and therefore suitable for characterisation by
Q-factor measurement.

II. NLQFIT FITTING ALGORITHMS

The process of fitting to a swept measurement of Sij,
S21, S20 or Sy» begins by de-embedding the total length
of uncalibrated lines according to an estimated value.
The resulting data is stored in a one-dimensional vector
S =81 ---Sy, where N is the number of frequency points in
the sweep.
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In the simplest case, in which the error 8/ in the estimated
length of uncalibrated line is small enough to neglect, (3)
reduces to a bilinear transform. To allow for the possibility
that the VNA is uncalibrated or a(f; ) is unknown, this can be
written in the more generalised form

alt+ja//t+b/+jb//
1401

in which the coefficients a’ etc. are real-valued. The
calibrated Q-circle parameters Sy and d can be calculated
from these coefficients by reference to (3) if the VNA is
calibrated and a(f; ) has been determined.

The difference between the value calculated with (9), and
the data S for the ith frequency is given by
a’t,» _I_ja//ti +u —i—jb”

1401 .
To obtain the six coefficients that give a weighted minimisa-
tion of |r;|%, a two step process is used; a partial solution
(the “initial fit™) followed by an optimisation.

This algorithm is referred to as NLQFIT6. Versions of the
optimisation step that fit seven and eight fitted coefficients
are also described in this paper (see Table 1 for details).

For typical microwave resonators [1], the most suitable
algorithms for measurement by transmission and reflection
are usually NLQFIT6 and NLQFIT7 respectively. The
reasons for this are outlined in Table 1.

S = ©)

Ap=0

(10)

r,-:S,-—

TABLE 1. NLQFIT algorithms.

NLQFIT6 | Six real-valued coefficients (mj ...mg) are fitted. It is
assumed that uncalibrated lines are de-embedded with suf-
ficient accuracy to ensure that the Q-circle is undistorted.
Modelling [18, Section 3.3.1] shows that NLQFIT®6 is suit-
able for measurements on two-port transmission resonators
with low leakage (|Sp| < d) provided that 67 < X\ Q; /180
(where A is the wavelength in the uncalibrated lines at the
resonant frequency). Resonators of all types that have a very
high Q-factor, in superconducting systems for example, can
also be fitted by NLQFIT6.

NLQFIT7 | Seven real-valued coefficients (m; ...mry) are fitted. This
algorithm is typically used for measurements on reflection
and notch resonators. For these, significant error results
if only six coefficients are fitted unless the de-embedded
length of uncalibrated lines is sufficiently precise (see mod-
elled results in reference [18, Section 3.3.2]). NLQFIT7

avoids such error by determining 87 through the fit.

NLQFITS8 | Eight real-valued coefficients (m1 . ..mg, mg, mg) are fit-
ted. This algorithm can be used for measurements on two-
port resonators by transmission when the leakage vector has

a linear dependence on frequency [18].

A. INITIAL FIT OF 5 COEFFICIENTS
First (10) is re-written in the form
=Sy [ 43"+ (d +ja" —jouS)u] (D
where the complex quantity y; is given by
1

= 12
1401 (12)

Vi
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If an estimate of f; is available, the five remaining
coefficients (a/, a”, ', b” and Q;) can be fitted by a
stable, non-iterative, linear least-squares method. The values
y; appear in every term in (11) and so it may be deduced that
ly; |2 are weighting factors in the minimisation of X ;2. It can
be sufficient to assume all |y;| = 1, but if they are calculated
by using an estimate for Q; , convergence in the next part of
the process (the optimisation) can be improved. The estimate
of f; can be obtained from the measured data by a simple
search for the maximum or minimum magnitude according
to the type of resonance. In unweighted form, (11) can be
represented by the equation

[ real(r;) ]
a/
. a//
real(ry) —G6-M| v (13)
imag(ry) b
: oL
| imag(ry) |

where G is a column vector, M is a matrix, and N is the
number of frequencies. The weighted solution [38] is given by

“
b |=C"q (14)
b
or
in which
C=M"PM (15)
and
g=M"PG (16)
where the square matrix P is given by
[ 1y 2]
P = Diag '&1:/ ||22 . (17)
Llyw I

A linear-equation solver from a numerical software library
can be used to solve (14). Even though f; is not optimised, the
solution is useful because it provides initial estimates for an
iterative optimisation that fits all of the coefficients required
to describe resonances.

