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Abstract: Although the physical properties of a structure, such as stiffness, can be determined using
some statical tests, the identification of damping parameters requires a dynamic test. In general, both
theoretical prediction and experimental identification of damping are quite difficult. There are many
different techniques available for damping identification, and each method gives a different damping
parameter. The dynamic indentation method, rheometry, atomic force microscopy, and resonant
vibration tests are commonly used to identify the damping of materials, including soft materials.
While the viscous damping ratio, loss factor, complex modulus, and viscosity are quite common to
describe the damping of materials, there are also other parameters, such as the specific damping
capacity, loss angle, half-power bandwidth, and logarithmic decrement, to describe the damping
of various materials. Often, one of these parameters is measured, and the measured parameter
needs to be converted into another damping parameter for comparison purposes. In this review,
the theoretical derivations of different parameters for the description and quantification of damping
and their relationships are presented. The expressions for both high damping and low damping are
included and evaluated. This study is considered as the first comprehensive review article presenting
the theoretical derivations of a large number of damping parameters and the relationships among
many damping parameters, with a quantitative evaluation of accurate and approximate formulas.
This paper could be a primary resource for damping research and teaching.

Keywords: damping; complex modulus; loss factor; characterisation; soft material; ultrasound;
viscoelastic properties; viscosity; dynamic indentation; rheometry

1. Introduction

Soft materials exhibit both viscous (damping) and elastic (stiffness) characteristics [1–4].
The quantification of the viscoelastic properties of soft materials is essential in numerous
science and engineering applications [5–12]. Furthermore, next to elasticity, damping
(or viscosity) could be an additional relevant diagnostic biomarker, and viscosity could
enhance the current diagnosis in quantitative elastography [13–22]. Briefly, damping is
the removal of energy from a system, and the energy can be either dissipated within the
system or transmitted away by radiation [23]. It should be remembered that material
damping is energy dissipation due to deformation in a medium, and radiation damping is
the energy transfer to a surrounding medium [23,24]. In addition, the energy in a system
can be dissipated, for example, via the friction between different parts in the system and air
resistance [25]. The properties of a structure such as mass and stiffness can be determined
by performing some static tests. However, identifying the damping of a structure or system
requires a dynamic test [26]. In general, both theoretical modelling and experimental
identification of damping are quite difficult [24,27–29]. There are many research papers on
determining the damping of materials, including biomaterials (e.g., [30–37]). The literature
survey shows that there are different techniques for the identification of damping (e.g.,
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dynamic indentation method, logarithmic decrement method, and rheometry), and each
method gives a different damping parameter, such as the loss factor, loss modulus, and
viscous damping ratio [23,26,38–43]. The identification of the damping of conventional
materials (such as ceramics and metals) is quite straightforward, and the loss factor or
viscous damping ratio is commonly used to quantify their damping [44]. On the other
hand, the identification of the damping of soft materials (e.g., agar, gelatine, and colla-
gen phantoms and tissue) is challenging, and different damping parameters such as the
loss modulus, loss angle, viscous damping ratio, or viscosity are used to describe their
damping [30,34,36,45–47].

Regarding the identification of the damping of materials, Nayar et al. [30] used the
dynamic indentation method to determine the storage and loss moduli of some samples of
agar, which is a representative material for biological tissues. Similarly, using the dynamic
indentation method, Vriend et al. [48] determined the viscoelastic properties of some elas-
tomeric materials, and Boyer et al. [49] assessed the stiffness and damping of skin. Dakhil
et al. [31] identified the storage and loss moduli of cells using a rheometer. Peng et al. [32]
determined the dilute solution viscosities of some cellulose nanocrystal dispersions using a
capillary viscometer. Cartagena-Rivera et al. [50] identified the loss and storage moduli of
live cells using an atomic force microscope. Shahmansouri et al. [51] identified the loss fac-
tor of the human aorta using a biaxial tensile test and hysteresis loop. Vogel and Pioletti [52]
determined the specific damping capacity of the bovine nucleus pulposus using a dynamic
compression test and hysteresis loop. Wang et al. [33] identified the viscous damping ratios
of some beam-like hydrogel samples using resonant vibration tests. Esmaeel et al. [36]
determined the viscous damping coefficient of tissue-mimicking silicon rubber samples
by calculating the dissipated energy per cycle of harmonic motion by the material and
the maximum stored energy in the sample using the displacement–force curve. Rosicka
et al. [53] identified the biomechanical and viscoelastic properties of skin, including the
logarithmic decrement values. Based on the mathematical models for the dynamic response
of a microbubble located at the soft medium interface [54–56], Bezer et al. [34] determined
the shear modulus and viscosity of a tissue-mimicking gelatine phantom by matching the
experimentally measured and predicted responses of the microbubble located at the soft
medium interface exposed to ultrasound. Similarly, using the mathematical models for
the dynamic response of a sphere located at the soft medium interface [57–59], the shear
modulus and viscous damping ratio of tissue-mimicking gelatine phantoms were identified
by matching the experimentally measured and predicted responses of the sphere located at
the soft medium interface [37,60,61].

Li et al. [62] presented the viscoelasticity imaging of biological tissues and single cells
using shear wave propagation, including examples of ultrasound shear wave viscoelasticity
imaging applications. Beuve et al. [63] used diffuse shear wave spectroscopy for the
characterisation of the viscoelastic properties (shear modulus and viscosity) of soft tissue.
Tecse et al. [64] developed and validated a method for the characterisation of the viscoelastic
properties of soft tissue using ultrasound elastography. Wang et al. [65] investigated the
effect of damping on ultrasound elastography algorithms. Koruk and Pouliopoulos [66]
presented elasticity and viscoelasticity imaging based on the use of small particles located
within the tissue and at the tissue interface while being exposed to static and dynamic
external forces. Hirsch et al. [45] measured the shear moduli and loss angles of the liver
and spleen using magnetic resonance elastography. Wang et al. [67] derived the shear
wave speed and loss angle for depicting hepatic fibrosis and inflammation in chronic viral
hepatitis using magnetic resonance elastography. The damping parameters of various
materials identified using different methods in the literature are listed in Table 1. It should
be noted that each method has its advantages and limitations [29,33,36,51,67–69].
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Table 1. The damping parameters of various materials identified using different methods in the literature.

Material Method Damping Parameter Reference, Year

Agar gels Dynamic indentation Complex modulus Nayar et al. [30], 2012

Human skin Dynamic indentation Viscous damping coefficient Boyer et al. [49], 2009

Cells Atomic force microscope Complex modulus Cartagena-Rivera et al. [50], 2015

Cells Rheometer Complex modulus Dakhil et al. [31], 2016

Cellulose nanocrystal
dispersions Capillary viscometer Viscosity Peng et al. [32], 2018

Polyacrylamide gels Resonant vibration test Viscous damping ratio Wang et al. [33], 2020

Silicon rubber samples Hysteresis loop Viscous damping coefficient Esmaeel et al. [36], 2021

Microsperma Vibration test Logarithmic decrement Miao et al. [47], 2021

Gelatine phantom Acoustic particle palpation Viscosity Bezer et al. [34], 2021

Human aorta Hysteresis loop Loss factor Shahmansouri et al. [51], 2016

Bovine nucleus pulposus Hysteresis loop Specific damping capacity Vogel and Pioletti [52], 2012

