Assessment of a Compression-After-Impact (CAI) Test Method for Fatigue Loading

The well established but non-standardised compression-after-impact (CAI) test method is suitable for determining the residual compression strength for thin carbon fibre-reinforced plastic (CFRP) composite panels typically used in aerospace applications. For this type of material the governing type of impact damage is delamination that can propagate under compression loads. Traditionally, CAI tests have been performed under static loading i.e. the damaged panel is loaded in-plane at a slow rate until failure. However, this loading is not totally realistic as the component is likely to experience fatigue loading rather than, or before, a static overload. The damage is more likely to propagate to a large size, or catastrophically, under a long-term cyclic load rather than a one-off overload.

This Measurement Note details work undertaken to assess the suitability and practicality of adapting the static CAI test method for use under fatigue loading. The work characterises the CAI fatigue performance of two carbon fibre-reinforced epoxy material systems and provides a comparison to the plain compression fatigue response. The use of pulse thermography for monitoring damage growth is also detailed.

The results of the study have indicated that the CAI method can be successfully used under fatigue loading. Minimal changes in compressive stiffness of CAI fatigue specimens was observed until immediately prior to failure. In addition, pulse thermography was successfully used as a technique for real-time damage monitoring.

M R L Gower, R M Shaw and G D Sims

March 2007
INTRODUCTION

The use of the compression-after-impact (CAI) test method for laminated fibre-reinforced plastic (FRP) materials, where the critical loading mode (compression) is directly linked to the predominant and critical damage type (i.e. delamination), is common within the aerospace industry. Laminated wing skins are typically designed with compression performance as one of the main design drivers. Therefore compression stress and/or stiffness/strain are key material properties that need to be characterised as they will be significantly affected by the presence of damage within the material.

Low velocity impact events such as tool drop or stone impact, often give rise to local delaminations within laminated composite structures. Even though the impact may be transverse to the laminate, damage often propagates along the planes between adjacent layers since these planes do not benefit from the reinforcing effect of the fibres. Growth of the defect will in many cases occur by extension of the delamination into the surrounding material that may not have been directly affected by the initial impact event. The CAI method is typically used to compare residual compression properties to critical design values (or plain compression properties) in order to assess the susceptibility of a material to the growth of such delaminations under quasi-static compressive loading.

Traditionally, the compression phase has been performed under static loading i.e. the damaged panel is loaded at a slow rate until failure. However, this loading is not totally realistic as the component is likely to experience fatigue loading rather than, or before, a static overload. The damage is more likely to propagate to a large size, or catastrophically, under a long-term cyclic load rather than a one-off overload.

This Measurement Note is the second of two detailing work undertaken to assess the suitability of the Japanese Plastics Industry Federation (JPIF) compression-after-impact (CAI) test method proposed for ISO standardisation. The first Measurement Note [1] evaluated the repeatability of the method under static loading and this second Note details work looking at the suitability of the method for use in fatigue loading.

EVALUATION OF CAI TEST METHOD UNDER FATIGUE LOADING

The following sections detail tests undertaken to assess the suitability of the JPIF CAI method for assessing the criticality of impact damage under long-term loading.

Materials

Two material systems were tested in this study supplied by Hexcel Composites Ltd and Gurit Holdings AG (previously SP Systems Ltd.) as industry co-funding contributions to the project. Both materials were unidirectional (UD) carbon fibre-reinforced epoxy pre-pregs.

The material systems used and measured fibre volume fractions are detailed in Table 1.

Panel and specimen preparation

Test panels were manufactured at NPL according to the fabrication method given in [2] and following material supplier’s guidance. Material 1 panels were autoclave cured at 120°C for 1 hour (3°C/minute ramp at 6 bar) and Material 2 panels at 125°C for 1 hour (3°C/minute ramp at 7 bar). The lay-up of the panels was quasi-isotropic (+45/0/-45/90)2s. Specimens were extracted from test panels in accordance with [3] (additional guidance on machining operations is given in [4]). Machining operations were performed using a Bennett diamond grit coated circular saw, with water used as a coolant/lubricant.
good alignment is relatively easily achieved, but never on a hydraulic machine. As correct alignment of the loading jig is critical, checks were made before any tests were undertaken.