B. OPTIMISATION OF 6 FITTED COEFFICIENTS (NLQFIT6)

For measurement by transmission on resonators that have low
leakage (|Sp| < d), A¢ is usually not large enough to have a
significant bearing on the fitted Q-factor [18, Section 3.3.1].
It is therefore sufficient to consider only the six coefficients
of (10). An iterative optimisation is obtained by using the

188340

gradient-descent method. The five coefficients (14) and
estimated f; are used as initial values.
A change of variables yields the model equation

ri=8;— [m +jmy + (m3 +jma) y,] (18)
in which the six real valued coefficients are defined by

my =d’ /ms my = —d /ms

m3=b —m my=b" —m

ms = Q. me = frwst QL /fL
1 1 (19)
Vi= T = : :
L+j0cti 1 49 (% —m5)

The lowest frequency fi, of the measured trace is used
as a convenient scaling factor to ensure that mg is unit-
less, otherwise the matrix equation that must be solved can
become badly scaled. Changes Amy in my (fork =1...6)
that minimise the summed squares of the real and imaginary
parts of e; in (20) are found by using a weighted linear-
least-squares fit similar to that described in Section II-A for
solution of (13). Then all my are updated (my — my + Amy).
The process is repeated until convergence is obtained. The
values of y; must be re-calculated in each iterative loop using
the latest values of f; and Q; . The equation for ¢; is

[ real(e;) ] [ real(r) Amy
: : Amyp
real(ey) | _ | real(ny) B Ams
imag(e;) | ~ | imag(r) M Amy (20)
. . Ams
: : A
| imag(ey) | | imag(ry) | o
where
real (337’1)1 . real (a"—,&)l
M real (aa—n:l)N - real (({,‘97’6)]V o
- ar : ar
1mag (% | 1mmag (76)1
imag (337’1) imag (%))N

The partial differentials in (21) can be found analytically
without much difficulty. They are evaluated for points
i=1---N as indicated by suffixes. As reasonably accurate
initial estimates are available, rapid convergence is obtained
and so few iterations are needed. This being the case it can be
sufficient to use a fixed number of iterations. Alternatively,
when to exit the iterative loop can be determined from the
weighted mean-square deviation between fit and data,

(22)
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where W; is the weighting factor at the ith frequency.
Convergence can be said to have occurred when the change in
o between one iterative loop and the next is less than a small
fraction (e.g. 107°) of the magnitude of the largest point in
the data array S.

The weighting factors are placed on the diagonal of a
square matrix which is incorporated by the least-squares
solution of (20) [38]. Initially, they are assumed to be
unity for an unweighted fit. The weighting factors pro-
posed in Section III-B can be applied in a repeat of the
optimisation.

C. OPTIMISATION OF 7 FITTED COEFFICIENTS (NLQFIT7)
When |Sp| > |St|, uncalibrated lines cause Q-circles to
become distorted [18, Figure 9]. This is especially relevant
to measurements by reflection [18, Section 3.3.2] and to
measurements on notch resonators, but can also apply to
measurements by transmission when there is significant
leakage. Accurate de-embedding of uncalibrated lines may
be required to avoid substantial error in fits obtained by
using NLQFIT6. Moreover, the error becomes larger if Q;
is low-valued or f; is high-valued.

For some experiments, it is more convenient and accurate
to determine the length of uncalibrated line 8/ through
fitting. This approach is not recommended for transmission
measurements when |Sp| < d because reliable convergence
may not be obtainable.