Human liver Ultrasound elastography Viscosity Chen at al. [69], 2013

Human liver Magnetic resonance
elastography Loss angle Wang et al. [67], 2024

Overall, the literature review shows that the dynamic indentation method [30], rheom-
etry and viscometry [31,32,70], atomic force microscopy [71], hysteresis loop [36], resonant
vibration tests or experimental modal analysis [33,72], and logarithmic decrement [47,53]
are commonly used to identify the damping of materials, including soft materials. In addi-
tion, a bubble or sphere placed inside the soft medium or located at a soft medium interface
that is exposed to external excitation, such as acoustic radiation force or magnetic force, has
been recently used to identify the viscoelastic properties of soft materials [34,37,73–77]. The
use of ultrasound elastography [17,69,78,79] and magnetic resonance elastography [80–83]
for determining the mechanical properties of tissue is quite common in preclinical and
clinical applications. It is seen that there are many parameters for the description and
quantification of damping. The viscous damping ratio, loss factor, complex modulus (or
storage and loss moduli), and viscosity are quite commonly used to describe the damping of
materials. In addition, some other parameters, such as the specific damping capacity, phase
lag or loss angle, half-power bandwidth, logarithmic decrement, and inverse quality factor,
are used to describe the damping of various materials. Often, one of these parameters
(e.g., loss factor) is measured in practical applications, and for comparison purposes, the
measured damping parameter needs to be converted into some other damping parameters
(e.g., viscosity). However, there is a limited number of studies that have evaluated a few
different damping parameters and presented their relationships [38,84,85]. Therefore, there
is a need for a comprehensive study that presents the theoretical derivations of different
damping parameters and their relationships.

This paper presents the theoretical derivations of different parameters for the descrip-
tion and quantification of damping and their relationships. In this paper, the expressions
for both high damping (i.e., accurate formulas) and low damping (i.e., approximate for-
mulas) are presented, and these approaches are evaluated. The structure of this paper
is as follows: First, the elastic, viscous, and viscoelastic materials are defined, and then
the responses of single-degree-of-freedom (SDOF) systems with a viscous damper and
a complex stiffness are presented in Section 2. By exploiting the theoretical background
presented in Section 2, the theoretical derivations of different damping parameters and
their relationships are presented in Section 3. It should be noted that MATLAB (R2022a)
software (MathWorks, Natick, MA, USA) was used to present the relationships among
different parameters whenever needed. The damping parameters investigated in this paper
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include the specific damping capacity, loss factor, viscous damping coefficient, viscous
damping ratio, phase lag (or loss angle), logarithmic decrement, half-power bandwidth,
complex modulus (or loss and storage moduli), inverse quality factor, viscosity, decay ratio
in the step response, and structural reverberation time. The relationships between different
damping parameters are summarised in Section 4, and some sample damping identification
applications of biomaterials using different sensing technologies are presented in Section 5.
It is anticipated that many researchers conducting research on damping, from very soft
materials to very stiff conventional engineering materials used in different fields, will refer
to this study. In addition, the material presented in this study can be exploited for teaching
about damping or viscoelasticity in various branches.

2. Theoretical Background

In the following sections, the elastic, viscous, and viscoelastic materials are first
defined, and then the responses of SDOF systems with a viscous damper and a complex
stiffness are presented. It is worth remembering that by using the theoretical background
presented in this section, different damping parameters are derived, and their relationships
are presented in Section 3.

2.1. Elastic, Viscous, and Viscoelastic Materials

Materials are mostly assumed to behave according to Hooke’s linear elasticity theory
under small deformations. In other words, it is assumed that there is a linear relationship
between the stress and strain, given by:

σ = Eε (1)

where σ, E, and ε are the stress, Young’s modulus, and strain, respectively. It should be
noted that the same relation can be written between the shear stress and strain as τ = Gγ,
where τ, G, and γ are the shear stress, shear modulus, and shear strain, respectively. In
this article, the expressions are written mostly using the normal strain, normal stress, and
Young’s modulus. However, it should be kept in mind that similar expressions can be
written using the shear strain, shear stress, and shear modulus. The materials described in
Equation (1) are called elastic materials. For a so-called purely elastic material, all the energy
stored in the sample during loading is returned when the load is removed. Engineering
materials such as aluminium and steel can be conveniently assumed as elastic materials.

Opposite to an elastic material, a so-called purely viscous material does not store
energy. For a purely viscous material, there is no elastic component, and all the energy is
dissipated as pure damping once the load is removed. For these materials, the stress is
proportional to the strain rate, given by:

σ = µ
dε

dt
(2)

where µ is the viscosity, and
.
ε = dε

dt is known as the strain rate. Liquidus materials such as
glycerine, oil, and honey can be considered as viscous materials.

The so-called viscoelastic materials show both elastic and viscous behaviours; there-
fore, they exhibit time-dependent strain [86,87]. For viscoelastic materials, some of the
energy stored in the system can be recovered upon the removal of the load, and the re-
maining energy is dissipated in the form of heat. There are different mathematical models,
such as the Kelvin–Voigt, Maxwell, and standard linear solid models, for the viscoelastic
materials where springs and dampers are arranged in series and/or parallel to determine
their stress and strain relationships [86,88–91]. For example, for the Kelvin–Voigt model
which is represented by a purely viscous damper and purely elastic spring connected in
parallel, the stress, strain, and strain rate with respect to time are governed by [92]:
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σ(t) = Eε(t) + µ
dε(t)

dt
(3)

Tissue-mimicking materials such as hydrogels and biological structures such as tissue and
skin show viscoelastic behaviour.

The cyclic stress–strain versus time for classical elastic, viscous, and viscoelastic
materials are shown in Figure 1. The stress and strain curves for elastic materials move
completely in phase, as seen in Figure 1a, while there is a π/2 radian or 90◦ phase difference
between the stress and strain for viscous materials, as seen in Figure 1b [93]. On the other
hand, with the cyclic stress at frequency ω, there is a phase ϕ between the stress and strain
for viscoelastic materials, where ϕ is between 0 and π/2 (Figure 1c). It is noted that ε0 and σ0
show the strain and stress amplitudes, respectively. The term ϕ is also called the phase shift
or loss angle. It should be noted that the loss angle is a measure of a material’s damping.
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Various formulations for the response of an SDOF system are given in Sections 2.2–2.4. By
exploiting the theoretical background presented in Sections 2.2–2.4, the theoretical derivations
of different damping parameters and their relationships are presented in Section 3.

2.2. Viscously Damped SDOF System Exposed to Harmonic Excitation
2.2.1. Steady-State Response of a Spring–Damper System

The equation of motion for a viscously damped SDOF system with damping coefficient
c and spring coefficient k without any inertia (i.e., m = 0) exposed to a harmonic excitation
f (t) = F0sin(ωt), shown in Figure 2a, can be written as follows:

c
.
u + ku = F0sin(ωt) (4)

where F0 is the amplitude of the applied force, u and
.
u show the displacement and ve-

locity, respectively, ω = 2π f is the angular or circular frequency in rad/s, and f is the
linear frequency in 1/s or Hz. The steady-state solution for this system can be written as
follows [38]:

u(t) = Bsin(ωt − ϕ) (5)

where B is the amplitude of the steady-state response, and ϕ is the phase angle by which
the response lags the excitation given by:

B =
F0

k
√

1 +
( cω

k
)2

=
F0

k
√

1 + tan2ϕ
(6)

ϕ = tan−1
( cω

k

)
(7)

It is seen that the phase angle is a function of the material properties (i.e., c and k) and the
frequency (ω) for a viscously damped system.
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2.2.2. Free Vibrations of a Mass–Spring–Damper System

The equation of motion for a viscously damped SDOF system with damping coefficient
c, mass m, and spring coefficient k without any external force (i.e., f (t) = 0), shown in
Figure 2a, can be written as follows:

m
..
u + c

.
u + ku = 0 (8)

where u,
.
u, and

..
u are the displacement, velocity, and acceleration of the mass. Dividing

Equation (8) by the mass yields:

..
u + 2ζωn

.
u + ω2

nu = 0 (9)

where ωn =
√

k/m is the undamped natural frequency, and ζ = c
ccr

= c
2
√

km
is the viscous

damping ratio [94]. Here, ccr is called the critical damping coefficient. For oscillatory motion
(ζ < 1) and imposed initial displacement u0 and velocity

.
u0, the solution of Equation (9)

can be determined as follows [95]:

u(t) = Ae−ζωntsin(ωdt + θ) (10)

where A and θ are the coefficients to be determined from the initial conditions, and
ωd = ωn

√
1 − ζ2 is the damped natural frequency.