Two impacted specimens per material were strain gauged in order to check alignment by monitoring the degree of bending during loading. Pairs of strain gauges were bonded to specimens and trial compression tests were then undertaken, initially elastically to ~3000 microstrain and then to failure. In the ISO proposed CAI method, bending is deemed acceptable if the difference between average strains recorded on each face of the specimen throughout the duration of the test is less than or equal to 10%. All alignment tests resulted in less than 10% bending and it was therefore felt that the alignment of the CAI jig on the hydraulic machine was acceptable.

The ultimate CAI strength of both materials had previously been measured by undertaking tests at the quasi-static crosshead rate of 0.5 mm/minute. Unlike glass fibre-reinforced systems, the material properties of carbon...
Values of σ_{min} were calculated as various percentages (50 to 85%) of the measured mean static CAI strength. The maximum, mean and amplitude stress values were then calculated using $R=10$. Initially, it was planned to undertake 5 tests at each of 5 percentage levels of σ_{min} (as recommended in [7]), however this was varied slightly to enable tests to be undertaken at additional stress levels (depending on material) so that a greater extent of the stress (S) versus number of fatigue cycles (N) plot could be investigated. The stress levels used are detailed in Table 2.

Fatigue trials were also undertaken with strain gauged specimens to investigate whether strain data could be collected throughout the fatigue tests. Unfortunately the data logging equipment used was only capable of recording ~10 data points per second (10 Hz) and analysis of the data proved that this was not a sufficient recording frequency to fully define a load cycle. Thus measurement of displacement during the tests was performed using the actuator displacement. As the loading train for the CAI support jig is relatively short it was considered that there was a minimal amount of system compliance.

(N.B. Since the work detailed in this report was undertaken, data-logging facilities have been upgraded at NPL and are now capable of recording at 10 kHz)

For guidance on undertaking the fatigue tests, BS ISO 13003 [7] was followed closely and the reader is referred to this standard for more details on fatigue terminology and methodology. The fatigue regime used for all tests was compression-compression (Figure 2) with $R=10$, where R is:

$$R = \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} = 10$$

Values of σ_{min} were calculated as various percentages (50 to 85%) of the measured mean static CAI strength. The maximum, mean and amplitude stress values were then calculated using $R=10$. Initially, it was planned to undertake 5 tests at each of 5 percentage levels of σ_{min} (as recommended in [7]), however this was varied slightly to enable tests to be undertaken at additional stress levels (depending on material) so that a greater extent of the stress (S) versus number of fatigue cycles (N) plot could be investigated. The stress levels used are detailed in Table 2.

Due to the typically extensive test durations involved with fatigue testing, it is desirable to use the highest test frequency possible. However, selection of the correct test

![Figure 2 - Compression-compression sinusoidal waveform fatigue cycle](image)

<table>
<thead>
<tr>
<th>Table 2 - Percentage and Absolute Stress Levels for CAI and Plain Compression Fatigue Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>CAI (ISO draft)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Compression [8]</td>
</tr>
</tbody>
</table>
frequency is essential as too high a frequency can lead to excessive, self-generated heat (autogenous heating) leading to thermal damage of the material under test and hence incorrect measurement of material properties. The test frequency selected was 5 Hz and checks were made as to the extent of autogenous heating during loading. It was found that there was little or no rise in the temperature of specimens at this fatigue rate.

After careful positioning in the test rig (correct vertical alignment was ensured using a spirit level) specimens were tested under load control using Instron MAX software and a sinusoidal cyclic waveform (Figure 2). Using the minimum, maximum, mean and amplitude stress values for each percentage stress level and the individual specimen dimensions, the corresponding load values were calculated for each specimen and inputted into the MAX software.

Specimens were tested in fatigue until failure had occurred or 2×10^6 cycles had been reached. Specimens that reached 2×10^6 cycles without failure were classed as 'run-out's'. It is noted that some fatigue tests were run for longer than 2 million cycles to investigate how many additional cycles would be required for failure.

(N.B. for CFRP materials used for aerospace applications, 10^6 cycles is typically defined as the number of cycles equivalent to the material’s design fatigue life).