To fit 87 a modified model equation,

1= S;— [mi +imy + (m3 + jma) y;] ™ (i) /st |
(23)
is used. The optimisation algorithm outlined in Section II-B

is easily adapted to include the extra fitted coefficient, m;.
The value of §! is related to m7 by

277 81V iy
. :

my = (24)
D. OPTIMISATION OF 8 FITTED COEFFICIENTS (NLQFIT8)
Sometimes the shape of transmission resonances can be
affected by frequency dependence of the leakage vector
[18, Section 4.5]. This can occur when one resonance sits
on the “tail” of another. It is straightforward to adapt
the optimisation (Section II-B) to include extra coefficients
mg and mg, using the model equation

=8 —[mi+jmy 4 (mg + jmo) t; + (m3 + jma) y;] .
(25)

In the first iterative loop of the optimisation, it can be
assumed that mg = mg = 0.

Ill. EXPERIMENTAL METHOD

A. IS IT NECESSARY TO CALIBRATE THE VNA?

For weakly-coupled two-port resonators measured by
transmission, it is found that calibrated measurements
of the loaded Q-factor Q; do not differ significantly
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[18, Table 2] from uncalibrated ones made with the VNA’s
factory correction [18, Section 3.2]. Moreover, the unloaded
Q-factor, Q,, is to an approximation the same as Q.
If needed, a more traceable and accurate value of Q, can be
obtained by following the process described in Section III-D.
This requires an additional measurement to determine a
scalar normalisation factor if the VNA is uncalibrated,
ora(f,) # 1,

For measurement by reflection a calibration is recom-
mended as it significantly reduces measurement uncer-
tainties. This is because uncorrected mismatches have
a first-order effect [39]. Evidence for this is given in
[18, Table 6], which shows that calibrating the VNA
improves the consistency of measurements made with
varying frequency spans. Where possible, the calibration
reference plane should be positioned close to the resonator.
Formulae given in Section III-D allow an estimate for Q,
to be obtained from the fitted solution without additional
measurements.

Low-temperature transmission measurements on notch
resonators in cryostats typically use long and attenuating
cable connections that have the incidental effect of sup-
pressing multiple reflections. A VNA calibration in the
environment of a cryostat is not easy to obtain, but Q, can
be estimated from uncalibrated measurements by methods
described in Sections III-D3 and V-E. At room-temperature,
at which notch resonators have comparatively low Q-factor,
calibrating the VNA is likely to improve the accuracy
of Q-factor measurements significantly. Where this is not
possible, inserting attenuators (pads) at each port may give
improved accuracy.

B. WEIGHTING BY RATE OF ANGULAR PROGRESSION

If the measured frequencies are equally spaced (i.e. a linear
sweep is used), the spacing of points on the Q-circle is
greatest near the resonant frequency. Weighting factors can be
calculated from the rate of angular progression of frequency
around the Q-circle to prevent the ““tails” of the resonance
having disproportionate effect [18]. They are applied in a
repeat of the optimisation step (Section II-B, II-C or II-D).
Weighting factors are calculated as a function of frequency
by using

1
W= ; (26)
20, (fi = 11)
— | +1
o
The weighting matrix referred to in Section II-B is given by
W,
. Wy
P = Diag W, (27)
Wy
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FIGURE 4. Optimisation of the frequency range for a transmission
measurement of Q-factor.

C. OPTIMISING THE SWEPT FREQUENCY RANGE

The fitting process described in this paper can usually provide
a robust solution even when the swept frequency range is
much greater than the width of the resonance A f (refer to
Fig. 1). This can be useful when the resonance frequency is
subject to large variation, or when it is desired to observe
rapid changes during chemical reactions [40]. Nevertheless,
for best accuracy a narrow sweep centred on the resonance
is required. This is because (i) the models used are based
on narrowband approximations, (ii) Q-factor is defined at
the resonant frequency and (iii) the effect of other nearby
resonances is reduced. The sweep range for this measurement
used by the authors is typically f; —f,/Q; to f; +f./0O;.
The corresponding Q-circle seen on a polar plot is an arc
that is approximately 70 % of a full circle. Suitable values
for f; and Q; can be obtained by fitting to a preliminary
measurement made over a broad frequency-range, as shown
in Fig. 4.