2.2.3. Forced Vibrations of a Mass–Spring–Damper System

The equation of motion for a viscously damped SDOF system subjected to a harmonic
excitation f (t) = F0cos(ωt), shown in Figure 2a, can be written as follows [96]:

m
..
u + c

.
u + ku = F0cos(ωt) (11)

Dividing Equation (11) by the mass yields:

..
u + 2ζωn

.
u + ω2

nu =
F0

m
cos(ωt) (12)

For oscillatory motion (ζ < 1), the solution of Equation (12) can be determined to be the
summation of the homogenous solution uh(t) and particular up(t) solution as follows [26]:

u(t) = Ae−ζωntsin(ωdt + θ) + Bcos(ωt − φ) (13)

where A and θ are the coefficients to be determined from the initial conditions, and B and
φ are the coefficients of the particular solution given by:

B =
F0/m√

(ω2
n − ω2)

2 + (2ζωnω)2
(14)

φ = tan−1 2ζωnω

ω2
n − ω2 (15)
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The equations above can be further arranged as follows:

C =
B

F0/k
=

1√
(1 − r2)

2 + (2ζr)2
(16)

φ = tan−1 2ζr
1 − r2 (17)

where r = ω/ωn is the frequency ratio. Here, φ is the phase lag of the displacement of
the mass with respect to the force applied to the mass. It should be remembered that ϕ
is the phase lag of the strain with respect to the stress in the material. As presented later,
the phase lag of the strain with respect to the stress in the material is ϕ = tan−1(2ζ ωn

ω

)
=

tan−1(2ζr) for a viscously damped system. It should be noted that for the quasistatic
loading (i.e., r = ω/ωn ≪ 1), the solution for the forced vibrations of the mass–spring–
damper system reduces to that of the system without inertia; hence, we have φ ∼= ϕ for the
quasistatic loading.

2.3. Viscously Damped SDOF System Exposed to Step Excitation

The equation of motion for a viscously damped SDOF system subjected to a step
excitation f (t) = F0 for t ≥ 0, shown in Figure 2a, can be written as follows:

m
..
u + c

.
u + ku = F0 for t ≥ 0 (18)

The response of an underdamped system (ζ < 1) exposed to step excitation can be shown
as follows [59]:

u(t) =
F0

k
− F0

k
√

1 − ζ2
e−ζωntcos(ωdt − θ) (19)

where
θ = tan−1 ζ√

1 − ζ2
(20)

2.4. SDOF System with Complex Stiffness Exposed to Harmonic Excitation
2.4.1. Steady-State Response of a Complex Spring System

The equation of motion for a complex spring having real and imaginary compo-

nents
∼
k = k′ + jk′′ without any inertia (i.e., m = 0) exposed to a harmonic excitation

f (t) = F0sin(ωt), shown in Figure 2b, can be written as follows:

∼
ku =

(
k′ + jk′′

)
u = F0sin(ωt) (21)

where j =
√
−1. The steady-state solution for this system can be shown as follows [38]:

u(t) = Bsin(ωt − ϕ) (22)

where
B =

F0

k′
√

1 +
(

k′′
k′

)2
=

F0

k′
√

1 + tan2ϕ
(23)

ϕ = tan−1
(

k′′

k′

)
(24)

It is worth remembering that the spring with a complex stiffness property is restrained
from one end and forced from the other end (see Figure 2b). It is seen that, opposite to the
viscously damped system in which the phase angle is a function of the material properties
(i.e., c and k) and the frequency (ω), the phase angle is only a function of the material
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properties for the complex spring system (i.e., k′ and k′′ ). However, the material properties
can be dependent on the frequency.

2.4.2. Steady-State Response of a Mass–Complex Spring System

The equation of motion for an SDOF system with complex stiffness subjected to
harmonic excitation f (t) = F0ejωt, shown in Figure 2b, can be written as follows:

m
..
u +

(
k′ + jk′′

)
u = F0ejωt (25)

It is common to write
∼
k = k′ + jk′′ = k + jηk = k(1 + jη), where η is known as the loss

factor. Assuming the form of the solution to be as
∼
Bejωt and substituting this into the

equation above, the following expression will be produced:[
−mω2 + k(1 + jη)

]∼
B = F0 (26)

By performing some operations, the equation above can be written as follows:

∼
B =

F0/m
ω2

n − ω2 + jηω2
n

(27)

Hence, the amplitude of oscillations and the phase between the displacement of the mass
with respect to the force applied to the mass can be written as follows [97]:∣∣∣∣∼B∣∣∣∣ = F0/m√

(ω2
n − ω2)

2 + (ηω2
n)

2
(28)

φ = tan−1 η

1 − (ω/ωn)
2 (29)

The equations above can be further arranged as follows:

∣∣∣∣∼C∣∣∣∣ =
∣∣∣∣∼B∣∣∣∣

F0/k
=

1√
(1 − r2)

2 + jη2
(30)

φ = tan−1 η

1 − r2 (31)

It is again worth remembering that φ is the phase lag of the displacement of the mass with
respect to the force applied to the mass, while ϕ is the phase lag of the strain with respect
to the stress in the material. As presented later, the phase lag of the strain with respect to
the stress in the material is ϕ = tan−1(η) for an SDOF system with complex stiffness. As
stated before, using the theoretical background presented in Section 2, different damping
parameters are derived, and their relationships are presented in Section 3.

3. Theoretical Derivations of Different Damping Parameters and Their Relationships

Many techniques are available for the identification of the damping of structures using
experimental data. For example, the logarithmic decrement and step-response techniques
are time-domain decay-rate methods; the half-power bandwidth, circle-fit, and line-fit
methods are frequency-domain modal analysis curve-fitting methods; and the hysteresis
loop or power input method is an energy-based technique [95]. Each method gives a
different damping parameter (loss factor, viscous damping ratio, etc.). The theoretical
derivations of different damping parameters and their relationships as well as damping
identification methods are presented in the subsequent sections. The definitions of common
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damping parameters are listed in Table 2 so that the reader can refer to these parameters
as needed.

Table 2. The definitions of common damping parameters.