The control software was used to record the time, load, actuator position and cycle number for each fatigue cycle logged. Due to the large number of loading cycles required to cause failure, data was logged on a logarithmic scale with a cycle interval of 5 i.e. data was recorded according to the following pattern of cycles 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, 125, 250, 375, 500 etc. Logging of each cycle was also triggered when a 5 % change in the load amplitude was detected by the software.

iii) Damage monitoring using pulse thermography

Pulse thermography is a non-destructive evaluation (NDE) technique that examines the thermal response (to heating or cooling) of a material or structure to determine the presence of subsurface defects and/or material properties of the target. The principle of the technique is shown schematically in Figure 3. When a material is momentarily exposed to a heat source, in this case via a halogen flash lamp, heat conducts into the material and is also reflected as infrared radiation. The presence of a sub-surface defect or damage reduces the amount of heat conducted through the material and therefore increases the level of infrared radiation in the location of the defect. By monitoring the level of infrared radiation emitted by the material using a thermal camera, the presence and size of damage can be determined.

This technique was used to investigate the extent of damage (delamination) growth for several of the CAI fatigue tests. A ThermoScope™ pulse thermography system (supplied by LOT-Oriel Ltd.) was used for these tests. One of the key advantages of pulse thermography for damage detection compared to other techniques such as ultrasonic C-scan...
and X-ray, is that the inspection can be performed without the need to remove the specimen from the loading jig. The ThermoScope™ equipment is shown in Figure 4. After various numbers of fatigue cycles had been completed, tests were stopped and the specimen under test was held briefly at the maximum compressive load (σ_{min}). The specimen was then interrogated using the ThermoScope™ equipment before the fatigue test was resumed.

(B) Plain end-loaded compression fatigue to BS EN ISO 14126

In order to compare the compression fatigue performance of CAI specimens to the undamaged fatigue performance, a number of fatigue tests were also undertaken on plain compression specimens. It is noted that this was only performed on Material 1.

Tests were undertaken on un-impacted coupons with the same dimensions as the CAI specimens i.e. 150 x 100 x ~4-5 mm using the CAI support jig. As expected these tests proved unsuccessful with specimens failing by buckling rather than compression. Therefore undamaged compression tests were carried out using the specimen dimensions (125 x 25 x ~4-5 mm) and end-loading jig detailed in BS EN ISO 14126 [8].

The four pillar die set end-loading compression jig was mounted on an Instron 1251 hydraulic test machine as shown in Figure 5. The alignment of the jig on the test machine was set using a ground steel bar to ensure that the top and bottom loading blocks were correctly aligned.

A number of static tests to failure were undertaken to determine the mean ultimate compression strength, and the maximum, mean and amplitude stress values for a range of percentage (of ultimate) stress levels were calculated (Table 2).

As for the CAI fatigue tests, a sinusoidal cyclic waveform was used and tests were run at a frequency of 5 Hz. All tests were run in load control using MAX software and the same data logging sequence was also used.

ANALYSIS OF FATIGUE DATA

As well as recording the number of cycles to failure, stiffness properties of each specimen were monitored throughout the test at each logged cycle. This was carried out to see whether changes in stiffness occur due to growth of the damage throughout the fatigue tests, and whether if there was a change in stiffness, where in relation to the failure cycle it occurred.

The stiffness of each specimen was calculated using two methods; (i) from the minimum and maximum actuator positions corresponding to minimum and maximum load levels and (ii) by monitoring the hysteresis loops of logged cycles to determine the storage and loss
Table 3 - CAI Fatigue Results for Materials 1 and 2