D. ESTIMATION OF UNLOADED Q-FACTOR (Qo)

0, is the Q-factor that would be obtained if the resonator were
uncoupled from external circuits (e.g. 50 2 VNA and cables).
In other words, Q, describes dissipation by the resonator
(assuming it is a closed structure that cannot radiate). The
alternative term internal Q-factor (Q;) is sometimes used.
Formulae for estimating O, are summarised in Table 2. All of
these require the calibrated value d of the diameter of the Q
circle. Measurements on reflection and notch resonators are
normally made with strong coupling, so Q, is significantly
greater than Q;. Two-port resonators, such as cavities, are
normally measured by transmission with weak coupling
(d ~ 0.01), which implies that Q, is only fractionally larger
than Q; . The unusual case of a two-port resonator with strong
coupling is discussed in Section V-D.
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TABLE 2. Formulae for estimating unloaded Q-factor.

By transmission (assumes
that the coupling factors at 0, = O [18]
the two ports are similar). 1-d

By reflection (not valid for

cavities that are coupled 0, =0, (1+0) [22]
with large loops [18], .
[22]). where the coupling factor
1
B=5—

g

d
By transmission for a
notch resonator. Simplifies 0,=0, (1408 [371,
t0Q, =0, /(1—d). [41]

where the coupling factor

For asymmetric 1

planar-circuit resonators 8=
see the discussion in 1 1
Section I1I-D3. d

The calibrated diameter of the Q-circle is given by
d = Alms + jmy] (28)

where A is a real-valued scaling factor that is assumed not
to vary with frequency. If the VNA is calibrated and the
uncalibrated lines are non-attenuating then A = 1.

Some specific details associated with each type of
measurement are presented below.

1) BY TRANSMISSION

A “thru” connection in place of the resonator allows A to
be determined by measurement if the VNA is uncalibrated
(A =1/|S21]). The attenuation of the soldered-in semi-
rigid cables that are often used to make connections to
cavity resonators is not usually significant (i.e. a(f;) ~ 1).
If necessary, such attenuation can be accounted for by either
(i) estimating o(f;) from measurements by reflection (see
examples in Section V-D and in reference [18, Page 43]),
or (ii)) making the ‘“thru” measurement on a piece of
semi-rigid cable that has the overall same length and type as
those used to make the connections to the cavity.

2) BY REFLECTION

If the coupling loss is low enough to neglect, all of the signal
is reflected off-resonance, i.e. |Sy| = 1. If the shape of the
resonance accords with the model equation (18) or (23),
A can therefore be determined from the fitted coefficients.
This approach is recommended even if the VNA is calibrated
because attenuation in the uncalibrated line is then accounted
for. A is given by

A= 1/(lmy +jma|) . (29)

A more elaborate method [22] is needed to obtain a reliable
estimate of Q,, for cavity resonators with large loop-couplings
because the Q-circles are distorted [18, Figure 16] and the
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FIGURE 5. A trial used in the study of the effects of simulated noise on
Q-factors fitted by using NLQFIT6. The red Q-circle is fitted to
transmission data with random noise (normal distribution) added to real
and imaginary parts. Shown for the maximum noise (o0 = d/5) for reliable
convergence.

parameterised value of Sy is inset from the edge of the polar
chart. In this case (29) is inapplicable, but it can be assumed
that A = 1 if the VNA is calibrated and the attenuation of the
uncalibrated line is negligible.