Parameter Symbol Definition/Explanation

Specific damping capacity ψ ψ = ∆W
W

∆W: area captured within the hysteresis loop
W: maximum stored energy

Loss factor η η = 1
2π

∆W
W

Complex Young’s modulus
(unit: Pa)

∼
E

∼
E = E′ + jE′′

E′: storage Young’s modulus
E′′ : loss Young’s modulus

Complex shear modulus
(unit: Pa)

∼
G

∼
G = G′ + jG′′

G′: storage shear modulus
G′′ : loss shear modulus

Logarithmic decrement δ δ = 1
n loge

ui
ui+n

ui: amplitude of peak i
ui+n: amplitude of peak i + n

Viscous damping ratio ζ ζ = c
ccr

c: viscous damping coefficient
ccr: critical viscous damping coefficient

Half-power bandwidth
(unit: Hz) ∆ω ∆ω = ω2 − ω1

ω1: lower half-power frequency
ω2: higher half-power frequency

Inverse quality factor Qinv Qinv = 1
Q = ∆ω

ωn

Q: quality factor
ωn: natural frequency

Phase lag
(unit: radian) ϕ ϕ = ∠(σ, ε)

∠(σ, ε): phase angle between the stress (σ) and
strain (ε)

Shear viscosity
(unit: Pa·s) µ µ =

τ(t)
.
γ(t)

τ(t): shear stress
.
γ(t): shear strain rate
t: time

Structural reverberation time
(unit: s) T60 dB T60 dB = tL−60 dB − tL tL−60 dB − tL: 60 dB decay time

Decay ratio γ γ = c/a a and c: amplitudes of the first and second peaks
in step response, respectively

3.1. Hysteresis Loop and Specific Damping Capacity

The force–displacement and stress–strain relationships for a purely elastic material
given in Equation (1) are simply illustrated in Figure 3a,c. As seen, the stress–strain (or
force–displacement) curve of a purely elastic material is a straight line. For a viscoelastic
material under the cyclic loading at constant frequency ω and for the stress amplitude σ0
(see Figure 1), the stress can be written as follows:

σ(t) = σ0ejωt (32)

The induced strain for a viscoelastic material can be expressed as follows:

ε(t) = ε0ej(ωt−ϕ) (33)

where ε0 is the strain amplitude, and, as stated before, ϕ is the phase between the stress
and strain. For a viscoelastic material, the input force versus the induced displacement
and the input stress σ(t) versus the induced strain ε(t) for one cycle of motion are plotted
in Figure 3b,d. The elliptical shape shown in Figure 3b,d is known as the hysteresis
loop [98,99]. The area captured within the hysteresis loop, ∆W, equals the dissipated
energy per cycle of harmonic motion by the material, and W represents the maximum
stored energy [93]. Similarly, ∆W is the energy dissipated per unit volume of the sample
during one cycle, and W is the maximum stored energy per unit volume. It should be
noted that ∆W = 0 for a purely elastic material (or spring), while ∆W > 0 for a viscoelastic
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material, and it is proportional to the area bounded by the hysteretic curve. Overall, by
harmonically loading a sample in one direction, the hysteresis loop for the sample can be
obtained. The specific damping capacity, which is defined as the ratio of the mechanical
energy dissipated during one cycle to the maximum potential (strain) energy of the sample,
can be calculated using [44]:

ψ =
∆W
W

(34)

or

ψ =
∆W
W

(35)

Remembering that the energy dissipated per unit volume of the sample is ∆W =
∫

σdε
and that the maximum energy per unit volume is W = 1

2 σ0ε0, the expression above can be
written as:

ψ =

∮
σdε

1
2 σ0ε0

(36)

Furthermore, since we can write σ0 = Eε0, the following expression can be written:

ψ =

∮
σdε

1
2 Eε2

0
(37)

It should be noted that the hysteresis loop method or the power input method is quite
effective for determining the frequency-averaged damping of a structure under steady-
state vibration.
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3.2. Hysteresis Loop and Loss Factor

For reasonable levels of damping, the relationship between the structural (or material)
damping ratio and associated energy components shown in Figure 3b,d is given by the
following equation [93,100]:

η =
1

2π

∆W
W

(38)
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or

η =
1

2π

∆W
W

(39)

where η is known as the loss factor. Furthermore, using ∆W =
∫

σdε, W = 1
2 σ0ε0, and

σ0 = Eε0 in Equation (39) produces the following expression:

η =

∮
σdε

πσ0ε0
(40)

or

η =

∮
σdε

πEε2
0

(41)

It is worth reminding that the loss factor is so commonly used to define and quantify the
damping of structures in practical applications because it can be easily measured using
standard test methods, such as experimental modal analysis [101], is commonly used
in modelling damping in the frequency domain [102], can be modelled as a function of
frequency [97], is related to the amplitude of the hysteresis loop obtained by cyclic loading
of the material [103], and so on.

3.3. Specific Damping Capacity and Loss Factor

By substituting Equation (34) into Equation (38), the relationship between the specific
damping capacity and loss factor can be easily obtained as follows [104]:

η =
ψ

2π
(42)

It is seen that the loss factor and specific damping capacity are simply related through
the constant 1/2π. However, the use of the loss factor provides convenience in modelling
damping in structural mechanics [105,106].

3.4. Dissipated Energy and Viscous Damping Coefficient

A viscous damper is a velocity-dependent dissipative component that produces damp-
ing when the viscous fluid passes through appropriate orifices [107]. The viscous damping
force is proportional to the relative velocity between the two ends of the damper ( f = c

.
u,

Figure 2a). The viscous damping coefficient c with the unit N s/m is a parameter that
represents the energy dissipation due to friction that decelerates motion [108]. For a viscous
damper subjected to a harmonic force, the dissipated energy per cycle can be written as
follows:

∆W =
∮

c
.
xdx (43)

Since dx =
.
xdt, x(t) = Bsin(ωt), and, hence,

.
x(t) = Bωcos(ωt), the expression for the

dissipated energy per cycle of harmonic motion by the material becomes:

∆W =
∮

cB2ω2cos2(ωt)dt (44)

where B is the displacement amplitude. Hence, the integration for the whole cycle pro-
duces [36]:

∆W = πcB2ω (45)

or
∆W = 2π2cB2 f (46)

Here, f is the frequency in Hz, and ω = 2π f is the frequency in rad/s, as stated before.
After all, the viscous damping coefficient can be found using the dissipated energy per
cycle of harmonic motion as:
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c =
∆W

πB2ω
=

∆W
2π2B2 f

(47)

3.5. Complex Modulus and Loss Factor

The Young’s modulus or shear modulus of a viscoelastic material can be represented
by a complex (or dynamic) quantity, having both the storage and dissipative energy compo-
nents. In order to derive the complex modulus, let us write the stress and strain as complex
quantities as follows:

σ(t) = σ0ejωt = σ0[cos(ωt) + jsin(ωt)] (48)

ε(t) = ε0ej(ωt−ϕ) = ε0[cos(ωt − ϕ) + jsin(ωt − ϕ)] (49)

where σ0 and ε0 are the stress and strain amplitudes, respectively. Hence, the complex

Young’s modulus
∼
E of the material can be written as follows:

∼
E =

σ0ejωt

ε0ej(ωt−ϕ)
=

σ0

ε0
cos(ϕ) + j

σ0

ε0
sin(ϕ) = E′ + jE′′ (50)

where E′ is the storage Young’s modulus, and E′′ is the loss Young’s modulus. The storage
Young’s modulus or the real part of the complex Young’s modulus E′ = σ0

ε0
cos(ϕ) is related

to the elastic behaviour of the material, and the loss Young’s modulus or the imaginary
part of the complex Young’s modulus E′′ = σ0

ε0
sin(ϕ) is related to the viscous behaviour

of the material (a measure of the energy dissipation ability of the material). When E′′ = 0,
then E′ takes the place of the ordinary Young’s modulus E. Therefore, it is called the
storage Young’s modulus since it measures the material’s ability to store elastic energy. The
complex Young’s modulus can be written as follows [109]:

∼
E = E′

(
1 + j

E′′

E′

)
(51)

The energy dissipated during a load cycle can be written as ∆W = πE′′ ε2
0. Similarly, the

maximum elastic energy during the cycle can be written as W = 1
2 E′ε2

0. Substituting these
into the equation above yields:

∼
E = E′

(
1 + j

∆W
2πW

)
(52)

Since ∆W
2πW was defined as the loss factor before, the following expression can be written:

∼
E = E′(1 + jη) (53)

From Equations (51) and (53), it is clear that the relationship between the loss factor and
the storage and loss Young’s moduli is as follows:

η =
E′′

E′ (54)

Although the expressions above are written for Young’s modulus, similar expressions

can be written for the shear modulus using
∼
G = G′ + jG′′ where G′ is the storage shear

modulus, and G′′ is the loss shear modulus.