<table>
<thead>
<tr>
<th>Specimen number</th>
<th>(\sigma_{\text{min}}) (MPa)</th>
<th>Normalised peak stress*</th>
<th>Cycles to failure, N</th>
<th>(\log_{10}) (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5AQUL002</td>
<td>139.7</td>
<td>1.03</td>
<td>0.5</td>
<td>-0.30</td>
</tr>
<tr>
<td>5AQUL003</td>
<td>131.9</td>
<td>0.97</td>
<td>0.5</td>
<td>-0.30</td>
</tr>
<tr>
<td>6AQUL006</td>
<td>108.6</td>
<td>0.80</td>
<td>10,887</td>
<td>4.04</td>
</tr>
<tr>
<td>6AQUL007</td>
<td>108.6</td>
<td>0.80</td>
<td>59,962</td>
<td>4.78</td>
</tr>
<tr>
<td>6AQUL008</td>
<td>108.6</td>
<td>0.80</td>
<td>7,907</td>
<td>3.90</td>
</tr>
<tr>
<td>4AQUL011</td>
<td>105.2</td>
<td>0.78</td>
<td>35,433</td>
<td>4.55</td>
</tr>
<tr>
<td>6AQUL002</td>
<td>105.2</td>
<td>0.78</td>
<td>11,227</td>
<td>4.05</td>
</tr>
<tr>
<td>6AQUL003</td>
<td>105.2</td>
<td>0.78</td>
<td>52,959</td>
<td>4.72</td>
</tr>
<tr>
<td>6AQUL004</td>
<td>105.2</td>
<td>0.78</td>
<td>149,597</td>
<td>5.17</td>
</tr>
<tr>
<td>6AQUL005</td>
<td>105.2</td>
<td>0.78</td>
<td>103,307</td>
<td>5.01</td>
</tr>
<tr>
<td>5AQUL010</td>
<td>101.8</td>
<td>0.75</td>
<td>115,161</td>
<td>5.06</td>
</tr>
<tr>
<td>5AQUL004</td>
<td>101.8</td>
<td>0.75</td>
<td>72,195</td>
<td>4.86</td>
</tr>
<tr>
<td>5AQUL005</td>
<td>101.8</td>
<td>0.75</td>
<td>261,805</td>
<td>5.42</td>
</tr>
<tr>
<td>5AQUL006</td>
<td>101.8</td>
<td>0.75</td>
<td>86,116</td>
<td>4.94</td>
</tr>
<tr>
<td>5AQUL007</td>
<td>101.8</td>
<td>0.75</td>
<td>231,818</td>
<td>5.37</td>
</tr>
<tr>
<td>4AQUL003</td>
<td>98.4</td>
<td>0.73</td>
<td>156,280</td>
<td>5.19</td>
</tr>
<tr>
<td>4AQUL004</td>
<td>98.4</td>
<td>0.73</td>
<td>46,419</td>
<td>4.67</td>
</tr>
<tr>
<td>4AQUL005</td>
<td>98.4</td>
<td>0.73</td>
<td>19,468</td>
<td>4.29</td>
</tr>
<tr>
<td>3AQUL003</td>
<td>95.1</td>
<td>0.70</td>
<td>460,729</td>
<td>5.66</td>
</tr>
<tr>
<td>3AQUL006</td>
<td>95.1</td>
<td>0.70</td>
<td>999,615</td>
<td>6.00</td>
</tr>
<tr>
<td>3AQUL007</td>
<td>95.1</td>
<td>0.70</td>
<td>2,000,000</td>
<td>6.30</td>
</tr>
<tr>
<td>3AQUL008</td>
<td>95.1</td>
<td>0.70</td>
<td>197,251</td>
<td>5.30</td>
</tr>
<tr>
<td>3AQUL009</td>
<td>95.1</td>
<td>0.70</td>
<td>632,587</td>
<td>5.80</td>
</tr>
<tr>
<td>3AQUL004</td>
<td>84.9</td>
<td>0.63</td>
<td>1,788,290</td>
<td>6.25</td>
</tr>
<tr>
<td>3AQUL005</td>
<td>84.9</td>
<td>0.63</td>
<td>2,000,000</td>
<td>6.30</td>
</tr>
<tr>
<td>5AQUL001</td>
<td>84.9</td>
<td>0.63</td>
<td>2,000,000</td>
<td>6.30</td>
</tr>
<tr>
<td>5AQUL008</td>
<td>84.9</td>
<td>0.63</td>
<td>2,000,000</td>
<td>6.30</td>
</tr>
<tr>
<td>5AQUL009</td>
<td>84.9</td>
<td>0.63</td>
<td>2,000,000</td>
<td>6.30</td>
</tr>
</tbody>
</table>

* - normalised with respect to the mean UCS determined by quasi-static tests
grey shading indicates run-outs

Table 4 - Plain Compression Fatigue Results for Material 1 (End-Loaded, R=10)