3) FOR A NOTCH RESONATOR BY TRANSMISSION

For this type of resonator, all of the signal is transmitted
off-resonance so, assuming that leakage can be neglected,
|Sy| = 1 and A is given by (29). As remarked in Section I-B3,
for asymmetric planar-circuit resonators (e.g. hanger mode)
the Q-circle may be pivoted about the fitted value of the
detuned point, Sy. This implies that the fitted Sy does
not represent the true off-resonance condition according to
the equivalent circuit (Fig. 3), and an amended method for
estimating Q, is needed. This topic is further discussed in a
measurement example given in Section V-E.

IV. TESTS ON DATA WITH SIMULATED NOISE

S>1 data with simulated noise was generated by using
computer software for 1000 trials for a resonator with
Qr = 1000 and d = 0.01. At each frequency, the simulated
noise was derived separately for real and imaginary parts
according to a normal distribution with specified standard
deviation, o. One trial is plotted in Fig. 5. Q-factors were
fitted to each of the trials by using NLQFIT6, and then
averaged. The main purpose of this simulation is investigate
how well the algorithm works with noisy data (see the
statistical analysis in Table 3). It is found that reliable
convergence on a solution for Q; requires that o < d/5.

V. MEASUREMENT EXAMPLES

A. A COMPARISON OF MEASUREMENTS OBTAINED WITH
THREE VNAs

Table 4 shows Q-factor measurements made by transmission
with two high specification VNAs and a low-cost handheld
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TABLE 3. Q-factors fitted with NLQFIT6 for different levels of noise added
to the S,; data. The data was obtained by a simulation that used

1000 trials. The nominal values of Q; and d, were 1000.00 and 0.01
respectively. The simulated S,; data had 201 frequency points.

Statistical analysis of trials
Simulated S21 noise, o || Average Q; | o(Q;) | om(QL)
0.00001 999.99 0.35 0.01
0.0001 999.9 34 0.1
0.001 1000 33 1
0.002 1011 71 2
>0.002 Convergence not reliable

o = Population standard deviation.
om = Standard deviation of the mean.

TABLE 4. Measurements of Q-factor by transmission on a 1.8 GHz
Split-Post Dielectric Resonator (SPDR) made with three uncalibrated
VNAEs. The results shown are the averages of seven measurements and
their standard deviations. The acquisition time (f..q) per measurement is
also shown.

Manufacturer & model || 7,4 (sec) Fitted data

QL Op—1 Qo Op—1
Hewlett-Packard 8510C 15 16289 | 4 16463 | 4
Agilent 8753ES 9 16306 | 3 16497 | 4
NanoVNA SAA 2N 36 16304 | 6 16508 | 6

instrument (a NanoVNA). The device measured was a
1.8 GHz Split-Post Dielectric Resonator (SPDR) [42] that
was wrapped in bubble wrap to minimise thermal drift.
The couplers of the SPDR were adjusted to give 40dB
transmission loss. The VNAs were uncalibrated, but mea-
surements on ‘“‘thru” connections were made to allow Q,
to be estimated (Section III-D1). The data acquisition time
facq 18 determined by instrument settings (number of points,
IF bandwidth etc.). These were chosen to give comparable
measurement repeatability for each instrument. The close
agreement between the measurements illustrates the potential
of low cost VNAs for making accurate sensors.

B. MEASUREMENT OF Q-FACTOR BY REFLECTION WITH A
LONG UNCALIBRATED LINE

Fig. 6 shows the polar and magnitude S;; traces observed for
aloop-coupled LC-resonator that is formed from a single-turn
coil shunted by a capacitor. The initial fit (Section II-A) and
optimised fit obtained with NLQFIT7 (Section II-C) are also
shown on both plots. The trace shown on the polar plot has
a cardioid shape because the resonator is connected to the
VNA via along cable (length approximately 8)\), and because
the Q-factor is low. Differences between the measured
and fitted traces are attributable to the low Q-factor [43],
inductive overcoupling [18], and to the use of an uncalibrated
VNA [18].