3.6. Logarithmic Decrement and Viscous Damping Ratio

A typical free vibration response of the viscously damped SDOF system given in
Equation (10) is illustrated in Figure 4. It should be noted that the decay envelope for the
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free vibrations is Ae−ζωnt. The logarithmic decrement is defined as the natural logarithm
of the ratio of the amplitudes of any two successive peaks, given by [47]:

δ = loge
u0

u1
= loge

u1

u2
= loge

u2

u3
= · · · = loge

um−1

um
(55)

Using Equations (10) and (55), the following equation that relates the logarithmic decrement
and viscous damping ratio can be obtained [110]:

δ =
1
n

loge
ui

ui+n
=

2πζ√
1 − ζ2

(56)

where ui is the amplitude of peak i, and ui+n is the amplitude of peak i + n. Overall,
the viscous damping ratio using the logarithmic decrement can be determined using the
following expression:

ζ =
δ√

4π2 + δ2
(57)

Since
√

1 − ζ2 ≈ 1 for small damping, it is common to define the relationship between the
viscous damping ratio and logarithmic decrement as follows:

ζappr =
δ

2π
for ζ ≪ 1 (58)

The logarithmic decrement method is a time-domain identification approach that does not
require input measurement; it requires only response measurements. It should be noted
that the logarithmic decrement method is effective for damping identification when a single
mode of vibration can be isolated from the others.
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and the logarithmic decay (black dashed curve).

Figure 5 presents the real viscous damping ratio, calculated using Equation (57), and
the approximate viscous damping ratio, calculated using Equation (58), as a function of
the amplitude ratio (Figure 5a), the logarithmic decrement (Figure 5b), the percentage
difference as a function of the amplitude ratio (Figure 5c), and the logarithmic decrement
(Figure 5d). It is seen that the difference is greater than 2% when the amplitude ratio is
greater than or equal to 3.5 or when the logarithmic decrement is greater than or equal to
1.25. As the exact formula (i.e., Equation (57)) is still quite simple, the use of Equation (57)
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is highly recommended when calculating the viscous damping ratio from the logarithmic
decrement in practical applications.
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3.7. Half-Power Bandwidth and Viscous Damping Ratio

For a viscously damped SDOF system subjected to a harmonic excitation, the con-
tribution of the homogenous (or transient) solution (i.e., the response due to the initial
conditions) is diminished for large values of t [26]; hence, we have only the particular solu-
tion (i.e., the response due to the applied force) at the steady state (see Equation (13)).
As the power is proportional to the square of the amplitude of oscillations, the half-
power response level corresponds to Bmax/

√
2, where Bmax is the maximum value of

the amplitude B given in Equation (14). The half-power frequencies are the two points
on either side of the natural frequency such that the dynamic amplification is equal to
1/

√
2. It should be noted that this corresponds to a 3 dB amplitude decrease in the

logarithmic scale. The procedure for the use of a half-power bandwidth for the identifi-
cation of damping is illustrated in Figure 6. Using Equations (14) and (16), the operation
d
dr

(
B

F0/k

)
= 0 produces the peak value Cmax = 1

2ζ
√

1−ζ2
at rmax =

√
1 − 2ζ2 [26]. Hence,

using C(r) = Cmax/
√

2 in Equation (16) yields the frequency ratios at the half-power

points as r1,2 =
√

1 − 2ζ2 ± 2ζ
√

1 + ζ2. Hence, the lower and upper half-power frequen-

cies are obtained as ω1 = ωn

√
1 − 2ζ2 − 2ζ

√
1 + ζ2 and ω2 = ωn

√
1 − 2ζ2 + 2ζ

√
1 + ζ2,

respectively. Overall, the relationship between the viscous damping ratio and half-power
bandwidth becomes as follows [38,111]:

∆ω

ωn
=

ω2 − ω1

ωn
=

√
1 − 2ζ2 + 2ζ

√
1 + ζ2 −

√
1 − 2ζ2 − 2ζ

√
1 + ζ2 (59)

where ∆ω = ω2 − ω1 is the half-power bandwidth. Once the half-power frequencies and
natural frequency are determined using the measured data, the viscous damping ratio can
be found using Equation (59). It is clear that the wider bandwidth means more damping.
The expression in Equation (59) is quite complicated. Therefore, the following approximate
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expression can be used to define the relationship between the half-power bandwidth and
viscous damping ratio:

∆ω

ωn
=

ω2 − ω1

ωn
=

√
1 + 2ζ −

√
1 − 2ζ for ζ < 0.1 (60)

For small damping (i.e., ζ ≪ 1), the equation can be further simplified as follows [112]:

∆ω

ωn
=

ω2 − ω1

ωn
= 2ζappr for ζ ≪ 1 (61)
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The relationship between the half-power bandwidth and the viscous damping ratio
using Equations (59)–(61) is visualised in Figure 7. It is seen that for small damping (i.e.,
∆ω
ωn

< 0.2 or ζ < 0.1), Equations (59)–(61) produce almost the same results, whereas there is
a considerable difference between Equation (59) and Equations (60) and (61) when ζ > 0.2.
On the other hand, the approximation given in Equation (60) is always better than the
simplest expression given in Equation (61).
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3.8. Half-Power Bandwidth and Loss Factor

As will be shown later, the loss factor can be written as η = tan(ϕ). Hence, the
relationship between the loss factor and half-power bandwidth can be shown as [38]:

∆ω

ωn
=

ω2 − ω1

ωn
=

√
1 + η −

√
1 − η (62)

For small and medium damping, the equation can be further simplified as:

∆ω

ωn
=

ω2 − ω1

ωn
= η for η < 0.3 (63)

The relationship between the half-power bandwidth and loss factor calculated using
Equations (62) and (63) is visualised in Figure 8. It is seen that for small and medium
damping (i.e., ∆ω

ωn
< 0.3 or η < 0.3), Equations (62) and (63) produce almost the same

results, whereas there is a considerable difference between Equations (62) and (63) when
η > 0.6.
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In practical applications, the most commonly used methods for the identification of the
loss factor require vibration spectrums or frequency response functions, which are obtained
via the Fourier transformation of the time-domain data [113]. Although, we presented the
half-power bandwidth concept above, more sophisticated methods such as the circle-fit
and line-fit methods are commonly used to identify the modal loss factors of a structure
using measured frequency response functions [95,97,114,115].