<table>
<thead>
<tr>
<th>Specimen number</th>
<th>(\sigma_{\text{min}}) (MPa)</th>
<th>Normalised peak stress*</th>
<th>Cycles to failure, N</th>
<th>(\log_{10}) (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AQUL012</td>
<td>457.1</td>
<td>1.01</td>
<td>0.5</td>
<td>-0.30</td>
</tr>
<tr>
<td>3AQUL013</td>
<td>464.8</td>
<td>1.02</td>
<td>0.5</td>
<td>-0.30</td>
</tr>
<tr>
<td>3AQUL014</td>
<td>441.5</td>
<td>0.97</td>
<td>0.5</td>
<td>-0.30</td>
</tr>
<tr>
<td>ABDQ018</td>
<td>386.3</td>
<td>0.85</td>
<td>37,901</td>
<td>4.58</td>
</tr>
<tr>
<td>ABDQ019</td>
<td>386.3</td>
<td>0.85</td>
<td>18,084</td>
<td>4.26</td>
</tr>
<tr>
<td>ABDQ015</td>
<td>363.6</td>
<td>0.80</td>
<td>30,731</td>
<td>4.49</td>
</tr>
<tr>
<td>ABDQ016</td>
<td>363.6</td>
<td>0.80</td>
<td>37,521</td>
<td>4.57</td>
</tr>
</tbody>
</table>

* - normalised with respect to the mean UCS determined by quasi-static tests
grey shading indicates run-outs
moduli. The first method is relatively simple, although the use of actuator position to calculate strain can lead to errors due to machine/loading train compliance. The second method is described in the following section.

Monitoring specimen stiffness via hysteresis loops

When a material is subjected to fatigue loading the stress-strain response observed is related to its ability to store and dissipate energy. Figure 6 shows stress-strain responses for (a) perfectly elastic behaviour and (b) viscoelastic behaviour.

Figure 6 - (a) elastic response, stored energy and (b) viscoelastic response

For sinusoidal waveform loading, Figure 7, changes in the response of the stress and strain curves over time, indicate changes in the mechanical properties of the material. These changes are measured by looking at the change in amplitude and phase angle (δ) of the two curves. For a perfectly elastic material the mechanical energy stored during loading is returned completely when the specimen is unloaded. Thus the stress and strain curves for the material are completely in phase with each other i.e. δ=0°, resulting in no hysteresis (Figure 6(a)). Conversely, a perfectly viscous material (δ=90°) which exhibits no elasticity, results in all of the mechanical energy being dissipated and the stress-strain curves being out of phase with each other. Materials that fall between these two categories are classified as viscoelastic.

For viscoelastic materials subjected to cyclic fatigue, a proportion of the mechanical energy per cycle is converted to heat with the rest of the energy being stored and returned on unloading. This produces stress and strain curves which exhibit a phase lag (Figure 7) and a hysteresis loop results of which the area enclosed within the ellipse is equal to the dissipated energy per cycle, Figure 6(b).

The viscoelastic behaviour for stress and strain can be represented as:

\[\varepsilon = \varepsilon_0 \sin(\omega t) \quad \text{and} \quad \sigma = \sigma_0 \sin(\omega t + \delta) \]

Where:

- \(\varepsilon \) = strain, \(\sigma \) = stress, \(\omega \) = period of oscillation, \(t \) = time and \(\delta \) = phase angle (radians).

To monitor the changes in material during fatigue, individual fatigue cycles can be investigated for changes in: (i) the **storage modulus**, which is as a measure of the elastic properties of the material i.e. the ability to store energy, and (ii) the **loss modulus**, which is a measure of the viscous component of the material i.e. the energy dissipated as heat. Where:

\[\text{Storage modulus} = M' = \frac{\sigma}{\varepsilon_0} \cos \delta \]

\[\text{Loss modulus} = M'' = \frac{\sigma}{\varepsilon_0} \sin \delta \]
The damping factor can also be used as an indication of the viscous component of the material. If damage formation and growth occurs under fatigue loading, the storage and loss (damping factor) moduli can be expected to decrease and increase respectively with an increasing number of fatigue cycles.

For the fatigue tests conducted, each logged cycle was analysed to calculate the elastic, storage and loss moduli, and damping factor. The method of data analysis is not described here, but can be found in [9].