When Qy is low valued it is found that convergence may
fail during the optimisation unless the de-embedded length
of cable is known accurately (within &= 0.1 m for this set
of data). When the VNA is uncalibrated, the exact position
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(b) Magnitude plot of measured S11.

FIGURE 6. Measurement of Q-factor by reflection for a low Q-factor
LC-resonator connected by a long cable. The measurements of S;; were
made with an uncalibrated VNA. Q, and A are estimated assuming that
the effect of mismatches can be neglected. Fitted data was obtained by
using NLQFIT7.

of the reference plane for the measurement of phase is not
known, which adds further difficulty. A convenient method of
estimating the total length of the uncalibrated line is described
below. The velocity factor of the cable, v, is taken to be 1.4 for
the data shown in Fig. 6.

1) ESTIMATING THE LENGTH OF THE UNCALIBRATED LINE.
For a one-port resonator, the length of uncalibrated line ¢
is easily estimated from a swept measurement of Syj. The
method used is to replace S; in (10) by

SI(0) = (Sy1); 3T evife (30)

prior to performing the linear least-squares fit described
in Section II-A. An enclosing function is then used
to find the value of ¢ that minimises X|r;|> calculated
with (11). The authors used an implementation of the Golden
Section Search [44] to achieve this.
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FIGURE 7. Schematic of an instrument for measuring the elastic
properties of materials by resonant ultrasound spectroscopy (RUS).

C. THE Q-FACTOR OF AN ULTRASOUND RESONANCE
Resonant Ultrasound Spectroscopy (RUS) is a non-
destructive technique for determining the elastic properties
of materials by measuring mechanical resonant frequen-
cies [16]. It was developed from seismology and the desire
to understand the internal structure of the earth. In the 1990’s
work was undertaken to develop the mathematical methods
for determining the elastic constants of samples that have
regular geometric shapes (cylinders and parallelepipeds)
from their mechanical resonance spectra. This method is
well-suited to measurements on small test samples of metallic
and ceramic materials that have low mechanical losses, and
are precisely-machined and homogeneous. The number of
elastic constants determined through model fitting depends
on the expected anisotropy of the sample under test [16],
[20], [45]. If required, Q; can be obtained for magnitude
data by using an iterative fitting routine provided that initial
estimates of the fitted coefficients are chosen carefully and
accurately [20]. In this section, the application NLQFIT6 to
RUS data is demonstrated.

A RUS system (model RUS008 manufactured by Alamo
Creek Engineering, New Mexico, USA) was used to record
the vibrational spectrum of a precision-machined cylinder
of wrought Inconel 718 nickel alloy mounted between two
piezoelectric tranducers (Fig. 7). Detection is by means of
a dual-phase lock-in amplifier. A slow frequency scan was
used to avoid ring-down artefacts and obtain very high signal-
to-noise ratio spectral data. Q-factor was fitted by means of
NLQFIT6. The fitted Q-circle for a resonance at 323 kHz is
shown in Fig. 8. The observed leakage, Sy, may be attributed
to the signal that propagates between the transducers through
the air and through the fixture.

D. UNLOADED Q-FACTOR OF A MILLIMETER-WAVE
PHOTONIC CRYSTAL RESONATOR WITH

INTEGRATED WAVEGUIDES

A photonic crystal resonator (PCR) is a type of dielectric res-
onator that utilizes a material with an electromagnetic (EM)
bandgap to confine a resonant EM mode [46]. They can
achieve very high Q-factors and benefit from small modal
volumes and coupling waveguides that can be integrated into
the EM bandgap material. One of the difficulties encountered
in their Q-factor analysis is the estimation of the coupling
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FIGURE 8. Ultrasound resonance fitted with NLQFIT6.

waveguide loss and coupling strength. While these quantities
may be calculated in simulation, for measured devices it
is more challenging as only the S-parameters of the device
may be known with the integrated waveguides functioning as
uncalibrated attenuating transmission lines.