3.9. Loss Factor and Viscous Damping Ratio

As seen in Equation (54), the loss factor is defined as η = E′′
E′ for the complex Young’s

modulus E′ + jE′′ . It should be remembered that, similarly, the same concept is used for the

complex stiffness given by
∼
k = k′ + jk′′ , where k′ and k′′ are the real and imaginary parts of

the complex stiffness, respectively. Let us try to obtain the equivalent complex stiffness for
a viscously damped SDOF system. The equation of motion for a viscously damped SDOF
system subjected to a harmonic excitation can be written as:

m
..
u + c

.
u + ku = F0ejωt (64)

Assuming the form of the solution to be
∼
Bejωt and substituting this into Equation (64)

produces the following expression:
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[
−mω2 + (k + jcω)

]∼
B = F0 (65)

Equation (65) can be further arranged as follows:[
−mω2 + k

(
1 + j

cω

k

)]∼
B = F0 (66)

or (
−mω2 +

∼
k
)∼

B = F0 (67)

where
∼
k is the complex stiffness defined as:

∼
k = k′ + jk′′ = k

(
1 + j

cω

k

)
(68)

Hence, the loss factor for a viscously damped system can obtained as follows [38]:

η =
k′′

k′
=

cω

k
(69)

Using the definitions of ωn =
√

k/m, and ζ = c
ccr

= c
2
√

km
at ω = ωd, the relationship

between the loss factor and viscous damping ratio is obtained as:

η = 2ζ
√

1 − ζ2 (70)

Since 2ζ
√

1 − ζ2 ≈ 2ζ for small damping, the equation above can be written as:

ηappr = 2ζ for ζ ≪ 1 (71)

The relationship between the viscous damping ratio and loss factor calculated using
Equations (70) and (71) is visualised in Figure 9. It is seen that for small damping (i.e.,
ζ < 0.15), both approaches produce almost the same results, whereas there is a considerable
difference between these two approaches when ζ > 0.3.
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3.10. Phase Lag and Loss Factor

As seen in Equation (50), the storage and loss moduli are given by E′ = σ0
ε0

cos(ϕ) and
E′′ = σ0

ε0
sin(ϕ), respectively. Using these in Equation (54), the relationship between the

phase lag and loss factor is obtained as [116]:

η =
E′′

E′ = tan(ϕ) (72)
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Hence, the phase lag in terms of the loss factor can be written as follows:

ϕ = tan−1(η) (73)

3.11. Phase Lag and Viscous Damping Ratio

Using ωn =
√

k/m and ζ = c
ccr

= c
2
√

km
in Equation (7), the relationship between the

phase lag and viscous damping ratio can be shown as:

2ζ
ωn

ω
= tan(ϕ) (74)

Hence, the phase lag in terms of viscous damping ratio can be written as:

ϕ = tan−1
(

2ζ
ωn

ω

)
(75)

At ω = ωn, the relation between the loss angle and viscous damping ratio becomes:

ϕ = tan−1(2ζ) at ω = ωn (76)

3.12. Viscosity and Loss Modulus

In the oscillatory shear experiment, the rotation provided to the sample is a simple
harmonic motion. Hence, the shear strain can be written as [117]:

γ(t) = γ0sin(ωt) (77)

where γ0 and ω are the input strain amplitude and frequency, respectively. Based on
Equation (77), the shear strain rate will be:

.
γ(t) =

dγ

dt
= γ0ωcos(ωt) (78)

For a linear viscoelastic material, the stress response to the applied shear is determined not
only by the current rate of strain but also by the historical rate of strain. Hence, the stress
for a general linear viscoelastic material at time t can be written as [118,119]:

τ(t) =
∫ t

−∞
G
(
t − t′

) .
γ
(
t′
)
dt′ =

∫ t

−∞
G
(
t − t′

)
γ0ωcos

(
ωt′

)
dt′ (79)

where the function G(t) is the relaxation modulus of the fluid [120] and shows the impor-
tance of the past strain rate on the current stress in the system. It is worth noticing that a
linear elastic solid has a constant relaxation modulus of G(t) = G0, and a purely viscous
fluid has a relaxation modulus of G(t) = µδ(t), where µ is the viscosity, and δ(t) is the
Dirac delta function [118]. Overall, using reference [121], the relationship between the loss
modulus and viscosity is obtained, as explained below. First, by changing the variables
using s = t − t′, we can transform the integral in Equation (79) to the following expression:

τ(t) = γ0ω
∫ ∞

0
G(s)cos[ω(t − s)]ds (80)

In addition, by writing cos[ω(t − s)] = Re
[
ejω(t−s)

]
, we can obtain the following equation:

τ(t) = γ0ω
∫ ∞

0
G(s)Re

[
ejω(t−s)

]
ds = γ0ωRe

[
ejωt

∫ ∞

0
G(s)e−jωsds

]
(81)

It is clear that the integral above is a one-sided Fourier transformation, and since it has no
dependence on t, it is a complex number. By convention, we can define the complex shear

modulus
∼
G as follows:
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∼
G = jω

∫ ∞

0
G(s)e−jωsds = G′ + jG′′ (82)

where G′ is the storage shear modulus, and G′′ is the loss shear modulus, as stated before.
Overall, we have the following expression:

τ(t) = γ0Re
[

ejωt
(
−j

∼
G
)]

= γ0Re
[
cos(ωt) + jsin(ωt)

(
G′′ − jG′)] (83)

By further rearranging the expression above and substituting Equations (77) and (78) into
Equation (83), we can obtain the following equation [118]:

τ(t) = γ0
[
G′sin(ωt) + G′′cos(ωt)

]
= G′γ(t) +

G′′

ω

.
γ(t) (84)

It should be noted that the response of a purely viscous fluid is τ(t) = µ
.
γ(t) = µγ0ωcos(ωt),

and the response of a purely elastic solid is τ(t) = Gγ(t) = Gγ0sin(ωt). As seen in
Equation (84), the role of the viscosity is found using the term G′′

ω . Therefore, it is common
to write the shear viscosity in terms of shear loss modulus as follows:

µ =
G′′

ω
(85)

3.13. Viscosity and Loss Factor

As the loss factor is defined as η = G′′
G′ , using Equation (85), the viscosity in terms of

the loss factor can be written as follows [122]:

µ =
ηG′

ω
(86)

3.14. Inverse Quality Factor and Viscous Damping Ratio

The inverse quality factor for a mechanical system is defined as the inverse of the
so-called quality factor (Q), and using Equation (59), it can be written as follows [38]:

Qinv =
1
Q

=
∆ω

ωn
=

√
1 − 2ζ2 + 2ζ

√
1 + ζ2 −

√
1 − 2ζ2 − 2ζ

√
1 + ζ2 (87)

For small damping, Equation (87) can be written as follows:

Qinv,appr =
1
Q

=
∆ω

ωn
= 2ζ for ζ ≪ 1 (88)

3.15. Inverse Quality Factor and Loss Factor

The inverse quality factor in terms of the loss factor is given by [38]:

Qinv =
1
Q

=
∆ω

ωn
=

√
1 + η −

√
1 − η (89)

For small and medium damping, Equation (89) can be written as follows:

Qinv,appr =
1
Q

=
∆ω

ωn
= η for η < 0.3 (90)

3.16. Structural Reverberation Time and Loss Factor

The loss factor of a plate-like structure can be identified using the method based on
the energy attenuation [123]. For this purpose, the structure is suspended by a set of soft
springs, and then it is excited by a shaker. When the steady vibrations are set, the excitation
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is abruptly interrupted, and the decay time of the vibrations is measured (see Figure 10).
Hence, the loss factor of the plate is estimated using the following expression [124–126]:

η =
2.2

f ·T60 dB
=

6loge10
ω·T60 dB

(91)

where f is the frequency in Hz, ω = 2π f is the frequency in rad/s, as stated before, and
T60 dB is the 60 dB decay time (see Figure 10) or structural reverberation time in s.
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3.17. Step Response and Viscous Damping Ratio

A typical step response of the viscously damped SDOF system given in Equation (19)
is illustrated in Figure 11. Various parameters of the step response, such as the so-called
peak time, rise time, overshoot, decay ratio, and settling time can be related to the viscous
damping ratio [127]. For example, the relationship between the viscous damping ratio ζ
and the decay ratio γ = c/a can be shown as:

ζ =
−logeγ√

4π2 + (logeγ)2
(92)

where a and c are the amplitudes of the first and second peaks, respectively.
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3.18. Rayleigh Damping and Viscous Damping

A common method of modelling damping in practical applications is the so-called
Rayleigh damping [128]. It is usually known as proportional damping or classical damp-
ing [129]. Overall, the Rayleigh damping model approximates the viscous damping avail-
able in the system. In this model, two damping coefficients (i.e., α and β) are specified.