RESULTS

The number of cycles to failure for CAI and undamaged plain compression fatigue are detailed in Tables 3-4 and Figures 8-9. Figure 9 shows normalised compressive stress against log_{10}(fatigue cycles to failure). (N.B. the scale on the y axis goes up to 1.1 as the compressive stresses were normalised with respect to the mean ultimate compressive strength (UCS)). In general the CAI fatigue S-N plots for both materials were very flat as is typically the case for CFRP materials. The plain compression S-N curve for Material 1 exhibited a slightly steeper gradient to the CAI curve but this was thought to be due only to the fact that fewer specimens had been tested.

Figure 10 shows plots of: (a) normalised elastic storage modulus against the log of fatigue life, and (b) normalised storage modulus and damping factor. It is noted that the y-axis normalised scales extend to 1.1 as there tended to be some degree of noise in the

![Figure 8 - Fatigue results for CAI and plain compression tests](image)

![Figure 9 - Normalised fatigue results for CAI and plain compression tests](image)
Figure 10 - Material 1 results: (a) normalised compressive modulus vs. Log(fatigue cycles) and (b) normalised storage modulus and damping factor vs. Log(fatigue cycles)

Figure 11 - Pulse thermography images of CAI fatigue specimen (72.5 % of static UCS)
data. Plots of the loss modulus were very noisy and hence the damping factor has been plotted instead. Results have only been shown for Material 1 here but the same trends were observed for Material 2. It can be seen from Figure 10(a) that the normalised compressive modulus shows very little change over the fatigue life until very close to failure. This is true for all of the percentage stress levels tested. Figure 10(b) also indicates that there are minimal changes in the storage modulus and damping factor over the fatigue life, again until just prior to failure.

Finally, images obtained from pulse thermographic inspection of a CAI specimen fatigue tested at 72.5 % of UCS after various numbers of fatigue cycles are shown in Figure 11. Careful inspection of the damage area visible in the images indicates that there is some growth of delaminations within the specimen but to a fairly minimal extent.

CONCLUSIONS

The results of this study have evaluated the suitability and practicality of adapting the static CAI test method for use under fatigue loading. A number of key observations and conclusions can be drawn from the work undertaken:

- In general it was found that the static CAI method required minimal adaptation for use under fatigue loading, and there were no problems encountered in using the support jig on the fatigue machine.

- The plain compression and CAI S-N curves were found to be of similar gradient. Therefore it is reasoned that it would be possible to calculate the CAI fatigue life from a ‘knock-down’ factor applied to the plain compression fatigue performance and knowledge of the ultimate CAI strength.

- The use of the normalisation framework approach to fatigue has been previously used for glass-fibre based systems [10] and is incorporated into the CoDA predictive composites software [11].

- Failure of CAI fatigue specimens tended to occur suddenly with little or no reductions in compressive and storage moduli or increase in damping factor. The accuracy of calculated stiffness values could be increased by using strain gauges for direct measurement of strain rather than using values derived from the actuator displacement.

- Pulse thermography has been demonstrated to be a useful technique for ‘on-line’ damage monitoring, as it does not require the user to remove the specimen from the test jig.
REFERENCES

2. BS ISO 1268 Plastics - Preparation of glass fibre reinforced, resin bonded, low-pressure laminated plates or panels for test purposes.

3. BS EN ISO 2818 Plastics - Preparation of test specimens by machining.

7. BS ISO 13003:2003 Fibre-reinforced plastics - Determination of fatigue properties under cyclic loading conditions.

8. BS EN ISO 14126 Fibre-reinforced plastic composites - Determination of compressive properties in the in-plane direction.

11. NPL CoDA software

ACKNOWLEDGEMENTS

The research reported in this Measurement Note was carried out at NPL as part of the Performance Programme funded by the United Kingdom Department of Trade and Industry (National Measurement System Directorate). The authors would like to express their gratitude to the Industrial Advisory Group, Hexcel Composites and Gurit Holdings AG, and NPL colleagues Bill Broughton and Bruce Duncan.

For further information contact:

Mr Michael Gower
Polymers and Modelling Group
Industry and Innovation Division
National Physical Laboratory
Hampton Road, Teddington
Middlesex
TW11 0LW
Telephone: 020-8977 3222 (switchboard)
Direct Line: 020-8943 8625
Facsimile: 020-8943 6177

© Crown Copyright 2007. Reproduced by permission of the Controller of HMSO.