As an example, we consider the Q-factor analysis of a
millimeter-wave PCR with integrated waveguides, reported
in [47]. This PCR was designed for use in an ultra-low phase
noise monolithic microwave integrated circuit oscillator
and has moderately high coupling strength to optimize the
oscillator’s phase noise performance [48]. This strength of
coupling makes the accuracy of the resonator’s unloaded
Q-factor highly dependent on an accurate estimation of the
coupling strength.

In Fig. 9, we have applied NLQFIT7 to fit the PCR’s
measured reflection coefficient (S7;) and NLQFIT6 to fit
the measured forward transmission coefficient (S>;). The
measuring VNA used coaxial-to-WR19 waveguide adapters
on two ports and was calibrated at the waveguide flanges
using the two port TRL algorithm. Under strong coupling
conditions, a reflection-type estimation of Q-factor is gen-
erally considered to have lower uncertainties than a forward
transmission-type estimation due to uncertainties associated
with the VNA used to perform the measurement [39]. Here
we can see that both techniques provide very good fits to the
measured data.

As the VNA is calibrated, the coefficients fitted to reflec-
tion measurements using NLQFIT7 allow the attenuation
of the uncalibrated transmission lines to be characterized.
The attenuation was estimated to be «;(f;)=0.86 and
a,(f;) = 0.90 where «; describes the fitted attenuation
for port i. The geometric mean of the transmission line
attenuation was used for the scaling factor in the transmission
Q-factor fitting, i.e. A = 1/,/a(f;) a,(f;). Table 5 shows
a broad agreement between the reflection and transmission
fittings.

VOLUME 12, 2024

90°

—— Si; Measured
——" S, Measured
- “S1; Optimised Fit
- Sy, Optimised Fit
—— S,; Measured
= S,; Optimised Fit

180° 0°

270°

FIGURE 9. Measurement of the unloaded Q-factor of the PCR by
reflection and transmission.

TABLE 5. Measurements for the PCR.

Fitted data
fp (GHz) o [
By reflection (S11) 45770660 | 52840 | 122140
By transmission (S21) | 45.770690 | 52260 123 000

E. Q-FACTORS OF A SUPERCONDUCTING NOTCH
RESONATOR

Table 6 presents Q-factor data fitted to an uncalibrated trans-
mission measurement on a superconducting notch resonator.
The resonator, which is of similar design of the resonator to
that shown in Fig. 3, was cooled to approximately 10 mK by
using a dilution refrigerator [17]. Q-factors obtained by using
NLQFIT6 (weighted) and Probst’s resonator_tools circle-
fitting software [29] are shown. For this data, de-embedding
the cables does not change the fitted results significantly
because Q; is high-valued. Therefore, for fitting in the com-
plex domain, NLQFIT®6 is used in preference to NLQFIT7.

This measurement was discussed previously in refer-
ence [18], but is here re-analysed to consider two aspects that
are evident on the plotted Q-circle (Fig. 10): pivoting about
Sy as described in Section I-B3, and an anomalous deviation
from circularity close to the resonant frequency. Both fitting
methods are valid when the Q-circle is pivoted.

The presence of an anomaly close to the resonant frequency
is unusual; it is more common for anomalies to occur in the
“tails” of resonances. Weighting factors reduce the effect
of anomalies in the “tails” (Section III-B) but increase
the effect of an anomaly close to the resonant frequency.
Repeating the NLQFIT®6 fit with the largest outliers (10 % of
points) excluded is observed to result in small changes
to the fitted Q;, f; and d. The small change in d,
however, has a proportionally much greater effect on the
estimate for Q, because the resonator is so strongly coupled.
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TABLE 6. Estimates of Q, for a superconducting notch resonator fitted to
the data shown in Fig. 10.