Sensors 2024, 24, 6137 21 of 30

These coefficients can be calculated from the modal viscous damping ratio ζn at a particular
frequency ωn using the following simple expression [130]:

ζn =
α

2ωn
+

βωn

2
(93)

If the viscous damping ratios for the ith and jth modes are ζi and ζ j, then the Rayleigh
coefficients α and β are determined from the solution of the following two algebraic
equations [131]:

1
2

[
1/ωi ωi
1/ωj ωj

][
α
β

]
=

[
ζi
ζ j

]
(94)

If both modes have the same viscous damping ratio (i.e., ζi = ζ j = ζ), then the values of α
and β can be determined as follows:

α = ζ
2ωiωj

ωi + ωj
and β = ζ

2
ωi + ωj

(95)

It is worth noting that the Rayleigh damping model is implemented in many finite element
software packages, including ABAQUS [132], ANSYS [133], and COMSOL [134].

4. Summary of the Relationships between Common Damping Parameters

In practical applications, often one of the damping parameters (e.g., loss factor) is
measured, and for comparison purposes, it is necessary to convert the measured damping
parameter into some other damping parameter (e.g., viscosity). The measured parameter
can be converted into the desired parameter using the expressions presented in Section 3.
Using the derived expressions in Section 3, an important equation relating the loss factor
(η) to the ratio of the dissipated energy per cycle (∆W) and maximum stored energy (W),
specific damping capacity (ψ), loss angle (ϕ), ratio of the loss modulus (E′′ ) and storage
modulus (E′), and viscous damping ratio (ζ) can be written as follows:

η =
1

2π

∆W
W

=
ψ

2π
= tan(ϕ) =

E′′

E′ = 2ζ
√

1 − ζ2 (96)

Again, using the derived expressions in Section 3, for small damping, another impor-
tant equation relating the viscous damping ratio (ζ) to the ratio of the dissipated energy
per cycle (∆W) and maximum stored energy (W), specific damping capacity (ψ), loss angle
(ϕ), ratio of the loss modulus (E′′ ) and storage modulus (E′), loss factor (η), logarithmic
decrement (δ), ratio of the half-power bandwidth (∆ω) and natural frequency (ωn), quality
factor (Q), and inverse quality factor (Qinv) at ω = ωn can be written as follows:

ζ =
1

4π

∆W
W

=
ψ

4π
=

tan(ϕ)
2

=
E′′

2E′ =
η

2
=

δ

2π
=

∆ω

2ωn
=

1
2Q

=
Qinv

2
for ζ ≪ 1 (at ω = ωn) (97)

Overall, the important damping parameters measured in practical applications and their
relations to other important damping parameters are summarised in Table 3.

Table 3. The important damping parameters measured in practical applications and their relations to
other important damping parameters.

Measured Parameter(s) Target Parameter(s)

Dissipated energy per cycle (∆W )
Viscous damping coefficient (c):
c = ∆W

2π2 B2 f = ∆W
πB2ω

B: displacement amplitude
f : frequency in Hz
ω: frequency in rad/s

Dissipated energy per cycle (∆W ) and
maximum stored energy (W)

Specific damping capacity (ψ):
ψ = ∆W

W

Loss factor (η):
η = 1

2π
∆W
W
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Table 3. Cont.

Measured Parameter(s) Target Parameter(s)

Logarithmic decrement (δ)
Viscous damping ratio (ζ):
ζ = δ√

4π2+δ2

ζ = δ
2π (approx. for small damping, ζ ≪ 1)

Loss modulus (E′′ ) and storage modulus (E′)
Loss factor (η):
η = E′′

E′

Half-power bandwidth (∆ω = ω2 − ω1 )
(ω1: lower half-power frequency;
ω2: higher half-power frequency;
ωn: natural frequency;
Q: quality factor)

Viscous damping ratio (ζ) and inverse quality factor (Qinv):√
1 − 2ζ2 + 2ζ

√
1 + ζ2 −

√
1 − 2ζ2 − 2ζ

√
1 + ζ2 = ∆ω

ωn
= 1

Q = Qinv√
1 + 2ζ −

√
1 − 2ζ = ∆ω

ωn
= 1

Q = Qinv (approx. for small damping, ζ ≪ 1)
or
2ζ = ∆ω

ωn
= 1

Q = Qinv (approx. for small damping, ζ ≪ 1)

Loss factor (η) and inverse quality factor (Qinv):√
1 + η −

√
1 − η = ∆ω

ωn
= 1

Q = Qinv

η = ∆ω
ωn

= 1
Q = Qinv (approx. for small and medium damping, η < 0.3)

Phase lag (ϕ )

Viscous damping ratio (ζ):
2ζ ωn

ω = tan(ϕ)
2ζ = tan(ϕ) (at ω = ωn)

ωn: natural frequency
ω: excitation frequency

Loss factor (η):
η = tan(ϕ)

Loss factor (η )

Viscous damping ratio (ζ):
2ζ

√
1 − ζ2 = η

2ζ = η (approx. for small damping, ζ ≪ 1)

Inverse quality factor (Qinv):
Qinv = 1

Q = ∆ω
ωn

=
√

1 + η −
√

1 − η

Qinv = 1
Q = ∆ω

ωn
= η (approx. for small and medium damping, η < 0.3)

Loss modulus (G′′ )
Viscosity (µ):
µ = G′′

ω

ω: frequency in rad/s

Structural reverberation time (T60 dB )
Loss factor (η):
η = 2.2

f ·T60 dB
=

6loge10
ω·T60 dB

f : frequency in Hz
ω: frequency in rad/s

5. Some Damping Identification Applications of Biomaterials

The dynamic indentation test is widely used to identify the viscoelastic properties of
biomaterials. For example, the dynamic indentation method was used to determine the
storage and loss moduli of some agar samples [30]. The average storage modulus (E′) and
loss modulus (E′′ ) for a 5% agar sample obtained using the frequency sweep load function
with a 1500 µN static load and 2 µN dynamic amplitude were found to be between 2 and
2.3 MPa and 0.013 and 0.02 MPa, respectively, in the frequency range of 100–200 Hz [30].
Using Equation (54), i.e., η = E′′

E′ , the loss factor of the 5% agar sample can be calculated to
be around 0.07 and 0.09 at 100 and 200 Hz, respectively.

It is quite common to measure the storage and loss shear moduli of soft materials using
an oscillatory rheometer and then calculate the loss factor or viscosity from the measured
storage and loss shear moduli. For instance, the storage shear modulus (G′) and loss shear
modulus (G′′ ) of a hydrogel were measured using an oscillatory rheometer test [135]. Using
the relationship between the loss factor and the storage and loss shear moduli given before
(i.e., η = G′′ /G′), the average loss factor of the hydrogel for the given frequency range (i.e.,
1–10 Hz) can be calculated to be η = 0.007. Similarly, using the relationship between the
viscosity and loss shear modulus (i.e., µ = G′′ /ω) and the given frequency, the viscosity of
the hydrogel at f = 10 Hz can be calculated to be µ = 4 Pa·s.

The logarithmic decrement method is effective for determining the damping of a
structure when a single mode of vibration can be isolated from the others. Furthermore,
this time-domain method does not require input measurement; it requires only response
measurements. For example, the vibration damping characteristics of some spider silk
threads were determined through the nanoindentation and the time decay waveform
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obtained from a laser vibrometer [136]. Using the measured time decay waveform and
Equation (56), the logarithmic decrement of the so-called spiral thread was calculated. Then,
the viscous damping ratio of the spiral thread was calculated using Equation (57). It should
be noted that although the measured time decay waveform given in [136] is not purely
harmonic, it is still dominated by a frequency component, and the logarithmic decrement
can be used to identify the damping of the structure. Overall, the viscous damping ratio for
the spiral thread was found to be ζ = 0.12 [136]. Using Equation (71), i.e., η = 2ζ, the loss
factor of the spiral thread can be calculated to be η = 0.24.

The resonant vibration test or experimental modal analysis is quite commonly used
to identify the damping of a structure. The viscous damping ratios of some hydrogel
beam-shaped samples were identified using resonant vibration tests for the first bending
mode [33]. For this purpose, the frequency response functions using an accelerometer
and a laser Doppler vibrometer were measured. The modal viscous damping ratio was
determined by fitting the Euler–Bernoulli beam model to the experimental data. Using
Equation (72), i.e., η = E′′

E′ = tan(ϕ), the loss factor of the hydrogel sample was determined,
and using the simplified relation between the loss factor and viscous damping ratio (i.e.,
η = 2ζ), the viscous damping ratio of the hydrogel sample was calculated. For example,
the viscous damping ratio for the hydrogel 0.8% Bis sample was found to be ζ = 0.019 [33].

As mentioned before, although the half-power bandwidth concept for the identification
of the loss factor was presented in Section 3, more sophisticated methods such as the circle-
fit and line-fit methods are commonly used to identify the modal loss factors of a structure
using the measured frequency response functions [97]. For instance, the circle-fit model
is based on fitting a circle to the measured frequency response function data around the
vicinity of a natural frequency. Although the viscous damping ratio can be identified using
Equations (59)–(61) based on the half-power bandwidth method, the modal loss factor

for the rth mode (ηr) of a structure is determined using ηr =
ω2

2,r−ω2
1,r

ω2
n,r[tan(θ2,r/2)+tan(θ1,r/2)]

in the

circle-fit method, where ωn,r is the natural frequency of the rth mode, and ωr,1 and ωr,2
correspond to the angles θr,1 and θr,2 around ωn,r when the frequency response function is
plotted using the Nyquist diagram. For example, the loss factor of a biofibre-based plate
for the first mode using the circle-fit method was determined to be η = 0.027 [114]. Using
the simplified relation between the loss factor and viscous damping ratio (i.e., η = 2ζ), the
viscous damping ratio of the biofibre-based plate can be determined to be ζ = 0.0135.

In the recent years, a bubble or sphere placed inside the soft medium [73–75] or
located at the soft medium interface [34,60,61] and exposed to an external excitation,
such as acoustic radiation force or magnetic force, has been widely used to identify the
viscoelastic properties of soft materials. For instance, by using the deformation curve for a
microbubble administered into a wall-less hydrogel channel that is exposed to an acoustic
pulse obtained via high-speed microscopy and the curve fitted to the measured deformation
curve exploiting a mathematical model, the viscosity of a gel was estimated [34]. Overall,
the maximum displacement of the bubble was determined to be around 2.2 µm, and the
viscosity of the hydrogel was estimated to be 0.12 Pa·s [34]. Using a novel approach based
on the dynamic response of a spherical object placed at the sample interface, the shear
modulus and viscosity of a gelatine sample with a density of 1105 kg/m3 were determined
to be 3000 Pa and 1.5 Pa·s, respectively [60].

An ultrasound elastography for the characterisation of the viscoelastic properties
of soft tissue was developed and validated [64]. Reverberant shear wave ultrasound
elastography was used to scan plantar soft tissue and gelatine phantoms at 400–600 Hz.
The shear wave speed was determined using the ultrasound particle velocity data. The
viscoelastic parameters were extracted by fitting Young’s modulus as a function of the
frequency derived using different rheological models to the shear wave dispersion data.
For example, Young’s modulus and the viscosity of plantar soft tissue were determined
to be 13,628 Pa and 3.3 Pa·s, respectively, using the Kelvin–Voight model [64]. It should
be noted that there have been many attempts to exploit damping (or viscosity) in quan-
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titative ultrasound [62,64,137–140]. For example, the reconstructions of viscosity maps
in different tissues (e.g., ex vivo normal porcine liver, fatty duck liver, and fatty goose
liver) with inclusions were presented in [64]. In addition, modifications have been made to
existing magnetic resonance elastography by using a damping parameter (e.g., loss angle)
to improve its accuracy [45,67,80,141,142].

6. Conclusions

The literature review shows that the dynamic indentation method, rheometry and
viscometry, atomic force microscopy, hysteresis loop or power input method, resonant
vibration tests or experimental modal analysis, and logarithmic decrement are commonly
used to identify the damping of materials, including soft materials. In addition, a bubble or
sphere placed inside the soft medium or located at the soft medium interface while being
exposed to an external excitation, such as acoustic radiation force or magnetic force, is
nowadays used to identify the viscoelastic properties of soft materials. The use of ultra-
sound elastography and magnetic resonance elastography for determining the mechanical
properties of tissue are quite common in preclinical and clinical applications. The viscous
damping ratio, loss factor, complex modulus (or storage and loss moduli), and viscosity
are quite commonly used to describe and quantify damping in practical applications. In
addition, the specific damping capacity, loss angle, half-power bandwidth, logarithmic
decrement, and inverse quality factor are used to describe and quantify damping in many
applications. In practice, usually one of the damping parameters (e.g., loss factor) is
measured, and for comparison purposes, the measured damping parameter needs to be
converted into some other damping parameters (e.g., viscosity).

There are a limited number of review studies in the literature that present the theo-
retical derivations of different damping parameters and the relationships between a large
number of damping parameters. Therefore, the theoretical derivations of many param-
eters for the description and quantification of damping as well as their relationships are
covered in this comprehensive review. Both accurate formulas (i.e., for systems with any
amount of damping) and approximate formulas (i.e., for systems with low damping) are
presented and compared. This is the first comprehensive review paper of its kind that
presents the theoretical derivations of a large number of damping parameters, and the
relationships between many damping parameters with the quantitative evaluation of ac-
curate and approximate formulas. The damping parameters investigated in this paper
include the specific damping capacity, loss factor, viscous damping coefficient, viscous
damping ratio, loss angle or phase lag, logarithmic decrement, half-power bandwidth,
complex modulus (or loss and storage moduli), inverse quality factor, viscosity, decay ratio
in the step response, and structural reverberation time. It is believed that the material
presented in this paper will be a primary resource for damping or viscoelasticity research
and teaching in the future.
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