Fitting algorithm
NLQFIT6 (weighted) Circle-fit [29]
All data Data without outliers | All Data
f; (GHz) 6.072257 | 6.072559 6.072256
or 56020 56554 56905
d 0.9697 0.9755 0.9758
rtc 1.0122 1.0126 1.0129
0, (NC) 1846783 | 2307799 2351434
0, (DCM) 1515975
0, (TCM) | 1333671 1545068 1555218

Corrections to Q, for pivoting of the Q-circle:
NC = No correction.
DCM = Diameter Corrected Method.
TCM = Touching Circle Method.

—— Optimised fit
~~~~~ Extrapolated

eg%ee S>1 measured
(normalised to Sy
fitted by NLQFIT6)

P

180° \noma » L Sv) 00

~90°

FIGURE 10. Polar plot of fitted and measured S,; data for a
superconducting notch resonator. The Q-circle for this resonance is
pivoted about Sy, and there is an anomaly close to the resonant
frequency. There are 239 measured points.

The calculation used for estimating Q,, requires a modifi-
cation to account for pivoting of the Q-circle. It must also
be assumed that leakage signals that bypass the resonator
can be neglected. The resonator_tools software implements
the diameter-corrected method (DCM) [17], [29], [49].
The authors find that a similar estimate is obtainable from
the expression Q, = Q; /(1 — d/ri). Here, r is the radius of
the fouching circle centred at the origin of the polar chart and
tangential to the outer edge of the Q-circle. This calculation
is based on the assumption that the true off-resonant point
(at which the resonator dissipates no energy) is located at
the outermost point of the fitted Q-circle. Estimates of Q,
obtained by using NLQFIT6 (with outliers excluded) and
resonator_tools (which uses an unweighted fit) are in close
agreement.

It should be emphasised that the equivalent circuits
on which Q-factor measurements are based assume that
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resonators have fixed properties. The loss of some materials
used in superconducting circuits, however, is dependent
on the energy density [17]. In such cases Q-circles may
become distorted, which increases measurement uncertainty.
Moreover, Q-factors fitted by NLQFIT and circle-fitting
algorithms may differ significantly. Convergence failures
and spurious fits can also be consequences of such
non-linearity.

VI. MEASUREMENT PRECISION

The precision of measurements of Q-factor can be improved
by various means that have been described. For example,
data can be weighted, and the coupling factor set at an
appropriate level for the type of resonator used. Type A
(random) uncertainties are readily obtainable by repetition
of measurements. The o0,_; data in Table 4 can be taken
to be Standard Uncertainties [50], [51]. These, however, are
often small compared to Type B (systematic) uncertainties,
which are much more difficult to evaluate. Most significantly,
Q-factor is determined assuming simple lumped-component
equivalent circuits. These are not exact even for a resonator
assembled from a capacitor and an inductor because of
the distributed nature of wire impedances. For cavity
resonators, equivalent circuits are analogies. Therefore,
a Type B contribution for model uncertainty [52] is needed.
There are also significant Type B uncertainty contributions
associated with S-parameter measurements and mismatches
in uncalibrated lines [53]. These are generally larger (first-
order) for Q-factor measurements by reflection [39] than
for transmission (second order). The best guide to the size
of the components of the Q-factor uncertainty that are
associated with Type B contributions is usually obtained
empirically [18].

VII. CONCLUSION

Robust algorithms for fitting Q-factor and resonant frequency
in the complex domain have been described. They can be used
for measurements on reflection, transmission and notch res-
onators. The two-step fitting process developed by the authors
has been tested in numerous experiments. The information
given is sufficient to enable the algorithms to be implemented
easily. Guidance on experimental aspects, such as estimation
of unloaded Q-factors, is also provided. The measurement
examples that have been given demonstrate the usefulness
of the algorithms for measuring the radio-frequency and
ultrasound properties of materials by resonant methods.
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SUPPLEMENTARY DATA

Demonstration computer scripts (Python/ Matlab) and exam-
ple data sets can be obtained from https://doi.org/10.47120/
npl.MAT58. An alternative implementation is available from
the scikit-rf project https://scikit-rf.readthedocs.io/en/latest/.
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